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A B S T R A C T 

Measuring the magnetic field in cosmic filaments reveals how the Universe is magnetized and the process that magnetized 

it. Using the Rotation Measures (RM) at 144 MHz from the LoTSS DR2 data, we analyse the rms of the RM extragalactic 
component as a function of redshift to investigate the evolution with redshift of the magnetic field in filaments. From previous 
results, we find that the extragalactic term of the RM rms at 144 MHz is dominated by the contribution from filaments (more 
than 90 per cent). Including an error term to account for the minor contribution local to the sources, we fit the data with a model 
of the physical filament magnetic field, evolving as B f = B f , 0 (1 + z) α and with a density drawn from cosmological simulations 
of five magnetogenesis scenarios. We find that the best-fitting slope is in the range α = [ − 0.2, 0.1] with uncertainty of σα = 

0.4–0.5, which is consistent with no evolution. The comoving field decreases with redshift with a slope of γ = α − 2 = [ −
2.2, −1.9]. The mean field strength at z = 0 is in the range B f , 0 = 39–84 nG. For a typical filament gas o v erdensity of δg = 10 

the filament field strength at z = 0 is in the range B 

10 
f , 0 = 8–26 nG. A primordial stochastic magnetic field model with initial 

comoving field of B Mpc = 0.04–0.11 nG is fa v oured. The primordial uniform field model is rejected. 

Key words: magnetic fields – polarization – methods: statistical – intergalactic medium – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

The evolution with cosmic time of the magnetic field is essential 
to understand how the present Universe is magnetized and the 
process of magnetogenesis (e.g. Subramanian 2016 ; Ar ́amburo- 
Garc ́ıa et al. 2021 ; Vazza et al. 2021b ). Cosmic web filaments are 
a sweet spot for this, for they are not yet as processed by cosmic 
evolution as galaxy clusters are, thus preserving the signature of 
the initial magnetogenesis scenario (e.g. Vazza et al. 2017 , 2021a , 
b ; Mtchedlidze et al. 2022 ), while also possessing stronger fields 
than in voids, which makes their detection easier. Magnetogenesis 
scenarios can be broadly subdivided into primordial, where the field 
is generated either during Inflation or in some early phase-transition 
before the recombination (e.g. Turner & Widrow 1988 ; Kronberg 
1994 ; Paoletti & Finelli 2019 ; Pomakov et al. 2022 ), and late, where 
the field is generated at low redshift by dynamo amplification or 
astrophysical sources that inject it in the intergalactic medium (IGM) 
as magnetic bubbles (e.g. Kronberg 1994 ; Bertone, Vogt & Enßlin 
2006 ; Vazza et al. 2017 ). 

The Rotation Measure (RM) of extragalactic sources measures 
the magnetic field component along the line of sight weighted by the 
free-electron number density and integrated along the entire line of 
sight. It is a powerful tool to investigate magnetic field properties 
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of the Galaxy (e.g. Jansson & Farrar 2012 ; Dickey et al. 2022 ), the 
environment local to the source (e.g. Kronberg et al. 2008 ), or the 
intervening IGM between the source and the observer (e.g. Vernstrom 

et al. 2019 ; O’Sulli v an et al. 2020 ). 
The detection of the radio emission of cosmic filaments and of their 

magnetic field through synchrotron emission and RM was the subject 
of intense research in the past few years. Upper limits were found 
with different approaches: cross-correlating large radio maps with 
the large-scale galaxy distribution (Brown et al. 2017 ; Vernstrom 

et al. 2017 ); analysing RMs of giant radio galaxies (O’Sulli v an et al. 
2019 ; Stuardi et al. 2020 ); cross-correlating RMs with the galaxy 
distribution (Amaral, Vernstrom & Gaensler 2021 ); simulations 
constrained by observations or non-detections (Vacca et al. 2018 ; 
Locatelli et al. 2021 ). Intracluster bridges of radio emission were 
detected in a few galaxy clusters 1 (e.g. Kim et al. 1989 ; Brown & 

Rudnick 2011 ; Bonafede et al. 2022 ; de Gasperin et al. 2022 ). A 

detection of the synchrotron emission from an intercluster bridge 
connecting close pairs of merging clusters was obtained by Govoni 
et al. ( 2019 ) (see also Botteon et al. 2020 ; Venturi et al. 2022 ), 

1 Kim et al. ( 1989 ) proposed that the structure they found, stretching out 
of the Coma galaxy cluster halo, was an intercluster bridge connecting the 
Coma cluster to the cluster A1367. Later observations have shown it is an 
intracluster bridge in the Coma cluster connecting the halo to the SW relic 
(e.g. Brown & Rudnick 2011 ; Bonafede et al. 2022 ). 
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establishing the presence of magnetic fields in the IGM beyond 
cluster outskirts. Vernstrom et al. ( 2021 ) and Carretti et al. ( 2022 ) 
made a further step ahead, first detecting fields of the general, weaker 
filaments of the cosmic web of 30–60 nG and ≈30 nG, through 
stacking of synchrotron emission and measuring the RM evolution 
with redshift, respectively. 

The evolution with redshift of the RM and average magnetic field 
of the Universe were investigated by several authors (e.g. Xu & 

Han 2014 and references therein and in Carretti et al. 2022 ), but 
hampered by the separation of local and IGM components. Pomakov 
et al. ( 2022 ) separated the IGM term using the differential RM of 
close pairs of galaxies from the same, low frequency RM catalogue 
we used in Paper I , and measured the evolution with redshift of the 
average magnetic field of the Universe. 

In Carretti et al. ( 2022 ), hereafter Paper I , we used the RM cata- 
logue at 144 MHz (O’Sulli v an et al., submitted) derived from LoTSS 

DR2 (LOFAR Two-metre Sk y Surv e y Data Release 2; Shimwell et al. 
2017 , 2019 , 2022 ) data to measure the behaviour of RM in redshift 
bins out to z = 2, after subtracting off the Galactic contribution, and 
the behaviour versus the fractional polarization p . We found that the 
former is consistent with no evolution, and the latter is flat with p . Af- 
ter a comparison with the RM and p measured at 1.4 GHz of the same 
sources, we found that an IGM origin of the RMs is fa v oured and 
estimated a magnetic field in filaments of ≈30 nG, as reported abo v e. 
We assumed no evolution for magnetic field and electron number den- 
sity, ho we v er, e xcept assuming the mean electron number density at 
z = 0.7. 

This work is a follow-up of Paper I , aimed at investigating the 
evolution with redshift of the magnetic field in cosmic filaments, 
adding in the evolution of the quantities involved. It is conducted 
within the Magnetism Key Science Project (MKSP) of LOFAR 

and uses the RM catalogue at 144 MHz employed in Paper I 
(O’Sulli v an et al., submitted), which is derived from LoTSS DR2 
(Shimwell et al. 2022 ) Stokes Q and U data cubes in a collaborative 
effort between the LOFAR Surv e ys Ke y Science Project 2 and the 
MKSP. It also uses dedicated cosmological magnetohydrodynam- 
ical (MHD) simulations of a set of magnetogenesis scenarios, 
to draw realistic density distributions from and to compare our 
results with. We find the RM evolution with redshift a pow- 
erful way to discriminate between cosmological magnetogenesis 
models. 

This paper is organized as follows. Section 2 describes the 
RM data and the RM rms in redshift bins out to z = 3, af- 
ter subtracting off the Galactic contribution. Section 3 describes 
the MHD simulations of the magnetogenesis scenarios we used 
for this work. Section 4 contains our analysis of the evolution 
with redshift of the magnetic field in cosmic filaments, including 
best fits to the data, considerations on the environment where 
the low-frequency RMs are produced, and estimates of the pre- 
dictions of the magnetogenesis scenarios we considered. Finally, 
Sections 5 and 6 present our discussion and conclusions, with a 
comparison of our results with the magnetogenesis scenarios we 
considered. 

Throughout the paper we assume the flat � CDM cosmological 
model assumed in the simulations of Section 3 , with H 0 = 

67.8 km s −1 Mpc −1 , �M 

= 0.308, �� 

= 0 . 692, �b = 0.0468, 
and σ 8 = 0.815 (Planck Collaboration XIII 2016 ). Errors refer to 
1-sigma uncertainties. 

2 https:// lofar-surveys.org/ 

2  R M  DATA  

2.1 LoTSS DR2 RM catalogue 

This work is based on the RM catalogue derived from the LoTSS 

DR2 surv e y using its Stokes Q and U data cubes (O’Sulli v an et al., 
submitted). Here we report the main catalogue features rele v ant to 
this work and refer to the description paper for full details. It consists 
of 2461 RMs detected, o v er 5720 deg 2 , in the frequency range 120–
168 MHz with channels of width of 97.6 kHz, and angular resolution 
of 20 arcsec. RMs were obtained using RM synthesis (Burn 1966 ; 
Brentjens & de Bruyn 2005 ). The RM error budget is dominated by 
ionospheric RM correction residuals that can be as large as 0.1–0.3 
rad m 

−2 (Sotomayor-Beltran et al. 2013 ; Porayko et al. 2019 ). In 
this data set it is estimated to be ≈0.05 rad m 

−2 (O’Sulli v an et al., 
submitted). A total number of 1949 sources had a positive cross- 
match with redshift catalogues, 1046 of which are spectroscopic 
redshifts. 

We did not use photometric redshifts of the identified sources 
because of their median error of σz, phot ≈ 0 . 1, comparable to or 
larger than the redshift bin width used here, and kept sources 
with spectroscopic redshift only. A Galactic cut of | b | > 25 ◦ was 
applied to exclude the region with highest Galactic RM values. 
The median redshift is ≈0.5 and only a handful of sources have 
redshift z > 3 (see fig. 1 of Paper I for the redshift distribution). We 
limited our analysis to z < 3, which gave our final sample of 1014 
objects. 

2.2 Behaviour of RM dispersion 

The estimate of the evolution with redshift of the RM extragalactic 
component is done as for Paper I , except it is stretched out to z = 3 
and the numbers of bins is increased by ≈4 times. 

The RM of an extragalactic source is a combination of a Galactic 
component (GRM), an extragalactic term, either local to the source 
or the IGM intervening between the source and the observer, and the 
instrumental noise: 

RM = GRM + RM local + RM IGM 

+ RM noise . (1) 

The local term usually is dominated by the environment around the 
source, such as the intracluster medium of a galaxy cluster (e.g. Laing 
et al. 2008 ). 

The extragalactic component is obtained by subtracting off the 
Galactic term: 

RRM = RM − GRM (2) 

that we call the Residual RM (RRM). 
F ollowing P aper I , we estimated the GRM at each source position 

from the Galactic RM map by Hutschenreuter et al. ( 2022 ) as the 
median of a 1-degree diameter disc centred at the source. We refer 
to Paper I for details and moti v ations. The result is shown in Figs 1 
and 2 that report the RRMs of the two fields of the sample. The 
GRM error of each source is estimated by bootstrapping, which also 
captures the GRM variations within the 1-degree disc. 

We then computed the dispersion of the RRM values < RRM 

2 

> 

1/2 (hereafter RRM rms) in redshift bins with the same number 
of sources per bin, as for Paper I . The quadratic mean of the GRM 

errors and of the measurement noise of the sources in each bin 
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Figure 1. Sky distribution of the RRM sample used in the analysis. The field of the LoTSS DR2 survey centred at RA = 13h is shown. 

Figure 2. As for Fig. 1 , except the field centred at RA = 0h is shown. 

were quadratically subtracted off to remo v e their bias. 3 We excluded 
outliers, only keeping RRMs witin 2-sigma, as for Paper I . 

The result is shown in Fig. 3 for two cases, 60 and 15 sources per 
bin, which differ in the number of bins (17 and 68, respectively) 
and the uncertainty per bin (mean of 0.21 and 0.35 rad m 

−2 ). 
The error is estimated by bootstrapping. Both cases are consistent 
with no evolution with redshift, the slope of a linear regression is 

3 The square of the measured RRM rms is < RRM mes 
2 > = < RRM 

2 > 

+ σ 2 
GRM 

+ σ 2 
noise , where σ 2 

GRM 

and σ 2 
noise are the means of the variances of 

GRM and measurement noise. 

0.22 ± 0.17 rad m 

−2 and 0.24 ± 0.20 rad m 

−2 for the two cases. 
There is a marginal increase, but at less than 2-sigma significance. 

3  C O S M O L O G I C A L  M H D  SI MULATI ONS  

We used the cosmological magnetohydrodynamical code ENZO 

4 

to produce new � CDM simulations of a volume of ≈(85 Mpc) 3 

(comoving) sampled with a static grid of 512 3 cells, giving a constant 
spatial resolution of 166 kpc per cell and a constant mass resolution 
of 6.48 × 10 8 M � per dark matter particle. These simulations 
are qualitatively similar to those analysed in Vazza et al. ( 2017 ), 
with a few updates, also moti v ated by the findings of our recent 
work in Pomakov et al. ( 2022 ). First, in this suite of simulations, 
radiative gas cooling is included in all models, which moderately 
increases the level of gas clumping in cosmic filaments. Furthermore, 
we explored additional models of magnetic fields, including an 
inflationary primordial model following Vazza et al. ( 2021b ), and 
a mixed (astrophysical and primordial) model. Lastly, we produced 
synthetic lines of sight out to a larger redshift ( z = 3, as opposed 
to z = 2 in Pomakov et al. 2022 ) using a much larger number of 
snapshots finely spaced in time, as compared to earlier work, to 
monitor evolutionary trends with redshift in a more accurate way. 
These simulations are used to estimate the magnetic field in cosmic 
filaments instead of the general IGM. Similar to previous projects 
(e.g. Vazza et al. 2017 ), we produced different scenarios (five in this 
case) for the origin and evolution of extragalactic magnetic fields: 

4 ht tp://enzo-project .org 
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Figure 3. RRM rms in redshift bins with the same number of sources, 60 (left-hand panel) and 15 (right-hand panel). 

(i) ‘primordial uniform’ : a primordial uniform volume-filling 
comoving magnetic field B 0 = 0.1 nG initialized at the beginning 
of the simulation ( z = 40); 

(ii) ‘primordial stochastic’ : a tangled primordial magnetic field, 
with fields scale dependence described by a power-law spectrum: 
P B ( k) = P B0 k 

αs characterized by a constant spectral index and an 
amplitude, commonly referred after smoothing the fields within a 
scale λ = 1 Mpc, using the same approach of Vazza et al. ( 2021b ). 
In this work we assumed an initial ‘blue’ spectrum with αs = 1.0 
and B Mpc = 0 . 042 nG (comoving), based on the recent constraints 
from the combined analysis of the Cosmic Microwave Background 
with different instruments by Paoletti & Finelli ( 2019 ). We selected 
this value of αs from the best constraint provided by previous 
observational tests (Vazza et al. 2021a ). 

(iii) ‘dynamo’ : a uniform initial seed magnetic field of B 0 = 

10 −11 nG (comoving) that can be amplified through ‘sub-grid’ 
dynamo amplification computed at run-time, which allows the 
estimation of the hypothetical maximum contribution of a dynamo 
in low density environments (see Ryu et al. 2008 ), where it would be 
lost due to finite resolution effects (see Vazza et al. 2017 , for more 
details); 

(iv) ‘astroph’ : a model in which the magnetic field is released 
in the form of magnetic loops from o v erdense re gions of the 
simulation, whenever AGN feedback is triggered by local gas 
o v ercooling. To maximize the plausible combined effect of star 
formation driven winds, and AGN feedback, we assumed a large, 
av erage of 50 per cent conv ersion efficienc y between the energetics 
of each single feedback event, and the release of magnetized bipolar 
outflows in galaxies, starting from z = 4 and down to z = 0. This field 
is added to a negligible uniform initial seed field of B 0 = 10 −11 nG 

(comoving), leading to ‘magnetic bubbles’ correlated with haloes in 
the simulated volume. 

(v) ‘primordial + astroph’ : a model that combines the same 
magnetization scheme of the ‘astroph’ model, but it also assumes 
a primordial uniform magnetic field of B 0 = 0.01 nG initialized at 
the beginning of the simulation. 

As an important impro v ement o v er our previous work, in these 
simulations we include the effect of radiative (equilibrium) cooling 
on baryon gas, assuming for simplicity a primordial chemical 
composition. This is moti v ated because a recent analysis of previous 
runs has shown that the density statistics, even in the mild density 
regime of the cosmic web, is more realistic when cooling is included 

since the start, compared to simpler non-radiative runs (Pomakov 
et al. 2022 ). 

The adopted cosmological parameters are as for Section 1 . 
The production of these new simulations was moti v ated in or- 
der to produce long lines of sight (LOS) with a finely sam- 
pled redshift evolution of gas and magnetic field quantities 
from z = 3 to z = 0, which was not available in existing 
simulations. 

To allow a comparison with the observed RM, we generated 100 
LOS through each simulated volume, with information of gas density 
and 3D magnetic field from z = 3 to z = 0. Each LOS is ≈6.1 
comoving Gpc long and was produced by replicating the simulated 
volume 72 times, using 21 snapshots saved at nearly equally 
spaced redshifts, and by randomly varying the v olume-to-v olume 
crossing position for a total of ≈36 800 cells for each simulated 
LOS. 

We note that a second data set of cosmological simulations, already 
e xtensiv ely presented elsewhere (e.g. Vazza et al. 2017 ; Gheller & 

Vazza 2019 ), was used to estimate the evolution of the diameter of 
filaments with redshift in Section 4.2 , as catalogues of thousands of 
filaments were already available for this. The physical prescriptions 
in these runs were very similar to those used in our main simulations, 
and additional differences in the adopted numerical resolution are 
expected to play no role in the analysis of filament diameters derived 
there. 

4  E VO L U T I O N  WI TH  REDSHI FT  O F  

FI LAMENT  MAGNETI C  FI ELDS  

In this section, we investigate whether the RRM rms measured 
at different redshifts can constrain the evolution of the magnetic 
field in cosmic filaments. We start with considerations on the 
environment that generates the RRM of our sample at 144 MHz. 
Then, we do a simple, semi-analytical analysis assuming simple 
evolution with redshift of cosmic quantities. We then carry out a 
more accurate analysis taking a more realistic gas density distribution 
from cosmological MHD simulations, either assuming a constant 
field strength or having it related to the gas density. We assume that 
the gas is 100 per cent ionized, which is a safe assumption out to z = 

5.3 (Bosman et al. 2022 ). Finally, we estimate the RRMs predicted 
by the cosmological models for a comparison with the observational 
results. 
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4.1 Environment 

In Paper I , we found that an IGM origin is fa v oured for the RRMs 
of our sample at low frequency, instead of local to the source. 
This was inferred from the behaviour of the RRM with fractional 
polarization ( p ) and redshift, and the evolution of p with redshift. 
We also found that these sources reside far from galaxy clusters 
at a projected distance that peaks at ≈ 5 R 200 that is well beyond 
a cluster virial radius R 100 ≈ 1 . 36 R 200 (Reiprich et al. 2014 ). We 
repeated the analysis of Paper I and found that 7 per cent of the 
sources have a projected distance from clusters closer than R 100 , 
which means that only ≈0.07 3/2 = 2 per cent of them are estimated 
to have a 3D separation shorter than R 100 (see Appendix A ). R 100 is 
the distance within which the mean density of the galaxy cluster is 
100 × the critical density of the Universe ( ρc ). From simulations, we 
find this corresponds to a local o v erdensity of ρ/ ρc ≈ 50 or, in terms 
of mean matter density <ρM 

> , ρM 

/ < ρM 

> ≈160, according to our 
cosmology. 

This shows that the polarized sources are not embedded in galaxy 
cluster environments at these frequencies. We also checked that 
intervening clusters are far from the LOS of our sources, with a 
similar analysis to that of Paper I . For each source of our sample, we 
searched for the intervening galaxy cluster with the smallest projected 
separation from the LOS in R 100 units. We used the galaxy cluster 
catalogue of Wen & Han ( 2015 ) that contains 158 103 records in the 
redshift range of 0.05–0.75, either spectroscopic or photometric, 
with an error of up to 0.018. The cluster masses are as low as 
2 × 10 12 M � and the sample is 95 per cent complete for masses 
larger than 10 14 M �. For each source at redshift z s , we searched 
for the smallest projected separation to the LOS of the clusters at 
redshift z gc < z s − 0.036 (2-sigma uncertainty). We found that 5.2 
and 8.9 per cent of the sources have an LOS that passes at a distance 
from a cluster closer than R 200 and R 100 , respectively. The median 
minimum projected separation is 3.5 R 200 , or 2.6 R 100 , which is 
well beyond the cluster environment. If we restrict the search to 
clusters of masses larger than 10 14 M �, which are expected to give 
the largest effects, those fractions drop to 2.4 and 4.9 per cent for R 200 

and R 100 . These results are comparable to those of the analysis on 
the closest galaxy cluster separation, and the same considerations 
hold. Only sources within the galaxy cluster catalogue footprint 
and in its redshift range were used, providing 739 sources for this 
analysis. 

Pomakov et al. ( 2022 ) estimated the differential RRM of close 
pairs of sources from the same LoTSS RM catalogue at 144 MHz 
we use here, either random pairs (rp: sources apparently close but 
physically separated and at different redshift) or physical pairs (pp: 
two components of the same source, such as two lobes of a radio 
galaxy, that are at the same distance). Differential RMs have been 
employed to investigate either the magnetic field in the IGM (e.g. 
Vernstrom et al. 2019 ) or the ICM in galaxy clusters (e.g. Xu & 

Han 2022 ). For the latter the pp are used and it is best applied 
at higher frequencies where the polarized sources can populate 
clusters (see abo v e). The differential RRM of a random pair has 
three contributions: the IGM intervening the two sources; their local 
environment; and a possible contamination from the residual GRM. 
Physical pair differential RRMs have two possible contributions: 
the environment local to the sources and the possible residual 
GRM. Those authors measured medians of differential | � RRM | 
of 

〈| � RRM rp | 
〉 = 1 . 79 ± 0 . 09 rad m 

−2 and 
〈| � RRM pp | 

〉 = 0 . 70 ±
0 . 08 rad m 

−2 for random and physical pairs, from which we estimate 
single source rms of < RRM 

2 
rp > 

1 / 2 = 1 . 88 ± 0 . 09 rad m 

−2 and 
< RRM 

2 
pp > 

1 / 2 = 0 . 73 ± 0 . 08 rad m 

−2 , once we have corrected by 

1.4826 to estimate rms from the median absolute deviation 5 and 
divided by 

√ 

2 to get the single source rms. The former is in excellent 
agreement with our estimate in Paper I of 1.90 ± 0.05 that used single 
source RRMs. 

To get an estimate of the sole IGM contribution we can quadrat- 
ically subtract those two values, which gives < RRM 

2 
IGM 

> 

1 / 2 = 

1 . 73 ± 0 . 12 rad m 

−2 . That is only 8 per cent smaller than the 
measured term that is thus largely dominated by the IGM RRMs. 
This is a further indication that our measured RRMs are mostly 
generated by the IGM and we will assume so in the rest of the 
paper. To account for the local origin contribution we add an error of 
8 per cent to our RRM rms estimates. 

We used the cosmological MHD simulations described in Section 3 
to estimate the fraction of the IGM RRM that is from filaments 
and voids. For each cosmological model, we measured the RRM at 
each redshift out to z = 3 for each of the 100 LOS using density 
and magnetic field from the simulations and then computed the 
rms < RRM 

2 
IGM , sim 

> 

1 / 2 . We only considered cells with density 
excess δM 

= ρM 

/ < ρM 

> < 160, to account for the fact that 
most of our sources are far from galaxy clusters (i.e. estimating the 
RRM rms of the entire IGM excluding clusters). We measured the 
< RRM 

2 
voids , sim 

> 

1 / 2 from voids with the same procedure, except we 
only considered cells with a gas density excess of δg = ρg / < ρg > < 1, 
which is a conserv ati ve separation threshold between filaments and 
voids (Cautun et al. 2014 ; Vazza et al. 2015 ). We then computed the 
median of the ratio < RRM 

2 
voids , sim 

> 

1 / 2 / < RRM 

2 
IGM , sim 

> 

1 / 2 for all 
models and we find that it is smaller than 0.013 (it ranges 1 × 10 −3 

to 0.013 depending on the model), for a fractional contribution of the 
voids to < RRM 

2 
IGM , sim 

> 

1 / 2 of less than 1 × 10 −4 . From this, we can 
conclude that voids provide a negligible contribution to our sample 
RRMs that therefore mostly have an origin from cosmic filaments. 

4.2 Semi-analytical analysis 

The RRM of a source at redshift z is 

RRM = 0 . 812 
∫ 0 

z 

n e ( z ′ ) B ‖ ( z ′ ) 
(1 + z ′ ) 2 

d l 

d z ′ 
d z ′ , (3) 

where the integration is performed from the source to the observer 
along the path length l (pc), n e is the electron number density (cm 

−3 ), 
and B � is the magnetic field along the line of sight ( μG), all referred 
to physical quantities. 

In cosmic filaments the electron density is n e,f = K f n e , where n e 
is the average electron density of the Universe and K f is the filament 
o v erdensity, that is K f , 0 = 10 at z = 0 (Cautun et al. 2014 ; Vazza et al. 
2015 ) and evolves as (Cautun et al. 2014 , we derived this dependence 
from their fig. 25) 

K f ≈ K f , 0 (1 + z) −0 . 75 . (4) 

Hence, the electron number density in a cosmic filament varies with 
redshift as 

n e,f = K f n e, 0 ( 1 + z ) 3 , (5) 

where n e , 0 is the mean comoving (at z = 0) electron number density 
of the Universe, and the RRM of a source at redshift z by cosmic 
filaments intercepted by the source radiation is: 

RRM f = 0 . 812 K f , 0 n e, 0 

∫ 0 

z 

B ‖ (1 + z ′ ) 0 . 25 d l 

d z ′ 
d z ′ . (6) 

5 Possible in case of zero mean, as found in Paper I 
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The medium can be assumed to be distributed in N f ( z) filaments 
intercepted by the LOS out to redshift z, and equation ( 6 ) can be 
written as 

RRM f = 0 . 812 K f , 0 n e, 0 

N f ( z) ∑ 

i 

B ‖ ,f ,i (1 + z i ) 
0 . 25 l f , (7) 

where B � , f , i is B � of a filament at redshit z i and l f = ( π/ 2) D is the 
typical path of the LOS through a filament, considering the typical 
width of a filament ( D ) corrected for the average inclination to the 
LOS of the filament (see Appendix B of Paper I ). The typical width of 
a filament at z = 0 is D 0 ≈ 6 Mpc (Arag ́on-Calvo, van de Weygaert & 

Jones 2010 ; Cautun et al. 2014 ; Gal ́arraga-Espinosa et al. 2020 ). 
To estimate the evolution of D with redshift, we used the statistics 
of filaments already extracted in a suite of simulations produced 
elsewhere (Gheller & Vazza 2019 ), with the same numerical method 
and (nearly) physical prescriptions of the new simulations introduced 
in Section 3 . We detected filaments at redshifts out to z = 3 using 
an excess density threshold criterion of δ = 10 at z = 0 and 
decreasing with z following the growth rate of cosmic structures (see 
equation (B5) of Klypin, Trujillo-Gomez & Primack 2011 ) down to 
δ = 2.48 at z = 3. The fit to the mean filament radius, weighted for the 
filament density, provides a dependence D ( comoving ) ∝ (1 + z) −0 . 4 

and in physical coordinates we can assume 

l f = l f , 0 (1 + z) −1 . 4 , (8) 

where l f , 0 = π/ 2 D 0 . 
If we express B � , f , i = B f , i cos θ , where θ is the inclination of the 

filament field to the LOS that is uniformly distributed o v er 4 π -sr, 
and B f , i is the magnetic field strength of filaments at redshift z i , the 
RRM rms o v er all LOS can be written as: 

〈
RRM f 

2 
〉1 / 2 = 0 . 812 K f , 0 n e, 0 l f , 0 

√ √ √ √ 

N f ( z) ∑ 

i 

(
B f ,i (1 + z i ) −1 . 15 

)2 

3 
(9) 

We can assume that B f follows a simple power law (see Pomakov 
et al. 2022 ) 

B f = B f , 0 (1 + z) α, (10) 

and, after defining 

A f , 0 = 0 . 812 
K f , 0 n e, 0 l f , 0 √ 

3 
, (11) 

RRM f rms becomes 

〈
RRM f 

2 
〉1 / 2 = A f , 0 B f , 0 

√ √ √ √ 

N f ( z) ∑ 

i 

(1 + z i ) 2 α−2 . 3 (12) 

and hence 

〈
RRM f 

2 
〉1 / 2 = A f , 0 B f , 0 

√ √ √ √ 

N f ( z) ∑ 

i 

(1 + z i ) 2 α−2 . 3 
�N f 

�z 
�z (13) 

that can be turned into an integral 

〈
RRM f 

2 
〉1 / 2 = A f , 0 B f , 0 

√ ∫ z 

0 
(1 + z ′ ) 2 α−2 . 3 

d N f 

d z ′ 
d z ′ . (14) 

The number of filaments N f is, to a good approximation, linear with 
z (see Paper I ). We followed the same analysis of Paper I to estimate 
the number of filaments intercepted by the LOS of the sources of 
our RM catalogue. We used the filament catalogues by Chen et al. 
( 2016 ) and Carr ́on Duque et al. ( 2022 ) and found the number of 

Figure 4. Number of filaments intercepted by each of our sources in the 
footprint of the filaments catalogues (dots). The best fit is also reported (solid 
line). 

filaments intercepted by each of the RM catalogue sources that are 
in their footprint, and fit the distribution of N f so obtained (Fig. 4 ). 
We assumed a filament width of 6 Mpc at z = 0 (Arag ́on-Calvo et al. 
2010 ; Cautun et al. 2014 ; Gal ́arraga-Espinosa et al. 2020 ), evolving 
with redshift as discussed abo v e. Differing from P aper I , we did the 
analysis out to the max distance of the filament catalogues ( z = 2.2), 
considered a width changing with redshift, and e x ecuted a linear fit, 
which gives 

N f = N 0 + N 1 z 

N 0 = 1 . 5 

N 1 = 15 . 9 (15) 

We do not have filament data beyond z = 2.2 and we extrapolate this 
relation out to z = 3. 

Equation ( 14 ) thus becomes 

〈
RRM 

2 
〉1 / 2 = A f , 0 N 

1 / 2 
1 B f , 0 

√ ∫ z 

0 
(1 + z ′ ) 2 α−2 . 3 d z ′ (16) 

with solution 

〈
RRM f 

2 
〉1 / 2 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

A f , 0 N 

1 / 2 
1 B f , 0 

√ 

(1 + z) 2 α−1 . 3 −1 
2 α−1 . 3 for α 	= 0 . 65 

A f , 0 N 

1 / 2 
1 B f , 0 

√ 

ln (1 + z) for α = 0 . 65 

(17) 

As discussed in Section 4.1 , a cosmic filament origin can be assumed 
for our RRM sample measured at 144 MHz with LOFAR. Hence, we 
fit the measured RRM rms to the function 〈

RRM 

2 
〉1 / 2 = 

A r r m 

(1 + z) 2 
+ 

〈
RRM f 

2 
〉1 / 2 

, (18) 

where besides the cosmic filament term RRM f , we allow a constant 
RRM term, corrected for redshift, to account for a possible additional 
contribution different from filaments. This is moti v ated because the 
model RRM f converges to zero at z = 0 while our measured RRMs do 
not. We use a Bayesian fit, 6 with priors of B f , 0 < 250 nG (Locatelli 
et al. 2021 ), B f , 0 � 0, and A rrm � 0. The results are shown in Fig. 5 
where we used the RRM rms computed in bins of 15 sources each. 

6 EMCEE package (F oreman-Macke y et al. 2013 ): ht tps://pypi.org/project /emc 
ee/
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Figure 5. Best-fitting results of the semi-analytical model of equations ( 18 ) and ( 17 ) to the RRM rms computed with redshift bins of 15 sources per bin. Top 
left-hand panel and top right-hand panel: 2D distributions (dots), and 1-sigma and 2-sigma confidence level contours (solid lines) of the fit parameters α, B f , 0 , 
and A rrm . Bottom left-hand panel: RRM rms measured in redshift bins (circles) and best-fitting curve (solid) and its error range (grey-shaded area). Bottom 

right-hand panel: Evolution with redshift z of the best-fitting filament physical (solid line) and comoving magnetic field amplitude (dashed). The error range is 
also shown (shaded areas). 

The 2D confidence level contours of the parameters, the best-fitting 
model, and the resulting evolution of B f with redshift are shown. 
The best-fitting results (Table 1 ) give a filament magnetic field with 
a slope α = 0.2 ± 0.5 that is consistent with no evolution with 
redshift, as also shown in Fig. 5 , bottom right-hand panel, and with 
an amplitude at z = 0 of B f , 0 = 52 ± 9 nG. The latter can be also 
written as: 

B f , 0 = (52 ± 9) 

(
6 Mpc 

D 0 

)
nG (19) 

that shows the dependence of B f , 0 on the filament width (these two 
parameters are inversely proportional, see equation 17 ). 

Assuming the magnetic field is frozen to the plasma, the magnetic 
field goes as n 2 / 3 e and thus B f = B f ,c (1 + z) 2 , where B f , c is the 
comoving magnetic field in filaments that, according to our model 

for B f , varies with z as 

B f ,c ( z) = B f , 0 (1 + z) γ with γ = α − 2 . (20) 

From the results of our fit, hence, we get γ = −1.8 ± 0.5, 
which gives a comoving magnetic field in filaments that significantly 
evolves, decreasing with redshift. The behaviour of the comoving 
field is shown in Fig. 5 , bottom right-hand panel. 

We also run the fit to the RRM rms computed with a set of larger 
redshift bins (60 sources each). The results, shown in Table 1 , are 
consistent with those obtained with smaller bins, albeit with larger 
errors. 

4.3 Analysis with densities from cosmological simulations 

The semi-analytical approach is powerful and gives an insight into 
the terms at play, but it has limitations. Those most obvious are 
the gas density assumed to follow that of the dark matter and the 
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Table 1. Best-fitting parameters of the filament magnetic field evolution with redshift to the RRM rms measured at 144 MHz 
for the semi-analytical case and that with density taken from simulations. Columns are the case studied and the fit parameters: 
the slope α of the filament magnetic field strength behaviour versus redshift; the strength B f , 0 of the filament magnetic field at 
z = 0; the constant term A rrm ; the slope γ of the comoving magnetic field. Semi-analytical cases are with different redshift-bin 
sizes. Cases with density taken from simulations are all fit to RRMs in 15-source redshift bins and differ for the magnetogenesis 
scenario and the o v erdensity threshold of the cells used to estimate the RRMs (matter o v erdensity δM 

< 160 and δM 

< 100). 

Case α B f , 0 A rrm γ

(nG) (rad m 

−2 ) 

Semi-analytical model, l f ∝ (1 + z) −1.4 

15-sources per z-bin 0.2 ± 0.5 52 ± 9 0.48 ± 0.16 −1.8 ± 0.5 
60-sources per z-bin −0.8 ± 2.0 80 ± 40 1.0 ± 0.5 −2.8 ± 2.0 

Density from simulations, B f constant with density, 
15-source z-bins, δM 

< 160 

density model 
primordial uniform 0.1 ± 0.5 47 ± 8 0.62 ± 0.14 −1.9 ± 0.5 
dynamo −0.1 ± 0.5 56 ± 10 0.49 ± 0.15 −2.1 ± 0.5 
astroph −0.2 ± 0.5 58 ± 11 0.57 ± 0.16 −2.2 ± 0.5 
primordial + astroph 0.0 ± 0.5 55 ± 10 0.64 ± 0.13 −2.0 ± 0.5 
primordial stochastic −0.2 ± 0.4 57 ± 9 0.53 ± 0.14 −2.2 ± 0.4 

Density from simulations, B f constant with density, 
15-source z-bins, δM 

< 100 

density model 
primordial uniform 0.0 ± 0.5 61 ± 11 0.60 ± 0.14 −2.0 ± 0.5 
dynamo 0.0 ± 0.4 65 ± 10 0.57 ± 0.14 −2.0 ± 0.4 
astroph −0.2 ± 0.5 70 ± 14 0.56 ± 0.16 −2.2 ± 0.5 
primordial + astroph −0.1 ± 0.4 69 ± 11 0.59 ± 0.13 −2.1 ± 0.4 
primordial stochastic −0.1 ± 0.6 68 ± 14 0.55 ± 0.16 −2.1 ± 0.6 

o v erdensity assumed to be constant within a filament and for all 
filaments. To o v ercome this, and to obtain more precise estimates of 
the evolution of the field, we make direct use of the gas density from 

cosmological simulations (see Section 3 ). The goal is still to find the 
evolution with redshift of the mean filament magnetic field strength 
assuming the power-law behaviour of equation ( 10 ). 

For each of the cosmological models considered, we extracted 
100 LOS out to z = 3. For each LOS we calculated the RRM f at 
each z using equation ( 3 ) and the gas density from the simulation. 
We considered only cells with a matter density excess δM 

< 

160 to account for our sources residing far from galaxy clusters. 
We excluded cells with gas excess density δg < 1 because they 
give a negligible contribution to the total RRM, as shown in 
Section 4.1 . 

The magnetic field was estimated assuming a value of B f , 0 and 
α (equation 4 ). Each time the LOS entered a region with δ > 

1, the direction of the magnetic field to the LOS was changed, 
randomly picked within 4 π sr. That ensured a magnetic field with 
constant orientation within each filament and randomly changing 
filament to filament. We did 120 realizations of these magnetic field 
configurations, for a total of 12 000 realizations (100 LOS × 120 
magnetic field configurations). 

From these 12 000 realizations of RRM f we computed the RRM f 

rms that is that e xpected giv en the assumed values of B f , 0 and α. 
Since we are not interested to small scale variations, we smoothed 
the RRM f rms with a top hat filter of width d z = 0.1, which further 
reduces the statistical variations of the individual RRM f realizations. 
We computed this all for different values of α (at the same value of 
B f , 0 ), spanning the range [ −5, 5] with steps of 0.5, which co v ers the 
range of interest. We also tested a step of 0.25 with similar results. A 

linear interpolation between the two nearest v alues gi ves the RRM f 

rms estimate at any other α value. The RRM f has a simple linear 

dependence on B f , 0 that, combined with the interpolation o v er α, 
gives us the functional dependence on these two parameters required 
by a Bayesian fit. 

The results of a Bayesian fit to equation ( 18 ) are reported in 
Table 1 , with the RRM f estimated as discussed abo v e, and the RRMs 
measured in 15-source bins, for all of the cosmological models we 
considered. We assumed the same priors as for the semi-analytical 
analysis. 

The best-fitting values of α are in the range [ −0.2, 0.1] and are 
all consistent within the errors ( σα = 0.4–0.5) and consistent with 
no evolution with redshift. They are also consistent with the value 
derived by the semi-analytical analysis. The comoving magnetic field 
slope γ is in the range [ −2.2, −1.9], which confirms a decrement 
with increasing redshift. 

The mean amplitude of the field in a filament at z = 0 is 
B f , 0 ≈ 55 nG with variations depending on the models (it ranges 
from 47–58 nG), but within the uncertainty that is better than 
5-sigma. It is consistent with the result of the semi-analytical 
model. 

We regard the results obtained here as more accurate than those 
of the semi-analytical model, because of the better description of 
the gas density. Ho we ver, the proximity of the results tells us that 
the semi-analytical model is a good approximation and suggests that 
is an ef fecti ve (and computationally cheaper) approach to apply to 
large data sets. 

Currently, we cannot exactly set the limit on the o v erdensity. From 

the distribution of the source separation to the nearest cluster found 
in Paper I (see also Section 4.1 ) it is possible that they reside at 
o v erdensities lower than δM 

= 160. Therefore, we repeated the 
analysis, setting the limit to δM 

< 100, which is the threshold 
separating filaments and haloes. This is sort of an extreme case 
because it assumes that all sources are in filaments. 
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The best-fitting results are reported in Table 1 . The slopes are 
similar to the δM 

= 160 case, with small changes that are well within 
the uncertainties. Ho we ver, the field strength is larger. It ranges from 

61 to 70 nG, with a mean value of 67 nG. In summary, changing 
the o v erdensity limit does not affect the best-fitting slope, while it 
changes the field amplitude, increasing it by ≈20 per cent when 
changing from δM 

= 160 to 100. Considering all of the models, 
o v erdensity limits, and 1-sigma uncertainties, the magnetic field 
strength of a filament at z = 0 is in the range 39–84 nG. 

4.4 Analysis with density from cosmological simulations and 

magnetic field frozen to matter 

The approach used abo v e, in Section 4.3 , assumes a B f which 
is constant with density. This results in an average value where 
filaments at higher density contribute more, because the RRM of a 
filament depends on ρ5 / 3 

g . 
Therefore, we have repeated the same analysis assuming that the 

magnetic field strength is 

B f = B 

10 
f , 0 

(
δg 

10 

)2 / 3 

(1 + z) α, (21) 

where B 

10 
f , 0 is the average magnetic field strength of a filament of 

gas o v erdensity δg = 10 at z = 0 and B 

10 
f , 0 (1 + z) α is that at 

redshift z. The dependence on δg assumes that the magnetic field 
is frozen to the ionized medium 

7 and also seems to hold in more 
evolved environments like those of galaxy clusters (e.g. Radiconi 
et al. 2022 , submitted). Hence, this approach estimates the field 
strength at the typical density of a filament ( δg = 10, see Cautun 
et al. 2014 ; Vazza et al. 2015 ) and, following equation ( 21 ), at any 
density. 

The results of the Bayesian fit are given in Table 2 and Fig. B1 
of Appendix B (for the primordial stochastic model only, the other 
models show similar results). The best-fitting values of α are in 
the range [ −0.1, 0.3], are all consistent within the errors ( σα = 

0.4–0.5), and are consistent with no evolution with redshift. The 
comoving magnetic field slope γ is in the range [ − 2.1, −1.7], 
which gives a decrement with redshift also in this case. The mean 
amplitude of the field in a filament at o v erdensity δg = 10 and z = 0 
is B 

10 
f , 0 ≈ 12 . 3 nG (values are in the range 10.0–14.2 nG and partly 

depend on the best-fitting slope – there is some de generac y between 
slope and field strength, as shown by Fig. B1 ), with uncertainties 
better than 5-sigma. 

The typical density of a filament evolves as for equation ( 4 ). 
Combined with our results and the assumed relation of B f with 
density, we get that the typical magnetic field of a filament evolves 
with redshift as B f ,t = B 

10 
f , 0 (1 + z) η, with η = α − 0.5 ( ηc = γ −

0.5 for the comoving field), that hence runs in the range [ −0.6, −0.2] 
([ −2.6, −2.2] for the comoving field). 

As for the case of B f constant with density, we repeated the analysis 
for an o v erdensity limit of δM 

= 100. Results are reported in Table 2 . 
The slopes are similar to the δM 

= 160 case. The magnetic field 
strength B 

10 
f , 0 ranges from 17 to 22 nG with a mean value of ≈19 nG, 

which is ≈50 per cent larger than the previous case. Considering 
all of the models, o v erdensity limits, and 1-sigma uncertainties, the 
magnetic field strength of a filament at z = 0 and gas o v erdensity 
δg = 10 is in the range 8–26 nG. 

7 We assume there is no further amplification, such as by turbulent gas motions, 
which numerical simulations suggest may occur (e.g. Gheller & Vazza 2019 ). 

4.5 Pr edictions fr om simulations 

It is difficult to discriminate between the different magnetogenesis 
scenarios based solely on the results of the previous subsections, 
because those scenarios do not differ much in gas density and 
give similar outcomes (which, however, gives us a nearly model- 
independent estimate of the evolution of B f ). However, we can use 
their directly simulated prediction of the RRM and B f evolution with 
redshift. 

The RRM f rms of the IGM were computed for all of the cosmologi- 
cal scenarios following the procedure of Section 4.1 , using the density 
and magnetic field values from the simulations and considering only 
the LOS cells with an o v erdensity under a given limit ( δM 

< 160 
or δM 

< 100). The results are shown in Fig. 6 for both o v erdensity 
limits. The RRM rms measured from our sample in 60-source bins, 
which have lower errors for an easier comparison, is also displayed 
after subtracting off the term A rrm (1 + z) −2 to show the component 
that the fit attributes to the IGM only. We set A rrm = 0.6 rad m 

−2 

which is an intermediate value of the best-fitting results. 
The observed RRMs are best matched in both shape and amplitude 

(for the δM 

= 160 case) by the dynamo and primordial stochastic 
models, whose RRM rms flattens at high redshift. The others 
look disfa v oured. In particular, the astrophysical model predicts 
RRMs that are too small, while the RRM of the mixed primordial 
uniform + astrophysical and primordial uniform models increases 
nearly linearly with redshift out to z = 3. 

The comoving magnetic field strength at δg = 10 is estimated as 
the rms of the magnetic field from cells in the 100 LOS with δg in the 
range 2–50, and is shown in Fig. 7 . We also tried narrower ranges, 
but the statistics were too poor and the results were unstable. Table 3 
reports the results of a best fit to a power law B 

10 
f ,c = B 

10 
f , 0 (1 + z) γ . 

To facilitate the comparison we report the differences with the results 
of the best fits to the observations for our fiducial o v erdensity limit 
of δM 

= 160. Comparisons with the slopes in the case of a limit of 
δM 

= 100 are similar. The dynamo and primordial stochastic models 
only posses a comoving slope consistent with the results from the 
observations. This is not surprising because a steep slope is required 
to obtain an RRM rms that flattens at high redshift. The magnetic field 
strength range allowed by the observations is broad. Ho we ver, the 
dynamo and primordial stochastic models appear to predict strengths 
consistent with such a range, albeit the former has a large uncertainty. 

5  DI SCUSSI ON  

Our analysis indicates that the RRM rms we used is dominated 
by the component originated in cosmic filaments. We find that the 
filament physical magnetic field is consistent with no evolution 
with redshift, regardless of the three types of analysis we have 
applied and the o v erdensity limits that we set. The comoving field 
decreases with redshift with slope γ ≈ −2.0 ± 0.5, with small 
variations depending on the magnetogenesis model. This is the 
first estimate of the evolution of the magnetic field in filaments, 
to our knowledge, and complements the result by Pomakov et al. 
( 2022 ) for the average field of the IGM, who find a slope of 
γ IGM 

≈ −4.5. The difference is because in filaments the evolution 
of their o v erdensity and transversal size have to be added to 
the equation, which makes the filaments’ γ flatter by 2.15 (see 
Section 4.2 ) and the two results consistent. This is the direct result of 
a nearly flat evolution of RRM that requires a decreasing comoving 
field. 

The strength at z = 0 of the filament magnetic field averaged over 
all filaments is estimated at B f , 0 ≈ 55 nG for our fiducial value of 
the o v erdensity limit of δM 

= 160, with an uncertainty better than 
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Table 2. Best-fitting parameters of the filament magnetic field evolution with redshift to the 
RRM rms measured at 144 MHz for the case with density taken from simulations and magnetic 
field dependent on the gas density as B f ∝ ρ

2 / 3 
g . Columns are the case studied and the fit 

parameters: the slope α of the filament magnetic field behaviour versus redshift; the strength 
B 

10 
f , 0 of the filament magnetic field at z = 0 and gas o v erdensity δg = 10; the constant term 

A rrm ; the slope γ of the comoving magnetic field. All cases are fit to RRM rms computed 
in 15-source redshift bins and differ for the magnetogenesis scenario. Two sets of cases are 
reported, differing for the o v erdensity threshold of the cells used to estimate the RRMs from 

simulations ( δM 

< 160 and δM 

< 100). 

Case α B 

10 
f , 0 A rrm γ

(nG) (rad m 

−2 ) 

B f ∝ ρ
2 / 3 
g , δM 

< 160 
density model 
primordial uniform 0.3 ± 0.5 10.0 ± 2.0 0.70 ± 0.14 −1.7 ± 0.5 
dynamo 0.1 ± 0.4 11.8 ± 1.9 0.55 ± 0.15 −1.9 ± 0.4 
astroph −0.1 ± 0.5 12.8 ± 2.4 0.61 ± 0.15 −2.1 ± 0.5 
primordial + astroph −0.1 ± 0.4 12.8 ± 2.1 0.65 ± 0.13 −2.1 ± 0.4 
primordial stochastic −0.1 ± 0.5 14.2 ± 2.6 0.47 ± 0.17 −2.1 ± 0.5 

B f ∝ ρ
2 / 3 
g , δM 

< 100 

density model 
primordial uniform 0.0 ± 0.6 18.0 ± 3.9 0.63 ± 0.16 −2.0 ± 0.6 
dynamo 0.1 ± 0.4 18.6 ± 3.1 0.60 ± 0.14 −1.9 ± 0.4 
astroph −0.2 ± 0.5 20.9 ± 3.6 0.57 ± 0.15 −2.2 ± 0.5 
primordial + astroph 0.3 ± 0.5 17.2 ± 3.1 0.61 ± 0.14 −1.7 ± 0.5 
primordial stochastic −0.2 ± 0.5 22.4 ± 3.9 0.48 ± 0.15 −2.2 ± 0.5 

Figure 6. RRM f rms in redshift bins computed using density and magnetic field from simulations, for the magnetogenesis models we considered. Two cases 
differing by the o v erdensity limit are shown: δM 

< 160 (left-hand panel) and δM 

< 100 (right-hand panel). The RRM rms from the LoTSS RM catalogue 
measured in 60-source redshift bins is also shown, with the term A rrm (1 + z) −2 subtracted off. 

5-sigma. Considering variations due to both o v erdensity limits, the 
fit uncertainties, and the different magnetogenesis scenarios, B f , 0 is 
in the range 39–84 nG. This result is in agreement both with previous 
upper limits (Brown et al. 2017 ; Vernstrom et al. 2017 ; O’Sulli v an 
et al. 2019 ; Amaral et al. 2021 ; Locatelli et al. 2021 ) and the estimate 
of 8 30–60 nG obtained from the first claimed detection of the stacked 
synchrotron emission from filaments of the cosmic web (Vernstrom 

et al. 2021 ). Both our and their method measure the field averaged 

8 It yields ≈60 nG, if equipartition is assumed, or ≈ 30 nG, based on numerical 
simulations, albeit with a dependence on the (unknown) amount of accelerated 
radio emitting cosmic ray electron. 

o v er all types of filaments and are possibly dominated by the largest 
of them. Note that our result is larger than that of ≈30 nG derived in 
Paper I . There we assumed no evolution (with an average filament 
density at z = 0.7) and a filament width constant with redshift (instead 
of decreasing), which led to a lower field strength estimate. Adding 
the evolution with redshift was thus essential to get an impro v ed 
estimate. 

We also estimated the magnetic field at the typical filament 
o v erdensity of δg = 10, finding a strength of B 

10 
f , 0 ≈ 12 . 3 nG at 

z = 0 for our fiducial o v erdensity limit, and a slope with redshift 
similar to the previous case. If we consider all types of variations 
(model, o v erdensity limit, and fit uncertainties) the field strength is 
in the range 8–26 nG. 
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Figure 7. Comoving magnetic field strength at o v erdensity δg = 10 estimated 
from the simulations of the magnetogenesis models considered in this work. 

The dynamo and primordial stochastic models predict RRM rms 
values that flatten at high redshift and provide the best match to 
the observed RRM in both shape and amplitude. The others look 
disfa v oured. In particular, the RRM of the primordial uniform model 
increases almost linearly with redshift and it is striking to notice how 

such an observed redshift evolution of RRMs clearly disfavours it. 
While a comoving uniform seed field of ≈0.1 − 0.5 nG was shown 
to be compatible with pre vious observ ations or the non-detection of 
synchrotron radio emission from the cosmic web (e.g. Vernstrom 

et al. 2017 , 2021 ; Locatelli et al. 2021 ) or more local analysis of 
the RRM (e.g. O’Sulli v an et al. 2019 ), these redshift-dependent 
constraints on the RRM exclude such a simplistic model of the 
magnetic field with high confidence. This is because even such a 
weak 0.1 nG magnetic field correlated on scales as long as the entire 
tested cosmic volume 9 of ≈6 Gpc produces a systematic increase 
of the RRM with redshift, which is unobserved. This makes the 
RRM evolution with redshift an extremely powerful probe of cosmic 
magnetism on cosmic scales. 

Furthermore, the comoving magnetic field at δg = 10 fa v ours 
the dynamo and primordial stochastic models, as they are the only 
models that posses both a comoving slope and strength that are 
consistent with the results of the best fits to the observations. 

The dynamo and primordial stochastic models are thus fa v oured 
by our RRM measurements. The primordial uniform, mixed, and 
astrophysical models appear to be excluded. The former two predict 
a continuously increasing RRM rms out to z = 3. The latter predicts 
RRMs that are too small and magnetic fields that at z = 0 are one 
order of magnitude weaker than the results of our best fits and a 
redshift evolution that is too flat. These results are in agreement with 
Vazza et al. ( 2021b ), who found the stochastic model consistent with 
pre vious observ ational constraints, and Pomakov et al. ( 2022 ), who 
found the dynamo model consistent with the evolution of the mean 
IGM magnetic field. 

Using previous observational constraints, Vazza et al. ( 2021a ) 
and Vernstrom et al. ( 2021 ) also found that the dynamo model is 
challenged, which, combined with our results, fa v ours the primordial 
stochastic model only. We note that combinations of the primordial 
stochastic with other models are possible, but exploring such lines 
of investigation is beyond the scope of this work. 

9 The initial uniform orientation of the magnetic field is preserved while 
evolving, on average. 

If we restrict the analysis to this most fa v oured primordial 
stochastic model, then the filament magnetic field strengths at z = 0 
are restricted to B f , 0 = 48–82 nG and B 

10 
f , 0 = 11–26 nG, while the 

slopes are α = −0.15 ± 0.5 and γ = −2.15 ± 0.5. 
The RRM rms amplitude of the primordial stochastic scenario 

depends linearly on the initial field strength B Mpc . A best fit of the 
amplitude of the directly simulated RRM rms of Fig. 6 to the observed 
RRM rms gives the value that is most consistent with our data. We 
found that it is B Mpc = 0 . 051 ± 0 . 010 nG and 0 . 097 ± 0 . 010 nG, 
como ving, for o v erdensity limits of δM 

= 160 and 100, respectively. 
We restricted the fit to the values at z > 1 because they are least 
affected by the A r r m 

(1 + z) −2 correction term. A range of B Mpc = 

0.04–0.11 nG, comoving, thus best matches the RRMs of our sample, 
for a primordial stochastic scenario with a spectrum of slope αs = 

1, which we simulated. These results are consistent with previous 
upper limits of 0.12–0.13 nG derived from CMB observations for 
the same scenario (Paoletti & Finelli 2019 ; Paoletti et al. 2022 ). 

It is worth noting that the mass resolution of the simulations 
we ran does not allow us to reproduce the total distribution of 
low mass galaxies (e.g. dwarf galaxies), which can introduce an 
additional magnetization baseline even in voids (e.g. Beck et al. 
2013 ). Simulations with higher resolution and adaptive mesh that 
are better suited to resolve the formation of small galaxies in voids 
predict the formation of ‘magnetization bubbles’. These bubbles 
typically have ≥ 10 −3 nG fields, yet with volume filling factors 
and magnetization amplitudes from dwarf galaxies that depend on 
the assumed input magnetic field (Ar ́amburo-Garc ́ıa et al. 2021 ), 
which currently has an unclear contribution to the observed RRM 

(Aramburo-Garcia et al. 2022 ). Higher resolution simulations are 
thus required in future work to complete the assessment of the 
astrophysical scenario, although the magnetic field strength at δg = 

10 in such high resolution simulations is comparable to the ≈ 1 nG 

that we find in ours (Fig. 7 , see also fig. 2 of Pomakov et al. 2022 ) 
and large variations from our results are not expected. 

6  C O N C L U S I O N S  

We estimated the extragalactic RM contribution (RRM) of the RM 

catalogue derived from LoTSS DR2 surv e y data, and, following the 
procedure of Paper I , measured their rms in redshift bins of sources 
out to z = 3. We used the RRM rms to investigate the evolution with 
redshift of the magnetic field strength in cosmic web filaments. Our 
main findings are: 

(i) The RRM component that originates local to the source 
contributes only ≈8 per cent to the total RRM. Using cosmological 
simulations, we also found that voids are expected to have a marginal 
contribution to the total RRM from the IGM. The polarized radiation 
from our sample at 144 MHz tends to a v oid intervening galaxy 
clusters along the line of sight. Cosmic filaments are hence the 
dominant term of our observed RRMs measured at 144 MHz. 

(ii) Adding an error term to account for the small local origin 
component, we used densities from cosmological MHD simulations 
of five different magnetogenesis scenarios to fit a physical mag- 
netic field in cosmic filaments of shape B f = B f , 0 (1 + z) α to the 
measured RRM rms. We also allowed an additional constant term 

evolving with redshift. In the cases where we fit a mean magnetic 
field, we find the slope is in the range α = [ − 0.2, 0.1], depending on 
the scenario, with an error of σα = 0.4–0.5, which is consistent with 
no evolution. The comoving field has slope γ = [ − 2.2, −1.9], which 
means that it decreases at high significance. This is as a consequence 
of the nearly flat behaviour of the RRM rms. The strength at z = 0 is 
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Table 3. Results of the power-law best fit to the comoving magnetic field at δg = 10 for 
all of the cosmological models we considered. The power law is B 

10 
f ,c = B 

10 
f , 0 (1 + z) γ

and the columns are: model; best fit of the slope γ and amplitude B 

10 
f , 0 (field strength 

at z = 0 and δg = 10); difference between these best-fitting values and those from the 
fit to the observations in Table 2 in the case of an o v erdensity threshold of δM 

< 160 
( �γ and �B 

10 
f , 0 ). 

Model γ B 

10 
f , 0 �γ �B 

10 
f , 0 

(nG) (nG) 

Primordial uniform −0.6 ± 0.2 7.7 ± 1.2 1.1 ± 0.5 −2 ± 2 
Dynamo −2.8 ± 0.7 25 ± 15 −0.9 ± 0.8 13 ± 15 
Astroph −0.5 ± 0.4 1.4 ± 0.5 1.6 ± 0.6 −11 ± 2 
Primordial + astroph −0.8 ± 0.2 1.8 ± 0.3 1.3 ± 0.4 −11 ± 2 
Primordial stochastic −2.3 ± 0.4 20 ± 7 −0.2 ± 0.6 6 ± 7 

in the range B f , 0 = 39–84 nG and is consistent with previous results 
based on synchrotron emission stacking. 

(iii) If we assume that the magnetic field depends on the gas 
density as B f ∝ ρ2 / 3 

g (i.e. frozen to the plasma), the slopes are mostly 
similar to the previous case and the strength, at z = 0 and at an 
o v erdensity of δg = 10 that is typical of filaments, is B 

10 
f , 0 = 8–

26 nG. 
(iv) Comparing the RRM rms and B 

10 
f , 0 predicted by the five 

simulated scenarios with those from our measurements and best 
fits, leads to the dynamo and primordial stochastic models being 
fa v oured, mainly because of the flat RRM rms they predict. The 
primordial uniform, astrophysical, and mixed models appear to be 
rejected, in particular the former is disfa v oured by its RRM rms that 
is continuously increasing with redshift. The strong rejection of the 
simple primordial uniform model is a new result that is mostly due 
to the constraints from the evolution with redshift of the RRM rms. 
Considering earlier work also, only the primordial stochastic scenario 
(with a spectrum of slope αs = 1) is fa v oured. Its best-fitting slope 
is α = −0.15 ± 0.5. The comoving field slope is γ = −2.15 ± 0.5. 
The best-fitting value of the initial field is B Mpc = 0.04–0.11 nG. 

This work has provided a first advance of our initial analysis 
conduced in Paper I and has led us to estimating the behaviour with 
redshift of the magnetic field in cosmic web filaments. This has thus 
also provided a more accurate estimate of the field strength. We 
find that the physical field is consistent with no evolution and the 
comoving field decreases with redshift with a slope γ ≈ −2.0 ± 0.5 
( −2.15 ± 0.5 for the most fa v oured scenario). Such a result is because 
of the nearly flat RRM rms behaviour with redshift, and has important 
implications on understanding what process has generated magnetic 
fields in the Universe and how the y hav e evolv ed. A primordial field 
with a uniform initial field is unsuitable. A primordial field with 
random stochastic initial conditions is fa v oured and we find a range 
of initial field strengths that best match our data. 

Further advances can be pursued with future work and data. An 
impro v ement of a factor of three of the RRM rms uncertainties, 
which could be reached with 9 × more sources, would give errors 
on α of ≈0.15, significantly improving the precision. This is within 
the reach of the full LoTSS surv e y that will have larger area (4 ×), 
better resolution (6 versus 20 arcsec), and impro v ed polarized source 
selection (see discussion in O’Sulli v an et al., submitted). ASKAP- 
POSSUM (Gaensler et al. 2010 ), APERTIF (Adebahr et al. 2022 ), 
and SKA-LOW (Braun et al. 2019 ) will be a further step ahead. A 

functional description of the evolution of B f that is more sophisticated 
than the simple power law assumed here is a further impro v ement to 
pursue, even though it would likely be model dependent – see Fig. 7 . 
A better separation of the IGM from the local origin component 

is desirable, to impro v e the estimate of the IGM RRM rms, which 
can be done with component separation Bayesian algorithms (Vacca 
et al. 2016 ). 
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CLOSER  T H A N  A  DISTANCE  

Assuming that a 3D probability distribution F is the same along all 
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3D probability that the variable is within a distance d from the centre 
on each direction is: 

p 3 D 

( d) = 

∫ d 

−d 

f ( x)d x 
∫ d 

−d 

f ( y)d y 
∫ d 

−d 

f ( z )d z (A1) 

= p 

3 
1 D 

( d) (A2) 

where 

p 1 D 

( d) = 

∫ d 

−d 

f ( z )d z . (A3) 

This is only a first approximation because the integration should not 
be extended out to d in all directions. The correct p 3 D is thus smaller. 

Marginalizing in the direction z, we obtain the 2D probability that 
the variable is within a distance d along two directions only: 

p 2 D 

( d) = 

∫ d 

−d 

f ( x)d x 
∫ d 

−d 

f ( y)d y 
∫ ∞ 

−∞ 

f ( z )d z (A4) 

= p 

2 
1 D 

( d) (A5) 

This also is an approximation. 
Hence, 

p 3 D 

( d) ≈ p 

3 / 2 
2 D 

( d) (A6) 

APPENDI X  B:  BEST  FIT  O F  R R M  ASSUMING  

T H E  MAGNETI C  FIELD  FROZEN  TO  T H E  

PLASMA  

Best-fitting results of equation ( 18 ) to the measured RRM 

rms, for the case in which the magnetic field is as- 
sumed to be frozen to the plasma, are shown in Fig. B1 . 
Only the case of the primordial stochastic scenario is 
shown. 

Figure B1. Best-fitting results of equation ( 18 ) to the RRM rms measured with redshift bins of 15 sources each. The filament RRM f is computed from 

equation ( 3 ), where the density is taken from cosmological simulations and the magnetic field strength depends on the gas density as B f ∝ ρ
2 / 3 
g . The o v erdensity 

limit assumed is δM 

< 160. The case of the primordial stochastic cosmological MHD model is shown here. The description of the panels is as for Fig. 5 . 
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