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ON THE CHVÁTAL-JANSON CONJECTURE

LUCIO BARABESI, LUCA PRATELLI, AND PIETRO RIGO

Abstract. Let qm = P (X ≤ m), where m is a positive integer and X a bino-

mial random variable with parameters n and m/n. Vašek Chvátal conjectured

that, for fixed n ≥ 2, qm attains its minimum when m is the integer closest to
2n/3. As shown by Svante Janson, this conjecture is true for large n. Here,

we prove that the conjecture is actually true for every n ≥ 2.

1. Introduction

Denoting by B(n, p) a binomial random variable with parameters n and p, Jan-
son [4] investigates the following conjecture suggested by Chvátal in a personal
communication.

Conjecture 1 (Chvátal). For any fixed n ≥ 2, as m ranges over {0, . . . , n},

qm := P (B(n,m/n) ≤ m)

is smallest when m = [[2n/3]] where [[·]] represents the nearest integer function.

In addition to be intriguing, Conjecture 1 may have useful applications, since the
probability that a binomial random variable exceeds its expected value plays a role
in the machine learning framework; see e.g. [1], [3], [9] and references therein. Such
a probability is also connected to an equation given by Ramanujan, as emphasized
by [5]. See also [6] and [8] for further results on this topic.

For large n, Conjecture 1 is actually true and the qm have a unique minimum.

Theorem 1 (Janson, [4]). There exists an integer n0 such that, for each n ≥ n0:
i) qm is minimum for m = [[2n/3]] and ii) qm > qm+1 or qm < qm+1 according to
whether m+ 1

2 < 2n/3 or m+ 1
2 > 2n/3.

As noted in [4, Remark 1.5], in principle, the value of n0 could be computed and
then Conjecture 1 could be proved (or disproved) by considering all n < n0. Even if
potentially possible, however, this strategy looks not practically feasible and Janson
wishes for a general proof of Conjecture 1.

The only purpose of this note is to prove that Conjecture 1 is actually true.

Theorem 2. For each n ≥ 2, one obtains qm > qm+1 or qm < qm+1 according to
whether m + 1

2 < 2n/3 or m + 1
2 > 2n/3. Hence, if m0 = [[2n/3]], then qm0

< qm
for each m ̸= m0.

Key words and phrases. Binomial distribution, Binomial tail probability, Bernoulli inequality.
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Our proof of Theorem 2 is quite plain and relies on completely different argu-
ments with respect to [4]. In fact, [4] exploits the version for integer-valued random
variables of the asymptotic Edgeworth expansion for probabilities in the central
limit theorem - as proposed by Esseen [2]. Instead, our proof is closer to the ap-
proach introduced by [7, Appendix B] for showing that qm ≥ qm+1 for 0 ≤ m < n/2
and n ≥ 2.

2. Two preliminary lemmas

Let U1, . . . , Un be n independent copies of a uniform random variable on [0, 1]
and U(1) ≤ . . . ≤ U(n) the corresponding order statistics. For m < n, since U(m+1)

has a beta distribution with parameters m+ 1 and n−m, one obtains

qm = P
( n∑
i=1

I{Ui≤m/n} ≤ m
)
= P (U(m+1) > m/n)

= (m+ 1)

(
n

m+ 1

)∫ 1

m/n

xm(1− x)n−m−1 dx.

Lemma 1. Let n ≥ 2 and m ≤ n− 2. Then, qm ≥ qm+1 if and only if∫ 1

0

(1− v

m+ 1
)m(1 +

v

n−m− 1
)n−m−1 dv ≥ 1. (2)

Proof. First note that qm ≥ qm+1 is equivalent to

m+ 1

n−m− 1

∫ 1

m/n

xm(1− x)n−m−1 dx ≥
∫ 1

(m+1)/n

xm+1(1− x)n−m−2 dx.

Integrating the left-hand side by parts, this inequality becomes∫ (m+1)/n

m/n

xm+1(1− x)n−m−2 dx ≥ (m/n)m+1(1−m/n)n−m−1

n−m− 1
.

Letting x = (m+ t)/n in the integral, one obtains∫ 1

0

(1 + t/m)m+1(1− t/(n−m))n−m−2 dt ≥ n−m

n−m− 1
.

Integrating again the left-hand side by parts, such inequality turns into∫ 1

0

(1 +
t

m
)m(1− t

n−m
)n−m−1 dt ≥ (1− 1

n−m
)n−m−1(1 +

1

m
)m

or equivalently ∫ 1

0

(
t+m

1 +m
)m(

n−m− t

n−m− 1
)n−m−1 dt ≥ 1.

Now, inequality (2) follows from the transformation t = 1− v. □
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Lemma 2. Fix n ≥ 3 and define

gv(x) =

(
1− v

x+ 1

)x(
1 +

v

n− x− 1

)n−x−1

for all v ∈ (0, 1] and x ∈ [1, n− 2]. Then, x 7→ gv(x) is strictly decreasing for each
fixed v. In particular, if

h(m) =

∫ 1

0

gv(m) dv =

∫ 1

0

(
1− v

m+ 1

)m(
1 +

v

n−m− 1

)n−m−1

dv

for m ∈
{
1, . . . , n− 2

}
, the function h is strictly decreasing.

Proof. Fix (v, x) ∈ (0, 1]× [1, n− 2], and note that

g′v(x) = gv(x)
[
log(1− v

x+ 1
) +

vx
(x+1)2

1− v
x+1

− log(1 +
v

n− x− 1
) +

v
n−x−1

1 + v
n−x−1

]
.

Therefore,

g′v(x) < 0 ⇐⇒
vx

(x+1)2

1− v
x+1

+
v

n−x−1

1 + v
n−x−1

< log

(
1 + v

n−x−1

1− v
x+1

)
.

In addition,

log

(
1 + v

n−x−1

1− v
x+1

)
= log

[(
1 +

v

n− x− 1

)(
1 +

v
x+1

1− v
x+1

)]
= log

(
1 +

v

n− x− 1

)
+ log

(
1 +

v
x+1

1− v
x+1

)
.

Hence, in order to prove g′v(x) < 0, it suffices to show that

v
n−x−1

1 + v
n−x−1

< log
(
1 +

v

n− x− 1

)
(3)

and
vx

(x+1)2

1− v
x+1

< log
(
1 +

v
x+1

1− v
x+1

)
. (4)

To prove (3)-(4), first note that log(1 + c) > c/(1 + c) for each c > 0. Therefore,
(3) holds with c = v/(n−x− 1). Similarly, letting c = v/(x+1− v), inequality (4)
reduces to

log(1 + c)− c+
c2

v(c+ 1)
> 0.

Finally, the above inequality is true, since

log(1 + c)− c+
c2

v(c+ 1)
≥ log(1 + c)− c+

c2

c+ 1
= log(1 + c)− c

c+ 1
> 0.

□
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3. A proof of the Chvátal-Janson conjecture

We are now ready to attack Theorem 2. By a direct computation, Theorem 2 holds
true for n ≤ 5. Hence, it can be assumed n = 3s+ r where s ≥ 2 and r ∈ {0, 1, 2}.
In this case, because of Lemmas 1-2, it suffices to prove that∫ 1

0

(1− v

2s
)2s−1(1 +

v

s
)s dv > 1 (5)

and ∫ 1

0

(1− v

2s+ 1
)2s(1 +

v

s− 1
)s−1 dv < 1 (6)

if r = 0, while ∫ 1

0

(1− v

2s+ 1
)2s(1 +

v

s+ r − 1
)s+r−1 dv > 1 (7)

and ∫ 1

0

(1− v

2s+ 2
)2s+1(1 +

v

s+ r − 2
)s+r−2 dv < 1 (8)

if r ∈ {1, 2}.
We point out that, since all the previous inequalities are strict, one obtains

qm ̸= qm+1 for all m provided such inequalities are true.

Inequalities (5) and (6). Let r = 0. Recalling the Bernoulli inequality

(1 + c)s ≥ 1 + sc for all c > −1,

one obtains∫ 1

0

(1− v

2s
)2s−1(1 +

v

s
)s dv =

∫ 1

0

[(1− v

2s
)2(1 +

v

s
)]s(1− v

2s
)−1 dv

=

∫ 1

0

[1− 3v2

4s2
+

v3

4s3
]s(1− v

2s
)−1 dv

≥
∫ 1

0

(1− 3v2

4s
+

v3

4s2
)(1− v

2s
)−1 dv

>

∫ 1

0

(1− 3v2

4s
+

v3

4s2
)(1 +

v

2s
+

v2

4s2
) dv

= 1 +
5

96s2
− 1

80s3
+

1

96s4
> 1.

Here, the first inequality is because of the Bernoulli’s one while the second depends
on (1− c)−1 > 1 + c+ c2 for all c ∈ (0, 1). Hence, inequality (5) is actually true.

Let us turn to inequality (6). We have to show that Is < 1, where

Is =

∫ 1

0

(1− v

2s+ 1
)2s(1 +

v

s− 1
)s−1 dv.
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First note that

Is =

∫ 1

0

2s+ 1

2s+ 1− v
exp

(
(2s+1) log(1− v

2s+ 1
)+(s− 1) log(1+

v

s−1
)

)
dv

=

∫ 1

0

2s+ 1

2s+ 1− v
exp

( ∞∑
k=2

vk

k
(
(−1)k−1

(s− 1)k−1
− 1

(2s+ 1)k−1
)

)
dv

<

∫ 1

0

2s+ 1

2s+ 1− v
exp

(
3∑

k=2

vk

k
(
(−1)k−1

(s− 1)k−1
− 1

(2s+ 1)k−1
)

)
dv

where the last inequality depends on

∞∑
k=4

vk

k
(
(−1)k−1

(s− 1)k−1
− 1

(2s+ 1)k−1
) < 0.

Since exp(c) < 1 + c+ c2

2 for c < 0 and

γ(s, v) :=

3∑
k=2

vk

k
(
(−1)k−1

(s− 1)k−1
− 1

(2s+ 1)k−1
) =

−3v2s

2(s− 1)(2s+ 1)
+

v3s(s+ 2)

(s− 1)2(2s+ 1)2
< 0,

one also obtains

Is <

∫ 1

0

2s+ 1

2s+ 1− v
exp

(
γ(s, v)

)
dv <

∫ 1

0

2s+ 1

2s+ 1− v

(
1 + γ(s, v) +

γ(s, v)2

2

)
dv.

Moreover, since

2s+ 1

2s+ 1− v
=

1

1− v
2s+1

= 1 +
v

2s+ 1
+

v2

(2s+ 1)2
1

1− v
2s+1

≤ 1 +
v

2s+ 1
+

5v2

4(2s+ 1)2
,

it follows that

Is <

∫ 1

0

(
1 +

v

2s+ 1
+

5v2

4(2s+ 1)2
)(
1 + γ(s, v) +

γ(s, v)2

2

)
dv.

After some (tedious) algebra, the above integral can be evaluated and the previous
inequality can be written as

Is < 1 +
1 + 3s(−11s3 + (s+ 4)2)

(s− 1)4(2s+ 1)6
+

s6(29 + 7s− 15s2/2)

(s− 1)4(2s+ 1)6
.

Both fractions in the previous expression are negative for s ≥ 3. Hence, Is < 1 for
each s ≥ 3. Finally, I2 < 1 follows from a direct calculation.

This concludes the proof of inequality (6).

Inequalities (7) and (8). Let r ∈ {1, 2} and

J (r)
s =

∫ 1

0

(1− v

2s+ 1
)2s(1 +

v

s+ r − 1
)s+r−1 dv.



6 LUCIO BARABESI, LUCA PRATELLI, AND PIETRO RIGO

Since (1 + v
s )

s ≤ (1 + v
s+1 )

s+1, one obtains J
(1)
s ≤ J

(2)
s . Hence, to prove (7), it

suffices to show J
(1)
s > 1. To this end, we first write

J (1)
s =

∫ 1

0

(1− v

2s+ 1
)2s(1 +

v

s
)s dv

=

∫ 1

0

[(1− v

2s+ 1
)2(1 +

v

s
)]s dv

=

∫ 1

0

[1 +
v(1− 2v)

s(2s+ 1)
+

v2

(2s+ 1)2
(1 +

v

s
)]s dv.

Hence, the Bernoulli inequality yields

J (1)
s ≥

∫ 1

0

[1 +
v(1− 2v)

2s+ 1
+

sv2

(2s+ 1)2
(1 +

v

s
)] dv

= 1− 1

6(2s+ 1)
+

s

3(2s+ 1)2
+

1

4(2s+ 1)2
= 1 +

1

12(2s+ 1)2
.

This proves inequality (7).
Finally, we turn to (8). Let

H(r)
s =

∫ 1

0

(1− v

2s+ 2
)2s+1(1 +

v

s+ r − 2
)s+r−2 dv.

Once again, H
(1)
s ≤ H

(2)
s . Thus, to prove (8), it suffices to show that H

(2)
s < 1. To

this end, we argue as in the proof of Is < 1. Precisely, we first note that

H(2)
s =

∫ 1

0

(1− v

2s+ 2
)2s+1(1 +

v

s
)s dv

=

∫ 1

0

2s+ 2

2s+ 2− v
exp

(
(2s+2) log(1− v

2s+ 2
)+s log(1+

v

s
)

)
dv

=

∫ 1

0

2s+ 2

2s+ 2− v
exp

( ∞∑
k=2

vk

k
(
(−1)k−1

sk−1
− 1

(2s+ 2)k−1
)

)
dv

<

∫ 1

0

2s+ 2

2s+ 2− v
exp

(
3∑

k=2

vk

k
(
(−1)k−1

sk−1
− 1

(2s+ 2)k−1
)

)
dv

where the last inequality is because

∞∑
k=4

vk

k
(
(−1)k−1

sk−1
− 1

(2s+ 2)k−1
) < 0.

Moreover,

λ(s, v) :=

3∑
k=2

vk

k
(
(−1)k−1

sk−1
− 1

(2s+ 2)k−1
) < 0,

and
2s+ 2

2s+ 2− v
≤ 1 +

v

2s+ 2
+

6v2

5(2s+ 2)2
.
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Hence, recalling that exp(c) < 1 + c+ c2

2 for c < 0, one obtains

H(2)
s <

∫ 1

0

2s+ 2

2s+ 2− v
exp

(
λ(s, v)

)
dv

<

∫ 1

0

(
1 +

v

2s+ 2
+

6v2

5(2s+ 2)2
)(
1 + λ(s, v) +

λ(s, v)2

2

)
dv.

Finally, evaluating the integral, the previous inequality turns into

H(2)
s < 1 +

−2s5 − 9(s4 + s3) + 8s2 + 22s+ 18

64s(s+ 1)6
< 1.

This proves (8) and concludes the proof of Theorem 2.

Added in proof: After writing this paper, we learned (from an anonymous
referee) of the existence of another paper very similar to ours, that is: Ping Sun
(2021) Strictly unimodality of the probability that the binomial distribution is more
than its expectation, Discrete Applied Mathematics 301, 1–5. However, we point
out that a preliminary draft of our paper appeared on arXiv previous to Sun’s
paper; see: arXiv:2104.11971v1 [math.PR]
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