Supporting Information

Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN
Megan Amy Bryden, ${ }^{\text {a }}$ Francis Millward, ${ }^{\text {a }}$ Tomas Matulaitis, ${ }^{a}$ Dongyang Chen ${ }^{\text {a }}$ Marco Villa, ${ }^{\text {b }}$ Andrea Fermi, ${ }^{\text {b,c }}$ Sultan Cetin, ${ }^{\text {b }}$ Paola Ceroni ${ }^{\text {b,c }}$ * and Eli ZysmanColman ${ }^{\text {a }}$
${ }^{\text {a }}$ Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, U.K., KY16 9ST, Fax: +44-1334 463808; Tel: +44-1334 463826;
E-mail: eli.zysman-colman@st-andrews.ac.uk;
${ }^{b}$ Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; e-mail: paola.ceroni@unibo.it
${ }^{c}$ Center for Chemical Catalysis-C ${ }^{3}$, University of Bologna, via Selmi 2, 40126 Bologna, Italy

Table of contents

Experimental Section S2
Electrochemistry S8
Photophysical measurements S10
Mechanistic studies of the decarboxylative addition reaction S13
Photocatalysis S22
NMR S28
DFT calculations S38
References S50

Experimental Section

General Synthetic Procedures. The following starting materials were synthesised according to literature procedures: $\mathbf{4 C z I P N},{ }^{1} \quad \mathbf{2 C z P N},{ }^{2} \quad\left[\mathbf{R u}(\mathbf{b p y})_{3}\right]\left(\mathbf{P F}_{6}\right)_{2},{ }^{3}$
 (bromoethynyl)benzene, ${ }^{7}$ 1,3-dioxoisoindolin-2-yl cyclohexanecarboxylate, ${ }^{8}$ Hantzsch ester ${ }^{9}$ and N -Cbz-proline. ${ }^{10}$ All other reagents and solvents were obtained from commercial sources and used as received. Air-sensitive reactions were performed under a nitrogen atmosphere using Schlenk techniques, no special precautions were taken to exclude air or moisture during work-up and crystallisation. Anhydrous THF, DCM, toluene and acetonitrile were obtained from a MBraun SPS5 solvent purification system. Flash column chromatography was carried out using silica gel (Silia-P from Silicycle, $60 \AA, 40-63 \mu \mathrm{~m}$). Analytical thin-layerchromatography (TLC) was performed with silica plates with aluminum backings ($250 \mu \mathrm{~m}$ with F-254 indicator). TLC visualization was accomplished by $254 / 365 \mathrm{~nm}$ UV lamp. ${ }^{1} \mathrm{H}$ spectra were recorded on a Bruker Advance spectrometer (400 or 500 MHz for ${ }^{1} \mathrm{H}$). The following abbreviations have been used for multiplicity assignments: " s " for singlet, " d " for doublet, " t " for triplet, " q " for quartet, " m " for multiplet, and "br" for broad. ${ }^{1} \mathrm{H}$ spectra were referenced residual solvent peaks with respect to TMS ($\delta=0 \mathrm{ppm}$).

Photophysical measurements. Optically dilute solutions of concentrations on the order of 10^{-5} or $10^{-6} \mathrm{M}$ of the photocatalysts were prepared in spectroscopic or HPLC grade solvents for absorption and emission analysis. Absorption spectra were recorded at room temperature on a Shimadzu UV-2600 double beam spectrophotometer and a Varian Cary 50 BIO spectrophotometer with a 1 cm quartz cuvette or a Hellma ultra-micro cuvette with 3 mm optical path length. Molar absorptivity determination was verified by linear regression analysis of values obtained from five independent solutions at varying concentrations with absorbance ranging from 4.12×10^{-6} to $2.06 \times 10^{-5} \mathrm{M}$. For emission studies, aerated solutions were bubbled by compressed air for 5 minutes and spectra were taken using the cuvette for absorption analysis. Degassed solutions were prepared via four freeze-pump-thaw cycles and spectra were taken using home-made Schlenk quartz cuvette. Steady-state emission, excitation spectra and timeresolved emission spectra were recorded at 298 K using an Edinburgh Instruments F980 or a Perkin Elmer LS55 spectrofluorometer, equipped with a Hamamatsu R928 phototube. Samples were excited at 360 nm or 420 nm for steady-state measurements and at 378 nm or 340 nm for time-resolved measurements.

The singlet-triplet splitting energy $\Delta E_{S T}$ was estimated by recording the prompt fluorescence spectra and phosphorescence emission at 77 K . An open Dewar was used for solution samples. The samples were photoexcited using the third harmonic emission (343 nm) from a femtosecond Nd:YAG laser, which originally emits at 1030 nm (Orpheus-N, model: PN13F1). Emission from the samples was focused onto a spectrograph (Chromex imaging, 250is spectrograph) and detected on a sensitive gated iCCD camera (Stanford Computer Optics, 4Picos) having subnanosecond resolution. Phosphorescence spectra were measured 1 ms after the excitation of the Nd:YAG laser with iCCD exposure time of 8.5 ms . Prompt fluorescence spectra were measured 1 ns after the excitation of the femtosecond laser with iCCD exposure time of 100 ns .

Fitting of time-resolved luminescence measurements: Time-resolved PL measurements were fitted to a sum of exponentials decay model, with chi-squared $\left(\chi^{2}\right)$ values between 1 and 2, using the EI FLS980 or Edinburgh FLS920 software. Each component of the decay is assigned a weight, (w_{i}), which is the contribution of the emission from each component to the total emission.

Emission quantum yield measurements: Emission quantum yields were measured following the method of Demas and Crosby ${ }^{11}$ using $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ as the standard in air-equilibrated aqueous solution $\Phi=0.0405$. ${ }^{12}$

Electrochemistry measurements. Cyclic Voltammetry (CV) analysis was performed on an Electrochemical Analyzer potentiostat model 620E from CH Instruments at a sweep rate of 100 mV / s. Differential pulse voltammetry (DPV) was conducted with an increment potential of 0.004 V and a pulse amplitude, width, and period of $50 \mathrm{mV}, 0.05$, and 0.5 s , respectively. Samples were prepared as acetonitrile (MeCN), dichloromethane (DCM), tetrahydrofuran (THF) or N, N-dimethylformamide (DMF) solutions, which were degassed by sparging with solvent-saturated argon gas for 5 minutes prior to measurements. All measurements were performed using 0.1 M solution of tetra- n-butylammonium hexafluorophosphate ($\left.\left[n \mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{PF}_{6}\right]$). $\mathrm{An} \mathrm{Ag} / \mathrm{Ag}^{+}$electrode was used as the reference electrode while a glassy carbon electrode and a platinum wire were used as the working electrode and counter electrode, respectively. The redox potentials are reported relative to a saturated calomel electrode (SCE) with a ferrocenium/ferrocene $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$redox couple as the internal standard (0.38 V vs SCE for $\mathrm{MeCN},{ }^{13} 0.46 \mathrm{~V}$ vs SCE for DCM, 0.56 V vs SCE for THF and 0.45 V vs SCE for DMF). ${ }^{14}$

Theoretical Calculations. All ground state optimizations have been carried out using Density Functional Theory (DFT) level with Gaussian 16^{15} using the PBE0 functional ${ }^{16}$ and the 6 $31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set, ${ }^{17}$ except for triplet excited state optimizations, where calculations at the same level of theory were made using unrestricted DFT. All calculations employed a polarizable continuum model (PCM) to simulate the solvent environment for each of the solvents MeCN, DMF, DCM and THF. Excited state calculations were performed using TimeDependent DFT (TD-DFT) using the same functional and basis set as for ground state geometry optimization. Calculations were automated using an in-house designed software package, Silico, which uses a number of $3^{\text {rd }}$ party libraries and programs, including: extraction and processing of results: cclib, ${ }^{18}$ generation of 3D images: VMD ${ }^{19} \&$ Tachyon, ${ }^{20}$ generation of graphs: Matplotlib, ${ }^{21}$ calculation of CIE colour coordinates: Colour Science, ${ }^{22}$ generation of report: Mako ${ }^{23}$ \& Weasyprint, ${ }^{24}$ scientific constants: SciPy, ${ }^{25}$ conversion of file formats: Pybe ${ }^{26}$ \& Openbabel. ${ }^{27}$ Structures were visualized with Gaussview v5.0. GaussSum3.0 was used to and visualize simulated absorption spectra (full-width at half maximum set to $1000 \mathrm{~cm}^{-1}$). Chemissian v4.67 was used to model atom group contributions to the frontier molecular orbitals.

Synthesis

pDTCz-DPmS was synthesised according to a modified literature procedure in 4 steps. ${ }^{28}$

Step 1: Synthesis of 9-(5-bromopyrimidin-2-yl)-3,6-di-tert-butyl-9H-carbazole (tCz-BrPm) was completed according to literature procedure. ${ }^{28}$

Figure S1. Reaction scheme for the synthesis of $\mathrm{tCz}-\mathrm{BrPm}$.
To an oven dried flask were added 5-bromo-2-iodopyrimidine ($1.57 \mathrm{~g}, 5.5 \mathrm{mmol}, 1$ equiv.), di-tert-butyl-9Hcarbazole ($1.7 \mathrm{~g}, 6.1 \mathrm{mmol}, 1.1$ equiv.), copper powder ($0.35 \mathrm{~g}, 5.5 \mathrm{mmol}, 1$ equiv.) and potassium carbonate ($2.28 \mathrm{~g}, 16.5 \mathrm{mmol}, 3$ equiv.). The flask was degassed by three cycles of vacuum-nitrogen purging and 12 mL of dry chlorobenzene was injected. The mixture was stirred at $140{ }^{\circ} \mathrm{C}$ using an oil bath for 18 h under a nitrogen atmosphere. The reaction mixture was allowed to cool before being then poured into water $(30 \mathrm{~mL})$ and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product was purified by silica gel column chromatography. DCM:Hexane $=1: 3$ was used as eluent to afford $\mathrm{tCz}-\mathrm{BrPm}$ as a white solid. Yield: $1.70 \mathrm{~g}, 71 \%$. Rf: 0.65 ($33 \% \mathrm{DCM}: H e x a n e$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right), \boldsymbol{\delta}$ (ppm): 8.80 (s, 2H), 8.69 (d, 2H), 8.04 (dd, 2H), 7.54 (dd, 2H), 1.46 (s, 18H). The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with the literature. ${ }^{28}$

Step 2: Synthesis of 9-(5-iodoopyrimidin-2-yl)-3,6-di-tert-butyl-9H-carbazole (tCz-IPm)

Figure S2. Reaction scheme for the synthesis of tCz-Ipm.
To an oven dried flask were added $\mathrm{tCz}-\mathrm{BrPm}(0.67 \mathrm{~g}, 1.54 \mathrm{mmol}, 1$ equiv. $)$, $\mathrm{NaI}(0.915 \mathrm{~g}, 6.14$ mmol, 4 equiv.) and $\mathrm{CuI}(0.029 \mathrm{~g}, 0.154 \mathrm{mmol}, 0.1$ equiv.). The flask was degassed by three cycles of vacuum-nitrogen purging and 24 mL of dry DMF was injected alongside trans-1,2cyclohexanediamine ($0.037 \mathrm{~mL}, 0.307 \mathrm{mmol}, 0.2$ equiv.). The mixture was stirred at $145{ }^{\circ} \mathrm{C}$ using an oil bath for 17 h under a nitrogen atmosphere. The reaction mixture was allowed to cool before being poured onto $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the organic solvent was removed under reduced pressure. The crude product was purified by washing with acetone to obtain a white solid which was a mix of the $\mathrm{tCz}-\mathrm{IPm}$ and $\mathrm{tCz}-\mathrm{BrPm}$. The product was used for the next step without further purification.

Step 3: synthesis of bis(2-(3,6-di-tert-butyl-9H-carbazol-9-yl) pyrimidin-5-yl) sulfane (tCzPmS).

Figure S3. Reaction scheme for the synthesis of $\mathrm{tCz}-\mathrm{PmS}$.
To an oven dried flask were added $\mathrm{tCz}-\operatorname{Ipm}(1.38 \mathrm{~g}, 2.86 \mathrm{mmol}, 1$ equiv. $)$, sodium sulfide nonahydrate ($0.247 \mathrm{~g}, 1.03 \mathrm{mmol}, 0.6$ equiv.) $\mathrm{CuI}\left(0.033 \mathrm{~g}, 0.28 \mathrm{mmol}, 0.1\right.$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.710 \mathrm{~g}, 5.14 \mathrm{mmol}, 3$ equiv.). The flask was degassed by three cycles of vacuum-nitrogen purging and 20 mL of dry DMF was injected. The mixture was stirred at $145^{\circ} \mathrm{C}$ using an oil bath for 20 h under a nitrogen atmosphere. The reaction mixture was allowed to cool before
being poured into 75 mL of icy water and extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and the organic solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography. DCM:Hexane $=1: 1$ was used as eluent to afford $\mathrm{tCz}-\mathrm{PmS}$ as a white solid. Yield: $746 \mathrm{mg}, 35 \%$. Rf: 0.52 (33% DCM:Hexane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$), $\boldsymbol{\delta}$ ($\mathbf{p p m}$): 8.87 (s, 4H), 8.75 (dd, $4 \mathrm{H}), 8.04(\mathrm{~d}, 4 \mathrm{H}), 7.53(\mathrm{dd}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 36 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with the literature. ${ }^{28}$

Step 4: synthesis of 9, ${ }^{\prime}$ '-(sulfonylbis(pyrimidine-5,2-diyl))bis(3,6-di-tert-butyl-9H-carbazole) (pDTCz-DPmS) was completed according to literature procedure. ${ }^{28}$

Figure S4. Reaction scheme for the synthesis of pDTCz-DPmS.
To a flask were added $\mathrm{tCz}-\mathrm{PmS}(0.302 \mathrm{~g}, 0.41 \mathrm{mmol}, 1$ equiv.) and acetic acid (8 mL). To this suspension was added $\mathrm{H}_{2} \mathrm{O}_{2}$ ($30 \mathrm{wt} \%, 12 \mathrm{~mL}$, 1 equiv.) and mixture was heated to $85^{\circ} \mathrm{C}$ using an oil bath for 18 h . The mixture was then poured into 40 mL of icy water and extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the organic solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography. DCM:Hexanes $=4: 1$ was used as the eluent to afford pDTCzDPmS as a white solid. The product was further purified by recrystallization in DCM:Hexanes. Yield: $124 \mathrm{mg}, 39 \%$. Rf: 0.68 (75% DCM:Hexane). Mp: 292-294 ${ }^{\circ} \mathrm{C}$. Lit.: 292-294 ${ }^{\circ} \mathrm{C} .{ }^{28}{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 9.31(\mathrm{~s}, 4 \mathrm{H}), 8.84(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $4 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=8.9,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 36 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that in the literature. ${ }^{28}$

Electrochemistry

Figure S5. CVs and DPVs of a) 4CzIPN and b) pDTCz-DPmS in a range of solvents, reported vs SCE at scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$.

Table S1. Redox potentials and optical gaps for 4CzIPN and pDTCz-DPmS. ${ }^{\text {a }}$

PC		THF	DCM	DMF	MeCN
4CzIPN	$\mathrm{E}_{\text {ox }} / \mathrm{V}$		1.51		1.50
	$\mathrm{E}_{\text {red }} / \mathrm{V}$	-1.20	-1.21	-1.24	-1.24
	$\mathrm{E}_{\text {ox }} / \mathrm{V}$		-1.09		-1.15
	$\mathrm{E}_{\text {red }} / \mathrm{V}$	1.46	1.39	1.40	1.41
	$\mathrm{E}_{0,0} / \mathrm{eV}$	2.66	2.60	2.64	2.65
pDTCz-DPmS	$\mathrm{E}_{\mathrm{ox}} / \mathrm{V}$		1.57		
	$\mathrm{E}_{\text {red }} / \mathrm{V}$	-1.77	-1.67	-1.62	
	$\mathrm{E}_{\text {ox }} / \mathrm{V}$				
	$\mathrm{E}_{\text {red }} / \mathrm{V}$	1.32	1.44		
	$\mathrm{E}_{0,0} / \mathrm{eV}$	3.09	3.01	1.48	
			3.10		

${ }^{\text {a }}$ All redox potentials are reported vs SCE. $\mathrm{E}_{\text {ox }}$ and $\mathrm{E}_{\text {red }}$ values obtained from DPV max and $\mathrm{E}^{*}{ }_{\text {ox }}=\mathrm{E}_{\text {ox }}-\mathrm{E}_{0,0}$ and $\mathrm{E}_{\text {red }}=\mathrm{E}_{\text {red }}+\mathrm{E}_{0,0 .} \mathrm{E}_{0,0}$ obtained from the intersection point between the normalized absorption and emission spectra.

Photophysical measurements

Figure S6. Solvatochromic absorption study for a) 4CzIPN and b) pDTCz-DPmS and solvatochromic PL study of c) 4CzIPN and d) pDTCz-DPmS. λ exc $=420 \mathrm{~nm}$ for 4CzIPN and 360 nm for $\mathbf{p D T C z}-\mathbf{D P m S}$. Measurements performed at room temperature under air.

Table S2. Absorption and emission maxima of 4CzIPN and pDTCz-DPmS in different solvents.

Solvent	$\lambda_{\text {abs }} / \mathrm{nm}\left(\varepsilon / 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$		$\lambda_{\text {PL } / \mathrm{nm}}$		$\mathrm{E}_{0,0} / \mathrm{eV}$	
	4 CzIPN	pDTCz-DPmS	4CzIPN	pDTCz-DPmS	4CzIPN	pDTCz-DPmS
Toluene	441 (6)	365 (59)	507	480	2.59	3.12
THF	438 (8)	357 (58)	525	505	2.66	3.09
DCM	448 (7)	363 (64)	544	524	2.60	3.01
DMF	428 (6)	355 (57)	554	535	2.64	3.10
MeCN	432 (6)		560	546	2.65	

Figure S7. Time resolved PL decay of pDTCz-DPmS recorded in a) THF, b) DCM and c) DMF under vacuum in $10^{-5} \mathrm{M}$ solutions with $\lambda_{\mathrm{exc}}=378 \mathrm{~nm}$.

Figure S8. Prompt fluorescence and phosphorescence spectra of $\mathbf{p D T C z}-\mathbf{D P m S}$ in a) THF, b) DCM, c) DMF, d) toluene and e) BuCN measured in $10^{-5} \mathrm{M}$ solutions at 77 K . In all cases, $\lambda_{\text {exc }}$ $=343 \mathrm{~nm}$, and prompt and delayed fluorescence spectra were obtained in the $1-100 \mathrm{~ns}$ and $1-$ 8.5 ms time range, respectively

Mechanistic studies of the decarboxylative addition reaction of N -Cbz-Pro to diethyl

 maleate

Figure $\mathbf{S 9}$. Absorption spectra of $\mathbf{p D T C z}$-DPmS (black line, $4 \times 10^{-5} \mathrm{M}$), diethylmaleate (red line, $5 \times 10^{-4} \mathrm{M}$) and N-Cbz-Pro (green line, $5 \times 10^{-4} \mathrm{M}$) in DMF.

Figure $\mathbf{S 9}$ demonstrates that the photocatalyst pDTCz-DPmS is the only species absorbing the 390 nm LED light in the decarboxylative addition of N -Cbz-Pro to diethyl maleate.

Figure S10. Stern-Volmer plot of the quenching of the TADF emission of pDTCz-DPmS in DMF by sequential addition of diethylmaleate.

Figure S11. Time resolved PL decay of a deaerated solution of pDTCz-DPmS $\left(4.27 \times 10^{-5} \mathrm{M}\right.$, black line) in DMF and after addition of: a) N -Cbz-Pro (0.05 M) and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (saturated solution) and b) diethyl maleate (0.055 M) with $\lambda_{\text {exc }}=340 \mathrm{~nm}$.

The quenching process is studied following the changes in the lifetime of the delayed emission of the photocatalyst by addition of increasing amounts of diethylmaleate or N-Cbz-Pro. The photocatalyst is not quenched by the protonated form of N-Cbz-Pro; deprotonation of the carboxylic acid is required. The quenching of the deprotonated form of N -Cbz-Pro is evaluated after the addition of N -Cbz-Pro and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and 12 hours of stirring under inert atmosphere.

To evaluate the quenching of $\mathbf{p D T C z}-\mathbf{D P m S}$ under the reaction conditions, we evaluated the quenching efficiency of species i according to the following formula:

$$
\eta^{i}=\frac{k_{q}^{i} \cdot[Q]^{i}}{k_{n r}+k_{r}+\sum_{0}^{n} k_{q}^{i} \cdot[Q]^{i}} \cdot 100
$$

where $k_{n r}+k_{r}=\frac{1}{\tau^{0}}$ are the intramolecular deactivation pathways and k_{q}^{i} is the quenching constant of the quencher species i.

Figure S12. Time resolved PL decay of a deaerated solution of $\mathbf{4 C z I P N}\left(5.6 \times 10^{-5} \mathrm{M}\right.$, black line) in DMF and after addition of N -Cbz-Pro (0.05 M , red line) and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (saturated solution) with $\lambda_{\text {exc }}=340 \mathrm{~nm}$.

Figure S13. UV-Vis absorption spectra of $\mathbf{4 C z I P N}$, N -Cbz-Pro and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1:4:4 equiv.) in DMF before and after 30 minutes of irradiation under N_{2} with 390 nm Kessil lamp.

Figure S14. UV-Vis absorption spectra of pDTCz-DPmS, N-Cbz-Pro and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1:4:4 equiv.) in DMF before and after 30 minutes of irradiation under N_{2} with 390 nm Kessil lamp.

Figure S15. UV-Vis absorption spectra of $\mathbf{4 C z I P N}$, N-Cbz-Pro, $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and diethyl maleate ($0.02: 1: 1.1: 1.1$ ratio as in the reaction) in DMF before and after 24 minutes of irradiation under N_{2} with 390 nm Kessil lamp.

Figure S16. UV-Vis absorption spectra of pDTCz-DPmS, N-Cbz-Pro, $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and diethyl maleate ($0.02: 1: 1.1: 1.1$ ratio as in the reaction) in DMF before and after 24 minutes of irradiation under N_{2} with 390 nm Kessil lamp.

Figure S17. CV and DPV of diethyl maleate (black), N-Cbz-Pro (red) and tert-butylammonium N-Cbz-Pro salt (green) all in DMF, reported vs SCE at scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. Due to the absence of electrochemical activity in the window scanned, only the CV was obtained for N - Cbz -Pro. CV and DPV of [TBA][N-Cbz-Pro] was obtained according to the procedure outlined in reference ${ }^{29}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR of diethyl maleate reagent with integration of the relevant peaks corresponding to the Z maleate isomer (6.23 ppm) and the E fumarate isomer (6.85 ppm) in CDCl_{3}.

Figure S19. ${ }^{1} \mathrm{H}$ NMR obtained in CDCl_{3} after irradiation of diethyl maleate in the presence of pDTCz-DPmS, according to the reaction conditions and concentrations outlined for the decarboxylative addition of N -Cbz-Pro to diethyl maleate, but in the absence of N -Cbz-Pro and $\mathrm{K}_{2} \mathrm{HPO}_{4}$. The integrated peaks shown correspond to the Z maleate isomer (6.23 ppm) and the E fumarate isomer (6.85 ppm).

From the ${ }^{1} \mathrm{H}$ NMR data shown in Figures $\mathbf{S 1 8}$ and $\mathbf{S 1 9}$, we can conclude that no $Z \rightarrow E$ isomerisation of diethyl maleate is taking place upon irradiation with pDTCz-DPmS.

Photocatalysis

Photocatalysis experiments were conducted using a custom-built photoreactor, as shown in Figure S20, allowing for up to 8 parallel photochemical reactions (7 mL) at a time. The photochemistry reaction chamber is filled with mirrors to evenly distribute light. The reactor is placed upon a magnetic stirrer plate allowing for reactions to be completed with stirring. Reactions are irradiated using Kessil PR160 LED sources. For Kessil PR160-390 nm, the chosen LED source for photocatalysis reactions completed in this study, the power consumption maximum is 52 W , with the average intensity measured from 1 cm distance being $352 \mathrm{~mW} \mathrm{~cm}^{-}$ ${ }^{2}$. The intensity on each lamp is tuneable, with the maximum intensity selected for all photocatalytic reactions. A cooling fan is directed at the photoreactor to ensure the reaction mixture maintains at room temperature, which is further guaranteed by the presence of two fans on the photoreactor itself.

After the photoreactions were completed, the products were analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy with an internal standard, either 1,3,5-trimethoxybenzene or 1,4-(bis(trimethylsilyl)benzene). All yields shown represent the mean yield from at least two reactions with the associated standard deviation.

Figure S20. Experimental setup for photocatalysis reactions.
Procedure for oxidative quenching reaction:

Figure $\mathbf{S 2 1}$. Reaction scheme for the oxidative quenching reaction.
To an oven-dried vial was added p-toluenesulfonyl chloride ($48 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv.) styrene ($0.017 \mathrm{~mL}, 0.25 \mathrm{mmol}, 1$ equiv.) and photocatalyst ($1 \mathrm{~mol} \%, 0.0025 \mathrm{mmol}$). The vial was purged with N_{2} for 5 min and dry $\mathrm{DCM}(1.0 \mathrm{~mL})$ was added before further N_{2} purging for 10 min . The solution was stirred at room temperature while being irradiated by Kessil lamp $\left(\lambda_{\text {exc }}=390 \mathrm{~nm}\right)$ for 24 hours. After removal of solvent, the crude product was purified by flash column chromatography ($5: 1$ hexane:EtOAc) to afford the final product as a white solid. $\mathbf{R}_{\mathbf{f}}$: 0.30 (5:1 hexane:EtOAc). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$), $\boldsymbol{\delta}(\mathbf{p p m}): 7.63(\mathrm{~d}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}$, $7 \mathrm{H}), 5.33(\mathrm{t}, 1 \mathrm{H}), 3.94(\mathrm{dd}, 1 \mathrm{H}), 3.85(\mathrm{dd}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that in the literature. ${ }^{30}$

Table S3. ${ }^{1} \mathrm{H}$ NMR yields obtained from the oxidative quench reaction. ${ }^{\text {a }}$

Photocatalyst	$\lambda_{\text {exc }} / \mathrm{nm}$	Solvent	${ }^{1} \mathrm{H}$ NMR yield $/ \%$
None	390	MeCN	0
$\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$	456	MeCN	81 ± 1
$\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$	390	MeCN	42 ± 1
$\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$	390	DCM	64 ± 3
4 CzIPN	390	DCM	10 ± 1
pDTCz-DPmS	390	DCM	16 ± 2

${ }^{a}$ Reaction conditions as stated in the procedure above unless otherwise noted.
Procedure for reductive quenching reaction:

1) Pinacol coupling

Figure S22. Reaction scheme for the pinacol coupling.
To an oven-dried vial was added benzaldehyde ($0.020 \mathrm{~mL}, 0.2 \mathrm{mmol}, 1$ equiv.), DIPEA (0.174 $\mathrm{mL}, 1 \mathrm{mmol}, 5$ equiv.) and photocatalyst ($1 \mathrm{~mol} \%, 0.002 \mathrm{mmol}$). The vial was purged with N_{2} for 5 min and dry DMF $(2.0 \mathrm{~mL})$ was added before further N_{2} purging for 10 min . The solution
was stirred at room temperature while being irradiated by Kessil lamp ($\lambda_{\text {exc }}=390 \mathrm{~nm}$) for 2 or 24 hours. After removal of solvent, the crude product was purified by flash column chromatography ($1: 5 \mathrm{EtOAc}:$ Hexane $\rightarrow 100 \% \mathrm{EtOAc}$) to afford the product as a white solid. $\mathbf{R}_{\mathbf{f}}: 0.83(100 \% \mathrm{EtOAc}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) of meso and dl, $\boldsymbol{\delta}(\mathbf{p p m}): 7.33-7.27$ $(\mathrm{m}, 6 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=6.5,2.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{dl}), 4.81(\mathrm{~s}, 2 \mathrm{H}, \mathrm{meso}), 4.66(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{dl}$), 3.17 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{dl}$), 2.50 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, meso). The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that in the literature. ${ }^{31}$

Table S4. ${ }^{1} \mathrm{H}$ NMR yields obtained from the pinacol reaction. ${ }^{\text {a }}$

Photocatalyst	Time $/ \mathrm{h}$	${ }^{1} \mathrm{H}$ NMR yield $/ \%$
None	2	18 ± 2
None	24	50 ± 2
$\left[\operatorname{Ir}(\text { ppy })_{2}(\right.$ dtbbpy $\left.)\right] \mathrm{PF}_{6}$	2	43 ± 3
$\left[\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$	24	74 ± 3
4 CzIPN	2	68 ± 0
4 CzIPN	24	76 ± 3
pDTCz-DPmS	2	32 ± 1
pDTCz-DPmS	24	80 ± 3

${ }^{a}$ Reaction conditions as stated in the procedure above unless otherwise noted.
2) Decarboxylative addition of N -Cbz-Pro to diethyl maleate

Figure S23. Reaction scheme for the decarboxylative addition of N -Cbz-Pro to diethyl maleate.

To an oven-dried vial was added N-Cbz-Pro ($50 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.), $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (38 mg .0 .22 mmol, 1.1 equiv.), diethyl maleate ($0.036 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.1$ equiv.) and photocatalyst (2 $\mathrm{mol} \%, 0.004 \mathrm{mmol})$. The vial was purged with N_{2} for 5 min and dry DMF (4.0 mL) was added before further N_{2} purging for 10 min . The solution was stirred at room temperature while being irradiated by Kessil lamp ($\lambda_{\mathrm{exc}}=390 \mathrm{~nm}$) for 24 hours. After irradiation, the mixture was poured into water and extracted with DCM $(3 \times 15 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel ($3-20 \%$ EtOAc:Hexane) to afford the product as a colourless solid. $\mathbf{R}_{\mathbf{f}}: 0.19$ (1:4 EtOAc:Hexane). $\left.{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right), \boldsymbol{\delta} \mathbf{(p p m}\right): 7.49$

- $7.31(\mathrm{~m}, 5 \mathrm{H}), 5.30-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.46(\mathrm{~m}$, $2 \mathrm{H}), 3.44-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.32$ $-1.16(\mathrm{~m}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that in the literature. ${ }^{32}$

Table S5. ${ }^{1} \mathrm{H}$ NMR yields obtained from the decarboxylative addition of N-Cbz-Pro to diethyl maleate. ${ }^{\text {a }}$

Photocatalyst	${ }^{1} \mathrm{H}$ NMR yield $/ \%$
None	0
$\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$	99 ± 0
4 CzIPN	99 ± 0
$\mathrm{pDTCz}-\mathrm{DPmS}$	64 ± 3

[^0]Procedure for E / Z isomerisation reaction:

a)

b)

Figure $\mathbf{S 2 4}$. Reaction scheme for the E / Z isomerisation of a) E-stilbene and b) disopropylfumarate.

To an oven-dried vial was added E-stilbene ($36 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) or diisopropyl fumarate ($0.039 \mathrm{~mL}, 0.2 \mathrm{mmol}, 1$ equiv.) and photocatalyst ($0.7 \mathrm{~mol} \%, 0.0014 \mathrm{mmol}$). The vial was purged with N_{2} for 5 min and dry $\operatorname{DMF}(1.0 \mathrm{~mL})$ was added before further N_{2} purging for 10 min. The solution was stirred at room temperature while being irradiated by Kessil lamp ($\lambda_{\text {exc }}$ $=390 \mathrm{~nm}$) for 18 or 24 hours (for E-stilbene and disopropyl fumarate, respectively). After removal of solvent, the crude product was purified by flash column chromatography.
Z-stilbene: white solid. $\mathbf{R}_{\mathbf{f}}: 0.27$ (n-pentane). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$), $\boldsymbol{\delta}$ ($\mathbf{p p m}$): 7.29-7.16 $(\mathrm{m}, 10 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that in the literature. ${ }^{33}$

Diisopropyl maleate: colourless oil. $\mathbf{R}_{\mathbf{f}}$: 0.20 ($1: 20 \mathrm{EtOAc}:$ Petroleum ether). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$), $\boldsymbol{\delta}(\mathbf{p p m}): 6.18(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{sept}, 2 \mathrm{H}), 1.29(\mathrm{~d}, 12 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that in the literature. ${ }^{34}$

Table S6. ${ }^{1}$ H NMR yields obtained for the E/Z isomerisation of alkenes. ${ }^{\text {a }}$

Photocatalyst	Substrate	${ }^{1} \mathrm{H}$ NMR yield $/ \%$
None	E-Stilbene	5 ± 0
None	diisopropyl fumarate	Trace
$\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$	E-Stilbene	81 ± 1
$\left[\mathrm{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$	diisopropyl fumarate	58 ± 1
4 CzIPN	E-Stilbene	87 ± 1
4 CzIPN	diisopropyl fumarate	6 ± 1
pDTCz-DPmS	E-Stilbene	63 ± 4
$\mathrm{pDTCz}-\mathrm{DPmS}$	diisopropyl fumarate	81 ± 2

${ }^{a}$ Reaction conditions as stated in the procedure above unless otherwise noted.
Procedure for dual $\mathrm{Ni}(\mathrm{II})$ cross-coupling reaction:

Figure $\mathbf{S 2 5}$. Reaction scheme for the dual $\mathrm{Ni}(\mathrm{II})$ cross-coupling reaction.
To an oven-dried vial was added p-bromobenzonitrile ($36 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.), N-Cbzproline ($74 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{NiCl}_{2} . \mathrm{DME}\left(4.4 \mathrm{mg}, 20 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%\right.$), 2, ${ }^{\prime}$ '-bipyridine ($4.7 \mathrm{mg}, 30 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(98 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) and photocatalyst (2.5 $\mathrm{mol} \%, 0.005 \mathrm{mmol})$. The vial was purged with N_{2} for 5 mins before the additions of dry DMF $(5.0 \mathrm{~mL})$ and a further 10 min of N_{2} purging. The reaction mixture and stirred and irradiated with a Kessil lamp $\left(\lambda_{\text {exc }}=390 \mathrm{~nm}\right)$ for 24 hours. Upon completion, the mixture was added to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the solvent removed in vacuo. The crude product was purified by flash column chromatography ($15: 85 \mathrm{EtOAc}: H e x a n e$) to afford the product as a foam. $\mathbf{R}_{\mathbf{f}}: 0.14$ (15:85 EtOAc:Hexane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$), $\boldsymbol{\delta}$ ($\mathbf{p p m}$): 7.57 (dd, 2H), 7.37 - 7.17 (m, $6 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}), 5.16-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.31$ $(\mathrm{m}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that in the literature. ${ }^{35}$

Table S7. ${ }^{1} \mathrm{H}$ NMR yields for the dual $\mathrm{Ni}(\mathrm{II})$ cross-coupling reaction. ${ }^{\text {a }}$

Photocatalyst	${ }^{1} \mathrm{H}$ NMR yield $/ \%$
None	24 ± 0
4 CzIPN	99 ± 1
pDTCz-DPmS	72 ± 4

[^1]
NMR

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of 9-(5-bromopyrimidin-2-yl)-3,6-di-tert-butyl-9H-carbazole $(\mathrm{tCz}-\mathrm{BrPm})$ in CDCl_{3} at 400 MHz .

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of 9-(5-bromopyrimidin-2-yl)-3,6-di-tert-butyl9 H -carbazole (tCz-BrPm) and 9-(5-iodoopyrimidin-2-yl)-3,6-di-tert-butyl-9H-carbazole (tCzIPm) in CDCl_{3} at 400 MHz .

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of bis(2-(3,6-di-tert-butyl-9H-carbazol-9-yl)pyrimidin-5yl)sulfane ($\mathrm{tCz}-\mathrm{PmS}$) in CDCl_{3} at 400 MHz .

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of 9,9’-(sulfonylbis(pyrimidine-5,2-diyl))bis(3,6-di-tert-butyl9 H -carbazole) ($\mathbf{p D T C z}-\mathbf{D P m S}$) in CDCl_{3} at 400 MHz .

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-((2-chloro-2-phenylethyl)sulfonyl)-4-methylbenzene in CDCl_{3} at 400 MHz .

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,2-diphenylethane-1,2-diol in CDCl_{3} at 400 MHz .

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of diethyl 2-(1-((benzyloxy)carbonyl)34yrrolidine-2yl)succinate in CDCl_{3} at 400 MHz .

MAB-II44-101120 F32-39

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of Z-stilbene in CDCl_{3} at 400 MHz .

04092021-13-ezc-mab30-M.10.fid
1H Observe
MAB-II123-70421
Z-isomer maleate

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of diisopropyl maleate in CDCl_{3} at 400 MHz .

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of benzyl 2-(4-cyanophenyl)pyrrolidine-1-carboxylate in CDCl_{3} at 400 MHz .

DFT calculations

Table S8. Selected data from DFT calculations for pDTCz-DPmS.

Selected data from DFT calculations:	MeCN	DCM	THF	DMF
HOMO $/ \mathrm{eV}$	-6.08	-6.06	-6.05	-6.08
LUMO $/ \mathrm{eV}$	-1.90	-1.89	-1.89	-1.90
$\Delta \mathrm{E}_{\text {Homo-LUMO }} / \mathrm{eV}$	4.18	4.17	4.16	4.18
Ground state dipole moment magnitude $/ \mathrm{D}$	5.91	5.75	5.72	5.91
$\mathrm{~S}_{1} / \mathrm{eV}$	3.47	3.47	3.47	3.47
$\mathrm{~T}_{1} / \mathrm{eV}$	2.98	2.97	2.97	2.98
$\Delta \mathrm{E}_{\text {ST }} / \mathrm{eV}$	0.49	0.50	0.50	0.49
Dipole moment in the T_{1} state $/ \mathrm{D}$	16.32	19.56	15.22	16.32
Predicted Phosphorescence at RT / eV	2.71	2.51	2.75	2.71
Imaginary frequencies	0	0	0	0

Figure S36. (a) Orbital contributions calculated from DFT results in each of the solvents modelled (MeCN, DCM, THF and DMF) for pDTCz-DPmS and (b) the simulated UV-Vis absorption spectra of pDTCz-DPmS from DFT calculations in MeCN, DCM, THF and DMF compared with the experimental data obtained in THF. Simulated spectra were generated with a full-width at half maximum set to $1000 \mathrm{~cm}^{-1}$.

Figure S37. Energy level diagram for pDTCz-DPmS in the different solvents.

Cartesian coordinates of pDTCz-DPmS in THF

Element	X Coord	Y Coord	Z Coord
S	0.0000010	0.0001030	4.2336010
0	0.0224710	1.2772260	4.9491880
N	2.9794050	-1.2251740	1.8642430
N	3.0945490	1.1577870	1.9890660
N	4.5966140	-0.0428330	0.6951070
C	1.9299920	-1.2094640	2.6676050
H	1.4976600	-2.1699460	2.9399890
C	1.3996950	-0.0192120	3.1629480
C	2.0437800	1.1588680	2.7911890
H	1.7026630	2.1209580	3.1666050
C	3.5177370	-0.0364830	1.5442090
C	5.3004380	1.1003120	0.2334440
C	5.1304740	2.4580900	0.4846200
H	4.3482150	2.8115870	1.1385480
C	6.0022940	3.3542480	-0.1322570
H	5.8574160	4.4086890	0.0735550
C	7.0364680	2.9518880	-0.9887250
C	7.1874670	1.5832300	-1.2251510
H	7.9740860	1.2195440	-1.8802780
C	6.3318380	0.6691510	-0.6232720
C	6.2667690	-0.7731640	-0.6937490
C	7.0452660	-1.6956950	-1.3898430
H	7.8599410	-1.3353480	-2.0081800
C	6.7736510	-3.0575220	-1.2862010
C	5.7009790	-3.4491930	-0.4650270
H	5.4679430	-4.5053920	-0.3655030
C	4.9089620	-2.5500970	0.2388170
H	4.0952450	-2.8945730	0.8583750
C	5.1999430	-1.1913570	0.1192840
C	7.9868130	3.9438980	-1.6595460
C	7.6720690	5.3933190	-1.2855900
H	6.6624380	5.6825210	-1.5950610

H	7.7652730	5.5640990	-0.2081590
H	8.3775210	6.0611990	-1.7896230
C	7.8716410	3.8030160	-3.1849140
H	6.8524330	4.0205590	-3.5200260
H	8.5522370	4.5030050	-3.6817580
H	8.1277370	2.7931910	-3.5189090

Cartesian coordinates of pDTCz-DPmS in DCM

Element	X Coord	Y Coord	Z Coord
S	0.0000000	0.0000330	4.2290140
0	0.0225340	1.2768860	4.9453340
N	2.9808350	-1.2254980	1.8618250
N	3.0950860	1.1575310	1.9854290
N	4.5986710	-0.0432820	0.6934380
C	1.9308280	-1.2098190	2.6644720
H	1.4985250	-2.1703200	2.9367240
C	1.4000430	-0.0194130	3.1589590
C	2.0437580	1.1587700	2.7868670
H	1.7019140	2.1210260	3.1611260
C	3.5189590	-0.0368240	1.5416640
C	5.3036860	1.0997030	0.2332940
C	5.1340050	2.4575110	0.4847430
H	4.3508060	2.8112280	1.1374430
C	6.0072920	3.3535130	-0.1303600
H	5.8625420	4.4079340	0.0756490
C	7.0426720	2.9509920	-0.9853590
C	7.1933570	1.5823310	-1.2221870
H	7.9807910	1.2185000	-1.8762510
C	6.3362610	0.6684300	-0.6220230
C	6.2705070	-0.7738280	-0.6933290
C	7.0494730	-1.6964130	-1.3889180
H	7.8653030	-1.3361780	-2.0057990
C	6.7766970	-3.0581450	-1.2866710
C	5.7023930	-3.4496520	-0.4674780

H	5.4682870	-4.5057320	-0.3692000
C	4.9099670	-2.5504780	0.2358690
H	4.0950310	-2.8949160	0.8538650
C	5.2021750	-1.1918180	0.1179000
C	7.9945760	3.9428450	-1.6542180
C	7.6800740	5.3922320	-1.2799260
H	6.6710900	5.6822040	-1.5907900
H	7.7716830	5.5623670	-0.2022530
H	8.3867340	6.0599190	-1.7825150
C	7.8816250	3.8028160	-3.1798380
H	6.8630910	4.0213600	-3.5163950
H	8.5634730	4.5026250	-3.6751990
H	8.1375750	2.7929940	-3.5139600

C	9.4351790	3.6336900	-1.2194350
H	10.1318830	4.3324890	-1.6951740
H	9.5430280	3.7284950	-0.1341840
H	9.7343250	2.6196070	-1.5005960
C	7.5933190	-4.1204170	-2.0211310
C	8.2257670	-5.0729360	-0.9952130
H	8.8109830	-5.8447700	-1.5069070
H	8.8935100	-4.5288940	-0.3195460
H	7.4675030	-5.5755180	-0.3876790
C	6.6690830	-4.9162550	-2.9550650
H	7.2404170	-5.6855270	-3.4859150
H	5.8676300	-5.4161270	-2.4032420
H	6.2077280	-4.2585620	-3.6987130
C	8.7135600	-3.5059310	-2.8619480
H	9.2691230	-4.3015230	-3.3678930
H	8.3206690	-2.8338250	-3.6319170
H	9.4236030	-2.9461390	-2.2443980
0	-0.0225340	-1.2768040	4.9453620
N	-2.9808360	1.2255120	1.8618010
N	-3.0950860	-1.1575140	1.9854550
N	-4.5986710	0.0432760	0.6934380
C	-1.9308290	1.2098500	2.6644470
H	-1.4985260	2.1703570	2.9366790
C	-1.4000430	0.0194550	3.1589590
C	-2.0437570	-1.1587360	2.7868920
H	-1.7019120	-2.1209840	3.1611700
C	-3.5189600	0.0368310	1.5416650
C	-5.3036890	-1.0997120	0.2333020
C	-5.1340100	-2.4575190	0.4847580
H	-4.3508130	-2.8112350	1.1374600
C	-6.0072980	-3.3535230	-0.1303400
H	-5.8625500	-4.4079440	0.0756740
C	-7.0426780	-2.9510050	-0.9853420
C	-7.1933590	-1.5823450	-1.2221780
H	-7.9807930	-1.2185160	-1.8762440
C	-6.3362620	-0.6684430	-0.6220180
C	-6.2705060	0.7738140	-0.6933340
C	-7.0494700	1.6963980	-1.3889280
H	-7.8653010	1.3361600	-2.0058080
C	-6.7766910	3.0581300	-1.2866900

C	-5.7023870	3.4496390	-0.4674990
H	-5.4682790	4.5057190	-0.3692270
C	-4.9099620	2.5504680	0.2358540
H	-4.0950250	2.8949070	0.8538480
C	-5.2021740	1.1918080	0.1178920
C	-7.9945840	-3.9428600	-1.6541960
C	-7.6800830	-5.3922460	-1.2798970
H	-6.6711000	-5.6822200	-1.5907610
H	-7.7716910	-5.5623760	-0.2022230
H	-8.3867440	-6.0599340	-1.7824820
C	-7.8816340	-3.8028390	-3.1798160
H	-6.8631010	-4.0213850	-3.5163730
H	-8.5634840	-4.5026500	-3.6751730
H	-8.1375840	-2.7930180	-3.5139430
C	-9.4351850	-3.6337010	-1.2194130
H	-10.1318910	-4.3325010	-1.6951480
H	-9.5430340	-3.7285010	-0.1341600
H	-9.7343300	-2.6196190	-1.5005780
C	-7.5933110	4.1203990	-2.0211550
C	-8.2257390	5.0729370	-0.9952430
H	-8.8109530	5.8447700	-1.5069410
H	-8.8934810	4.5289100	-0.3195620
H	-7.4674640	5.5755190	-0.3877230
C	-6.6690790	4.9162160	-2.9551110
H	-7.2404130	5.6854840	-3.4859670
H	-5.8676170	5.4160920	-2.4033030
H	-6.2077360	4.2585080	-3.6987530
C	-8.7135670	3.5059100	-2.8619510
H	-9.2691200	4.3015000	-3.3679120
H	-8.3206910	2.8337800	-3.6319070

Cartesian coordinates of pDTCz-DPmS in DMF

Element	X Coord	Y Coord	Z Coord
S	0.0000020	0.0001400	4.2037210
0	0.0218390	1.2759860	4.9229360
N	2.9932990	-1.2270170	1.8545920
N	3.0958230	1.1571840	1.9614040

N	4.6111740	-0.0460740	0.6853550
C	1.9395690	-1.2109450	2.6526170
H	1.5105180	-2.1715200	2.9289910
C	1.4021410	-0.0193290	3.1368670
C	2.0412550	1.1595590	2.7587750
H	1.6930690	2.1231590	3.1233690
C	3.5268470	-0.0383140	1.5285150
C	5.3236900	1.0953980	0.2336390
C	5.1578930	2.4532650	0.4883580
H	4.3702800	2.8085860	1.1349520
C	6.0403480	3.3476080	-0.1162960
H	5.8982270	4.4019280	0.0920970
C	7.0811900	2.9434420	-0.9641750
C	7.2278070	1.5748550	-1.2048300
H	8.0189260	1.2096960	-1.8536860
C	6.3616050	0.6626690	-0.6147620
C	6.2902430	-0.7791080	-0.6915490
C	7.0697240	-1.7025460	-1.3858400
H	7.8917370	-1.3436290	-1.9952560
C	6.7887310	-3.0633770	-1.2922540
C	5.7057770	-3.4530250	-0.4833010
H	5.4644520	-4.5081430	-0.3925770
C	4.9131570	-2.5529180	0.2188930
H	4.0918370	-2.8963820	0.8290200
C	5.2139250	-1.1951340	0.1103940
C	8.0430220	3.9334920	-1.6214550
C	7.7326170	5.3827900	-1.2433950
H	6.7276010	5.6791650	-1.5610040
H	7.8163090	5.5479050	-0.1642850
H	8.4467390	6.0488130	-1.7375360
C	7.9412750	3.8001830	-3.1484970
H	6.9266530	4.0261340	-3.4921060
H	8.6307910	4.4984000	-3.6353410
H	8.1945690	2.7903710	-3.4846800

C	9.4787520	3.6153600	-1.1770070
H	10.1820630	4.3130010	-1.6445640
H	9.5788610	3.7055640	-0.0905490
H	9.7752500	2.6011230	-1.4604460
C	7.6044820	-4.1264760	-2.0265420
C	8.2207260	-5.0908260	-1.0017500
H	8.8050840	-5.8628130	-1.5141100
H	8.8865870	-4.5564720	-0.3164430
H	7.4535600	-5.5928040	-0.4049320
C	6.6827100	-4.9092550	-2.9739430
H	7.2532450	-5.6794680	-3.5042260
H	5.8725070	-5.4063910	-2.4324820
H	6.2336830	-4.2433770	-3.7179410
C	8.7366340	-3.5143230	-2.8529690
H	9.2912440	-4.3107310	-3.3586450
H	8.3556910	-2.8345990	-3.6222350
H	9.4446360	-2.9631690	-2.2253810
O	-0.0218360	-1.2756640	4.9230110
N	-2.9933100	1.2271550	1.8545360
N	-3.0958070	-1.1570420	1.9614590
N	-4.6111720	0.0461350	0.6853550
C	-1.9395790	1.2111320	2.6525620
H	-1.5105380	2.1717240	2.9288900
C	-1.4021380	0.0195440	3.1368670
C	-2.0412400	-1.1593670	2.7588300
H	-1.6930430	-2.1229470	3.1234690
C	-3.5268440	0.0384320	1.5285140
C	-5.3236530	-1.0953750	0.2336800
C	-5.1578110	-2.4532270	0.4884470
H	-4.3701860	-2.8084990	1.1350540
C	-6.0402360	-3.3476210	-0.1161750
H	-5.8980790	-4.4019290	0.0922540
C	-7.0810920	-2.9435190	-0.9640680
C	-7.2277540	-1.5749450	-1.2047710
H	-8.0188860	-1.2098340	-1.8536390
C	-6.3615820	-0.6627090	-0.6147350
C	-6.2902660	0.7790670	-0.6915730
C	-7.0697780	1.7024550	-1.3858960
H	-7.8917790	1.3434890	-1.9952990
C	-6.7888300	3.0632980	-1.2923590

C	-5.7058890	3.4530100	-0.4834190
H	-5.4645990	4.5081400	-0.3927310
C	-4.9132380	2.5529540	0.2188050
H	-4.0919290	2.8964680	0.8289190
C	-5.2139600	1.1951560	0.1103530
C	-8.0428920	-3.9336230	-1.6213120
C	-7.7324390	-5.3828980	-1.2432010
H	-6.7274130	-5.6792510	-1.5608000
H	-7.8161240	-5.5479780	-0.1640850
H	-8.4465380	-6.0489620	-1.7373180
C	-7.9411510	-3.8003650	-3.1483590
H	-6.9265220	-4.0262940	-3.4919610
H	-8.6306440	-4.4986230	-3.6351780
H	-8.1944800	-2.7905740	-3.4845770
C	-9.4786310	-3.6155240	-1.1768740
H	-10.1819200	-4.3132040	-1.6444050
H	-9.5787360	-3.7056930	-0.0904130
H	-9.7751640	-2.6013070	-1.4603480
C	-7.6046170	4.1263440	-2.0266840
C	-8.2208840	5.0907150	-1.0019270
H	-8.8052680	5.8626640	-1.5143140
H	-8.8867270	4.5563690	-0.3165970
H	-7.4537310	5.5927400	-0.4051320
C	-6.6828720	4.9091130	-2.9741200
H	-7.2534330	5.6792870	-3.5044310
H	-5.8726830	5.4062970	-2.4326830
H	-6.2338280	4.2432200	-3.7180930
C	-8.7367540	3.5141240	-2.8530820
H	-9.2913870	4.3104960	-3.3587910
H	-8.3557940	2.8343780	-3.6223200
H	-9.4447380	2.9629770	-2.2254690

Cartesian coordinates of pDTCz-DPmS in MeCN

Element	X Coord	Y Coord	Z Coord
S	0.0000020	0.0001410	4.2040940
0	0.0218770	1.2760010	4.9232680
N	2.9930120	-1.2269980	1.8545560

N	3.0958960	1.1571670	1.9618780
N	4.6109840	-0.0460300	0.6854660
C	1.9393410	-1.2109370	2.6526560
H	1.5101630	-2.1715100	2.9288540
C	1.4021060	-0.0193470	3.1371880
C	2.0413760	1.1595200	2.7593070
H	1.6933490	2.1230890	3.1241410
C	3.5267250	-0.0383010	1.5287010
C	5.3233740	1.0954760	0.2336250
C	5.1574870	2.4533420	0.4882750
H	4.3699370	2.8086290	1.1349620
C	6.0397830	3.3477230	-0.1165490
H	5.8975990	4.4020450	0.0917940
C	7.0805550	2.9435960	-0.9645280
C	7.2272630	1.5750080	-1.2051080
H	8.0183350	1.2098780	-1.8540390
C	6.3612170	0.6627830	-0.6148770
C	6.2899650	-0.7790030	-0.6915730
C	7.0694700	-1.7024190	-1.3858600
H	7.8913920	-1.3434710	-1.9953810
C	6.7886320	-3.0632700	-1.2921280
C	5.7058090	-3.4529620	-0.4830260
H	5.4646190	-4.5081000	-0.3921740
C	4.9131600	-2.5528780	0.2191610
H	4.0919350	-2.8963680	0.8294000
C	5.2137660	-1.1950740	0.1105000
C	8.0422140	3.9336870	-1.6219970
C	7.7317180	5.3829840	-1.2440070
H	6.7266330	5.6792370	-1.5615120
H	7.8155310	5.5481880	-0.1649190
H	8.4457090	6.0490430	-1.7382870
C	7.9402930	3.8002600	-3.1490160
H	6.9256050	4.0260730	-3.4925170
H	8.6296770	4.4985130	-3.6359990
H	8.1936490	2.7904490	-3.4851580

C	9.4780270	3.6157280	-1.1776970
H	10.1812200	4.3133970	-1.6453890
H	9.5782560	3.7060150	-0.0912580
H	9.7745860	2.6014970	-1.4610920
C	7.6044350	-4.1263470	-2.0263890
C	8.2209210	-5.0904950	-1.0015550
H	8.8053150	-5.8624760	-1.5138830
H	8.8867880	-4.5559740	-0.3163870
H	7.4538840	-5.5924880	-0.4045840
C	6.6826620	-4.9093510	-2.9736010
H	7.2532370	-5.6795430	-3.5038730
H	5.8725890	-5.4065430	-2.4319960
H	6.2334500	-4.2436120	-3.7176110
C	8.7364150	-3.5141410	-2.8530140
H	9.2910670	-4.3105310	-3.3586730
H	8.3552940	-2.8345470	-3.6223070
H	9.4444210	-2.9628360	-2.2255660
O	-0.0218730	-1.2756770	4.9233410
N	-2.9930220	1.2271420	1.8545010
N	-3.0958800	-1.1570190	1.9619310
N	-4.6109810	0.0460960	0.6854660
C	-1.9393500	1.2111280	2.6526010
H	-1.5101820	2.1717180	2.9287560
C	-1.4021030	0.0195660	3.1371880
C	-2.0413610	-1.1593250	2.7593610
H	-1.6933230	-2.1228730	3.1242380
C	-3.5267220	0.0384240	1.5287000
C	-5.3233340	-1.0954500	0.2336670
C	-5.1573980	-2.4533000	0.4883660
H	-4.3698350	-2.8085360	1.1350660
C	-6.0396620	-3.3477340	-0.1164260
H	-5.8974400	-4.4020440	0.0919540
C	-7.0804490	-2.9436740	-0.9644190
C	-7.2272070	-1.5751000	-1.2050470
H	-8.0182910	-1.2100210	-1.8539910
C	-6.3611920	-0.6628230	-0.6148490
C	-6.2899890	0.7789620	-0.6915980
C	-7.0695280	1.7023260	-1.3859180
H	-7.8914380	1.3433260	-1.9954240
C	-6.7887380	3.0631900	-1.2922340

C	-5.7059290	3.4529490	-0.4831470
H	-5.4647770	4.5080990	-0.3923320
C	-4.9132460	2.5529190	0.2190710
H	-4.0920330	2.8964600	0.8292960
C	-5.2138030	1.1950990	0.1104590
C	-8.0420740	-3.9338230	-1.6218500
C	-7.7315250	-5.3830960	-1.2438080
H	-6.7264300	-5.6793240	-1.5613040
H	-7.8153320	-5.5482630	-0.1647150
H	-8.4454940	-6.0491980	-1.7380630
C	-7.9401600	-3.8004480	-3.1488750
H	-6.9254650	-4.0262360	-3.4923680
H	-8.6295190	-4.4987430	-3.6358310
H	-8.1935540	-2.7906580	-3.4850520
C	-9.4778980	-3.6158990	-1.1775600
H	-10.1810670	-4.3136110	-1.6452250
H	-9.5781220	-3.7061500	-0.0911180
H	-9.7744930	-2.6016890	-1.4609910
C	-7.6045800	4.1262110	-2.0265340
C	-8.2210930	5.0903790	-1.0017350
H	-8.8055160	5.8623210	-1.5140920
H	-8.8869400	4.5558630	-0.3165430
H	-7.4540710	5.5924220	-0.4047870
C	-6.6828370	4.9092090	-2.9737810
H	-7.2534400	5.6793590	-3.5040820
H	-5.8727790	5.4064490	-2.4321990
H	-6.2336050	4.2434550	-3.7177660
C	-8.7365430	3.5139350	-2.8531300
H	-9.2912210	4.3102870	-3.3588210
H	-8.3554020	2.8343210	-3.6223960
H	-9.4445300	2.9626340	-2.2256570

References

(1) Etherington, M. K.; Kukhta, N. A.; Higginbotham, H. F.; Danos, A.; Bismillah, A. N.; Graves, D. R.; McGonigal, P. R.; Haase, N.; Morherr, A.; Batsanov, A. S.; Pflumm, C.; Bhalla, V.; Bryce, M. R.; Monkman, A. P. Persistent Dimer Emission in Thermally Activated Delayed Fluorescence Materials. J. Phys. Chem. C 2019, 123 (17), 11109-11117.
https://doi.org/10.1021/acs.jpcc.9b01458.
(2) Wong, M. Y.; Krotkus, S.; Copley, G.; Li, W.; Murawski, C.; Hall, D.; Hedley, G. J.; Jaricot, M.; Cordes, D. B.; Slawin, A. M. Z.; Olivier, Y.; Beljonne, D.; Muccioli, L.; Moral, M.; Gather, M. C.; Samuel, I. D. W.; Zysman-colman, E. Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 33360-33372. https://doi.org/10.1021/acsami.8b11136.
(3) Hu, C.; Chen, Y. Chemoselective and Fast Decarboxylative Allylation by Photoredox Catalysis under Mild Conditions. Org. Chem. Front. 2015, 2, 1352-1355.
https://doi.org/10.1039/c5qo00187k.
(4) Vasu, D.; Fuentes de Arriba, A. L.; Leitch, J. A.; De Gombert, A.; Dixon, D. J. Primary α Tertiary Amine Synthesis via α-C-H Functionalization. Chem. Sci. 2019, 10 (11), 3401-3407. https://doi.org/10.1039/c8sc05164j.
(5) Rawner, T.; Lutsker, E.; Kaiser, C. A.; Reiser, O. The Different Faces of Photoredox Catalysts: Visible-Light-Mediated Atom Transfer Radical Addition (ATRA) Reactions of Perfluoroalkyl Iodides with Styrenes and Phenylacetylenes. ACS Catal. 2018, 8 (5), 3950-3956. https://doi.org/10.1021/acscatal.8b00847.
(6) Wang, C.; Guo, M.; Qi, R.; Shang, Q.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Visible-Light-Driven, Copper-Catalyzed Decarboxylative C(Sp3)-H Alkylation of Glycine and Peptides. Angew. Chemie Int. Ed. 2018, 57 (48), 15841-15846. https://doi.org/10.1002/anie. 201809400.
(7) Peterson, A.; Kaasik, M.; Metsala, A.; Järving, I.; Adamson, J.; Kanger, T. Tunable Chiral Triazole-Based Halogen Bond Donors: Assessment of Donor Strength in Solution with NitrogenContaining Acceptors. RSC Adv. 2019, 9 (21), 11718-11721. https://doi.org/10.1039/c9ra01692a.
(8) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C. M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. Practical Ni-Catalyzed Aryl-Alkyl Cross-Coupling of Secondary Redox-Active Esters. J. Am. Chem. Soc. 2016, 138 (7), 2174-2177. https://doi.org/10.1021/jacs.6b00250.
(9) Schneider, L. M.; Schmiedel, V. M.; Pecchioli, T.; Lentz, D.; Merten, C.; Christmann, M. Asymmetric Synthesis of Carbocyclic Propellanes. Org. Lett. 2017, 19 (9), 2310-2313. https://doi.org/10.1021/acs.orglett.7b00836.
(10) Katakam, N. K.; Seifert, C. W.; D’Auria, J.; Li, G. Efficient Synthesis of Methyl (S)-4-(1-Methylpyrrolidin-2-YL)-3-Oxobutanoate as the Key Intermediate for Tropane Alkaloid Biosynthesis with Optically Acitve Form. Heterocycles 2019, 99 (1), 604-613. https://doi.org/10.3987/COM-18-S(F)4.
(11) Demas, J. N.; Crosby, G. A. The Measurement of Photoluminescence Quantum Yields. A Review. J. Phys 1971, 75, 991-1024.
(12) Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD Detector. Phys. Chem. Chem. Phys. 2009, 11 (42), 9850-9860. https://doi.org/10.1039/b912178a.
(13) Pavlishchuk, V. V.; Addison, A. W. Conversion Constants for Redox Potentials Measured versus Different Reference Electrodes in Acetonitrile Solutions at 25° C. Inorganica Chim. Acta 2000, 298 (1), 97-102. https://doi.org/10.1016/S0020-1693(99)00407-7.
(14) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96 (2), 877-910. https://doi.org/10.1021/cr940053x.
(15) Frisch, M. J.; W, T. G.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Peterssom, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;

Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01. Gaussian Inc: Wallingford CT 2019.
(16) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110 (13), 6158-6170.
https://doi.org/10.1063/1.478522.
(17) Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90 (2), 1007-1023. https://doi.org/10.1063/1.456153.
(18) O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29 (5), 839-845. https://doi.org/10.1002/jcc.20823.
(19) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33-38.
(20) Edward, J.; Ercal, F.; Walters, F. G.; Pottinger, H. J. AN EFFICIENT LIBRARY FOR PARALLEL RAY TRACING AND ANIMATION, University of Missouri-Rolla, 1998.
(21) Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90-95.
(22) Mansencal, T.; Mauderer, M.; Parsons, M.; Shaw, N.; Wheatley, K.; Cooper, S.; Vandenberg, J. D.; Canavan, L.; Crowson, K.; Lev, O.; Leinweber, K.; Sharma, S.; Sobotka, T. J.; Moritz, D.; Pppp, M.; Rane, C.; Eswaramoorthy, P.; Mertic, J.; Pearlstine, B.; Leonhardt, M.; Niemitalo, O.; Szymanski, M.; Schambach, M.; Huang, S.; Wei, M.; Joywardhan, N.; Wagih, O.; Redman, P.; Goldstone, J.; Hill, S. Colour 0.3.16. 2020. https://doi.org/10.5281/ZENODO. 3757045.
(23) Bayer, M. https://www.makotemplates.org, (accessed May 2020).
(24) Community, K. https://weasyprint.org, (accessed May 2020).
(25) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; Vijaykumar, A.; Bardelli, A. Pietro; Rothberg, A.; Hilboll, A.; Kloeckner, A.; Scopatz, A.; Lee, A.; Rokem, A.; Woods, C. N.; Fulton, C.; Masson, C.; Häggström, C.; Fitzgerald, C.; Nicholson, D. A.; Hagen, D. R.; Pasechnik, D. V.; Olivetti, E.; Martin, E.; Wieser, E.; Silva, F.; Lenders, F.; Wilhelm, F.; Young, G.; Price, G. A.; Ingold, G. L.; Allen, G. E.; Lee, G. R.; Audren, H.; Probst, I.; Dietrich, J. P.; Silterra, J.; Webber, J. T.; Slavič, J.; Nothman, J.; Buchner, J.; Kulick, J.; Schönberger, J. L.; de Miranda Cardoso, J. V.; Reimer, J.; Harrington, J.; Rodríguez, J. L. C.; Nunez-Iglesias, J.; Kuczynski, J.; Tritz, K.; Thoma, M.; Newville, M.; Kümmerer, M.; Bolingbroke, M.; Tartre, M.; Pak, M.; Smith, N. J.; Nowaczyk, N.; Shebanov, N.; Pavlyk, O.; Brodtkorb, P. A.; Lee, P.; McGibbon, R. T.; Feldbauer, R.; Lewis, S.; Tygier, S.; Sievert, S.; Vigna, S.; Peterson, S.; More, S.; Pudlik, T.; Oshima, T.; Pingel, T. J.; Robitaille, T. P.; Spura, T.; Jones, T. R.; Cera, T.; Leslie, T.; Zito, T.; Krauss, T.; Upadhyay, U.; Halchenko, Y. O.; VázquezBaeza, Y. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17 (3), 261-272. https://doi.org/10.1038/s41592-019-0686-2.
(26) O'Boyle, N. M.; Morley, C.; Hutchison, G. R. Pybel: A Python Wrapper for the OpenBabel Cheminformatics Toolkit. Chem. Cent. J. 2008, 2:5. https://doi.org/10.1186/1752-153X-2-5.
(27) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3 (10), 239-245. https://doi.org/10.1186/1758-2946-3-33.

Dos Santos, P. L.; Chen, D.; Rajamalli, P.; Matulaitis, T.; Cordes, D. B.; Slawin, A. M. Z.; Jacquemin, D.; Zysman-Colman, E.; Samuel, I. D. W. Use of Pyrimidine and Pyrazine Bridges as a Design Strategy to Improve the Performance of Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. ACS Appl. Mater. Interfaces 2019, 11 (48), 45171-45179. https://doi.org/10.1021/acsami.9b16952.
(29) Galicia, M.; González, F. J. Electrochemical Oxidation of Tetrabutylammonium Salts of Aliphatic

Carboxylic Acids in Acetonitrile. J. Electrochem. Soc. 2002, 149 (3), D46-D50. https://doi.org/10.1149/1.1450616.
(30) Hossain, A.; Engl, S.; Lutsker, E.; Reiser, O. Visible-Light-Mediated Regioselective Chlorosulfonylation of Alkenes and Alkynes: Introducing the $\mathrm{Cu}(\mathrm{II})$ Complex $[\mathrm{Cu}(\mathrm{Dap}) \mathrm{Cl} 2]$ to Photochemical ATRA Reactions. ACS Catal. 2019, 9 (2), 1103-1109. https://doi.org/10.1021/acscatal.8b04188.
(31) Nakajima, M.; Fava, E.; Loescher, S.; Jiang, Z.; Rueping, M. Photoredox-Catalyzed Reductive Coupling of Aldehydes, Ketones, and Imines with Visible Light. Angew. Chemie Int. Ed. 2015, 54 (30), 8828-8832. https://doi.org/10.1002/anie. 201501556.
(32) Speckmeier, E.; Fischer, T. G.; Zeitler, K. A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor - Acceptor Cyanoarenes. J. Am. Chem. Soc. 2018, 140, 1535315365. https://doi.org/10.1021/jacs.8b08933.
(33) Belger, C.; Neisius, N. M.; Plietker, B. A Selective Ru-Catalyzed Semireduction of Alkynes to Z Olefins under Transfer-Hydrogenation Conditions. Chem. - A Eur. J. 2010, 16 (40), 1221412220. https://doi.org/10.1002/chem. 201001143.
(34) Goti, A.; Cicchi, S.; Cacciarini, M.; Cardona, F.; Fedi, V.; Brandi, A. Straightforward Access to Enantiomerically Pure, Highly Functionalized Pyrrolizidines by Cycloaddition of Maleic Acid Esters to Pyrroline N-Oxides Derived from Tartaric, Malic and Aspartic Acids - Synthesis of (-)Hastanecine, 7-Epi-Croalbinecine And (-)-. European J. Org. Chem. 2000, No. 21, 3633-3645. https://doi.org/10.1002/1099-0690(200011)2000:21<3633::aid-ejoc3633>3.3.co;2-w.
(35) Zuo, Z.; Macmillan, D. W. C. Decarboxylative Arylation of α-Amino Acids via Photoredox Catalysis: A One-Step Conversion of Biomass to Drug Pharmacophore. J. Am. Chem. Soc. 2014, 136 (14), 5257-5260. https://doi.org/10.1021/ja501621q.

[^0]: ${ }^{\text {a }}$ Reaction conditions as stated in the procedure above.

[^1]: ${ }^{\text {a }}$ Reaction conditions as stated in the procedure above.

