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Human cancer arises from a population of cells that have acquired a wide range of genetic alterations,
most of which are targets of therapeutic treatments or are used as prognostic factors for patient’s risk
stratification. Among these, copy number alterations (CNAs) are quite frequent. Currently, several molec-
ular biology technologies, such as microarrays, NGS and single-cell approaches are used to define the
genomic profile of tumor samples. Output data need to be analyzed with bioinformatic approaches
and particularly by employing computational algorithms.
Molecular biology tools estimate the baseline region by comparing either the mean probe signals, or

the number of reads to the reference genome. However, when tumors display complex karyotypes, this
type of approach could fail the baseline region estimation and consequently cause errors in the CNAs call.
To overcome this issue, we designed an R-package, BoBafit, able to check and, eventually, to adjust the
baseline region, according to both the tumor-specific alterations’ context and the sample-specific clus-
tered genomic lesions.
Several databases have been chosen to set up and validate the designed package, thus demonstrating

the potential of BoBafit to adjust copy number (CN) data from different tumors and analysis techniques.
Relevantly, the analysis highlighted that up to 25% of samples need a baseline region adjustment and a

redefinition of CNAs calls, thus causing a change in the prognostic risk classification of the patients.
We support the implementation of BoBafitwithin CN analysis bioinformatics pipelines to ensure a cor-

rect patient’s stratification in risk categories, regardless of the tumor type.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Copy number alterations are among the most common features
of human cancer genome and confer evolutionary advantage to the
tumor cells, as the acquisition and/or the loss of specific locus(i)
can lead to gene expression changes. In particular, since the
activation of oncogenes and the inhibition of tumor suppressor
genes can be a consequence of CNAs, these might promote both
cell proliferation and resistance to apoptosis and to therapies [1-3].

Overall, tumor clones can have highly different genomic profiles
(intra-tumor heterogeneity), with different specific CNAs prevail-
ing in different tumors (inter-tumor heterogeneity): since the pres-
ence of specific CNAs or of specific CNAs profiles characterizes
tumors’ profile, an accurate description of the CNAs landscape pro-
vides important information for the disease staging [4-9]. More-
over, both deletions and/or amplifications of either the whole or
part of chromosome arm can be used as prognostic factors in the
clinical practice [10,11], defining subgroups of patients with differ-
ent disease outcomes. A proper patients’ stratification in risk cate-
gories allows the choice of the right and possibly personalized
therapy for the patients [12].
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Nowadays, two main molecular technologies allow the detec-
tion of genome-wide CNAs, i.e., microarrays and Next Generation
Sequencing (NGS). By microarray technology (e.g. SNPs array),
the CN changes are evaluated by measuring the mean intensities
of the probes that bind to the genome and then by comparing
the CN changes to a reference genome, removing all copy number
variations (CNVs), common in the healthy population [13]. By NGS,
after comparing the reads to the reference genome, the CN profiles
are detected either by evaluating the read depth or by measuring
the insert size deviation of the paired reads [14]. The output data
of both methodologies need to be analyzed by specific computa-
tional algorithms, which estimate two parameters: the logR, i.e.,
the log2 of probes’ intensities, and the B-allele frequency (BAF),
i.e., the relative frequency of an allele; the two parameters are
interdependent, and both define a distinctive pattern of signals
describing the baseline regions. However, when these specific
computational algorithms use the basic ‘‘median-centering” nor-
malization method to estimate the baseline region, assuming that
the average value corresponds to the theoretical ”2”, they might
erroneously estimate the regions with diploid CN [14]. This might
happen particularly in samples with a complex CN profile, either
carrying several and/or large chromosomal aberrations, or present-
ing very fragmented profile. The incorrect setting of the baseline
region leads to errors in the recognition of the sample’s amplifica-
tions and deletions and, therefore, to a wrong estimation of the
overall sample’s aberrations profile.

Several bioinformatic tools have been designed to control this
bias, mainly by estimating the tumor cells’ purity and ploidy, thus
leading to an increase of the sensitivity in the identification of CNAs
[15,16], or by excluding healthy cells’ alterations, as detected in
germline samples, in order to get a better resolution of the signal
[17]. However, these methods work mainly on raw data, which are
not always available and require large amount of computational
power and memory, particularly when large cohorts of samples need
to be analyzed. To overcome this aspect, a new tool (Mecan4CNA
[18]) acts directly on the log2ratio signal, by fixing the baseline
region according to the deviation from the normal cell signal, assum-
ing that the tumor cell fraction is at least 50%. Nevertheless, this
approach might be limited by cases with very low tumor DNA, such
as samples with few tumor cells or circulating free DNA.

Here we present a new R package, aimed at checking the esti-
mated CN value of each chromosome and at recalculating the cor-
rect baseline region taking advantage from the patterns of both
sample-specific and tumor-specific genomic alterations, thanks to
the ‘‘clustering” and the ‘‘starting chromosome list” strategies,
respectively. The package has been named ‘‘BoBafit” and contains
DRrefit as main function, which can adjust the wrong baseline
regions throughout a clustering method and the ‘‘chromosome
lists”, which include chromosomes that, in the analyzed tumor
and sample, are commonly identified with clonal diploid CN (see
section 2.3.1). The input data for the package are already computed
segmentation files, deriving from both microarray and NGS plat-
forms. Notably, BoBafit can adjust the baseline region of CN pro-
files coming from any type of tumors with complex karyotype
due to high levels of CNAs; in the present study, it has been applied
on 5 different tumors with high genomic complexity to evaluate
and confirm the robustness of the method, highlighting the impor-
tance of the baseline region adjustment.
2. Materials and methods

2.1. Datasets

The following datasets have been used for the purposes of the
present paper:
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� M-M-BO dataset: this dataset includes SNPs array data, as
obtained from a cohort of 595 MM patients, analyzed at the
‘‘Seràgnoli” Institute of Hematology of Bologna, after informed
consent. SNPs array data have been analyzed to obtain the
whole genome CNAs profiles [19], which have been used to
develop the BoBafit package.

� CoMMpass dataset: this dataset includes 1044 MM samples,
whose CNAs profiles were defined by NGS (Whole Exome
Sequencing, WES). The dataset is part of a MMRF (Multiple
Myeloma Research Foundation) study (NCT145429) [20], enrol-
ling patients from Canada, Italy, Spain and the United States.
CNAs profiles have been used after MMRF authorization and
have been used to confirm the performances of BoBafit package
on data produced by a different technology, but in the same
clinical context, as compared to that employed to develop the
BoBafit package.

� TCGA datasets: we downloaded from Cancer Genome Atlas Pro-
gram [21] project 4 CN segment datasets of 4 different tumors
with high CNAs load: breast cancer (TCGA-BRCA, 2133 samples,
ovarian adenocarcinoma (TCGA-OV, 601 samples), lung adeno-
carcinoma (TCGA-LUG, 554 samples) and colon adenocarci-
noma (TCGA-COAD, 504 samples). All CNAs profiles were
defined by SNPs array (Affymetrix Genome-Wide 6.0). CNAs
profiles are freely downloadable and have been used to confirm
the performances of BoBafit package on data produced by the
same technology, but in a different clinical context as compared
to that employed to develop the BoBafit package.

2.2. SNPs array experiments

SNPs array experiments have been performed on bone marrow
CD138 + enriched cells fractions, as collected from newly diag-
nosed MM patients; Affymetrix Cytoscan HD or GenomeWide6.0
have been used to obtain the SNPs array profiles, as elsewhere
detailed [19]. Output CEL files have been processed by a pipeline
including Rawcopy R package [13] and ASCAT [16] algorithms to
compute sample’s log2 ratio segments corrected for purity. The
resulting log2 ratio signals were converted into CN values.

2.3. BoBafit implementation

The R package BoBafit includes three functions, which overall
allow the refit and the recalibration of tumor samples’ CN profile.
All functions operate on segmentation BED files, derived either
by NGS or by microarray data, which need to include the following
five basic information related to the samples: sample ID, chromo-
some arm to which the evaluated segments belong, segment’s
start, segment’s end, and CN value.

The principal refitting function is named DRrefit: throughout a
tumor and sample-specific approach it adjusts the CN values. In
addition, BoBafit contains two secondary functions, ComputeNor-
malChromosome and PlotChrCluster. The first one generates the
‘‘starting chromosome list” (S-CL), important input of DRrefit and
cornerstone of the tumor-specific strategy (Fig. 1). The second
one allows the chromosomes clusters’ visualization in a plot, in
absence of recalibration; PlotChrCluster might also potentially
highlight the presence of sub-clones in the sample.

2.3.1. The DRrefit function
To create a tumor and sample-specific method aimed at check-

ing and adjusting the tumor CN profile, we developed the function
DRrefit. It uses two inputs: (1) the BED file, including sample’s
genomic segments obtained from preceding genomic experiments
and (2) the S-CL. This latter is a tumor-specific list of chromosomal
arms considered ‘‘normal”, as being commonly not affected by
structural CNAs (e.g. ‘‘losses” and ‘‘gains” of single chromosomes
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or chromosome segments) in that specific tumor. The S-CL is used
as tumor-specific reference for the possible re-adjustment of the
baseline region. Since the S-CL might change according to the
tumor type and/or subtypes, DRrefit allows accurate and specific
control of the CN profiles call, even when obtained from different
molecular platforms. To define S-CL, a specific function has been
designed, named ComputeNormalChromosome, which is included
in the BoBafit package (see below).

The algorithm performs the following steps for each sample
(Fig. 1):

1. Calculation of the CN value for each arm: the algorithm selects all
segments of the same chromosomal arm, then calculates the
global arm CN, as the mean of the segments’ CN weighted on
the segments’ length. The weighted mean is calculated for all
chromosomal arms, excluding the X and Y chromosomes as
they are not always diploid and therefore not helpful to the
analysis. We have chosen to perform this simplification step,
as it allows to reduce the CN segments profile to a simpler data
structure, which results easier and faster to be computationally
handled, in particular for the following clustering step. Addi-
tionally, providing most CN events happen either on whole
chromosomes or on whole chromosomes’ arms [1], this
weighted mean approach consistently approximates the global
chromosomal arm’s CN.

2. Clustering of chromosomal arms: in order to cluster the chromo-
somal arms according to their similarities in terms of CN value,
DRrefit takes advantage of NbClust [22], an R package that
defines the best number of clusters resuming the overall chro-
mosome distribution, according to the selected clustering
method (e.g., either ward.D2, or complete, or average clustering
3720
methods). According to this clustering process, two possible
outcomes can be obtained: either a reference list refinement
or no reference list change.

3. Comparison to the S-CL: (a) The clustering process succeeds, and
the clusters are compared to S-CL. The cluster that best matches
with S-CL (i.e. the one that has the highest number of chromo-
somal arms in common with S-CL, Fig. 1), is chosen as the ‘‘win-
ner cluster” and it becomes the ‘‘final chromosome list” (F-CL).
This step defines the ‘‘sample-specific refinement” (Fig. 1) of the
S-CL, taking into account the intra-tumor heterogeneity phe-
nomenon, as the ‘‘winner cluster” includes the baseline and clo-
nal chromosomal arms of the analyzed sample. This is shown by
the JABBA plot (obtained by the PlotChrCluster function, see sec-
tion 2.3.3), included in Fig. 1. The plot also shows the correspon-
dence between clusters and the different clonal or sub-clonal
CN states. (b) Due to the failure of some statistical indices used
by NbClust, see the vignette of the package [22], for a small pro-
portion of samples the chromosome clustering process fails. In
this case, the sample will not present clusters and the
sample-specific refinement will not be performed. As a conse-
quence, the S-CL directly becomes the F-CL. In these rather
infrequent situations (about 6.8% of samples, depending on seg-
mentation quality) the baseline region adjustment is only
tumor-specific, and the report of the sample gains a ‘‘failed clus-
tering” label.

4. Definition of a correction factor: From F-CL, a correction factor
(CR) is calculated. The CR highlights the differences between
the baseline region assessment before and after DRrefit
calculation and corresponds to the difference between 2 (the
theoretical diploid value) and the median CN value of F-CL
(Fig. 1).
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5. Samples correction: all segments’ CN are corrected for the CR,
moving the CN profile to the most likely CN state of that specific
sample. The resulting CN profile is shown both in the CN profile
plot (Fig. 1) and in the two data frames outputted by DRrefit,
described in the package vignette [23]. The function returns
either one of two possible plots, according to the effective repo-
sitioning of the samples’ CN profiles and its CR absolute value:
(1) the ‘‘CR > 0.1” plot, with either green or red colored seg-
ments, highlighting segments’ distance (Fig. 2 B and C); (2)
the ‘‘CR � 0.1” plot (Fig. 2 A), with overlapping segments.

6. Class definition: Based on the CR value, three class of sample are
defined:
� no changes (CR � 0.1): the new segments overlap the old

ones and the CN remains the same, or undergoes a minimal
change that doesn’t alter significantly the baseline region
(Fig. 2 A);

� recalibrated (0.1 < CR � 0.5): the new segments positions
are different from the old ones, even though the differences
between the new and the old CN are not as much significant
to impact the overall CN profile (Fig. 2 B);

� refitted (CR > 0.5): the new segments positions are different
from the old ones and the CN profile markedly changes, as
compared to the original one (Fig. 2 C).

2.3.2. The ComputeNormalChromosome function
ComputeNormalChromosome is a secondary function of the

BoBafit package and can be used to define the S-CL. The input
BED file consists in a cohort of samples of the same tumor type.
As in DRrefit, the first step of this function calculates the global
arms’ CN, as the mean of the segments’ CN weighted on the seg-
ments’ length.

Then the function computes the frequency of alteration of each
chromosomal arm among the whole cohort of samples. Only the
chromosomal arms which present an alteration frequency below
a specific threshold (tolerance value) are selected to create the list
of normal chromosomes (S-CL). Since the input consists in samples
of the same tumor type, this approach is defined ‘‘tumor specific
calibration”, and takes into consideration the phenomenon of
inter-tumor heterogeneity.

ComputeNormalChromosome allows to set the tolerance value
(expressed as percentage). The tolerance values can range from
5% (stringent analysis) to 20–25% (permissive analysis). The mini-
mum and maximum CN thresholds to define an alteration in each
sample can be set according to user requirements.

Finally, the function draws a histogram, showing the alteration
rate of chromosomes included in the S-CL (blue bars) (Fig. 3) and
stores the output S-CL in a vector, ready to be used as DRrefit’s
input (Figure 1).
2.3.3. The PlotChrCluster function and the JABBA plot
PlotChrCluster is another secondary function of the BoBafit

package, which can be used to visualize the sample’s CN clusters
with a specific type of plot (called ‘‘JABBA plot”), which allows to
have a look to the DRrefit process and, additionally, can help the
interpretation of clonal and sub-clonal CN states in the tumor sam-
ple, in a simple and intuitive way.

This function repeats the two initial steps described in the DRre-
fit (i.e. 1: ‘‘Calculating CN value for each arm” and 2: ‘‘Clustering of
chromosomal arms”) (Fig. 1). Afterwards, it creates a visual repre-
sentation of the clustered chromosomal arms in the JABBA plot.
The sample’s clusters are pictured as ellipses, where the area cor-
responds to the cluster confidence interval (Figure 4).

Unlike the main function of the package, PlotChrCluster does not
modify the segments’ CN, but just explore the data and visualize
the quality of the clustering procedure.
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2.4. BoBafit package settings

The CN thresholds, used as parameters for ComputeNormalChro-
mosome function, were set at 2.40 and 1.60 for single copy gain and
single copy loss, respectively.

For each dataset that has been analyzed, a specific tumor chro-
mosome list was generated with the ComputeNormalChromosome
function, starting from the segmentation files. Notably, TCGA-OV,
TCGA-LUAD and TCGA-COAD datasets had higher tolerance rates
as compared to the MM and TCGA-BRCA ones, since in the CNAs
profiles of these tumors, any chromosome had an alteration rate
within 15%. Moreover, the TCGA-OV’s S-CL was further manually
revised by including literature information [26] (Table 1).

The highest number of clusters considered acceptable by DRrefit
function has been set to 6. ‘‘Ward.D2” was used as clustering
method by DRrefit, since it minimizes the total within-cluster
variance.
3. Results and discussion

The feasibility of BoBafit in both refitting and recalibrating CN
data has been tested by using six genomic databases including
tumor CN profiles, as obtained by different molecular technologies
(e.g., SNPs array and NGS) and tumor samples.

3.1. Multiple Myeloma datasets

3.1.1. Myeloma-specific S-CL generation and validation
The S-CL generation is the first step of the BoBafit algorithm

set-up. Two MM-specific S-CLs have been generated by applying
ComputeNormalChromosome with a 15% tolerance rate, chosen in
order to balance the S-CL length and the need to include chromo-
somal arms with the lowest probability of carrying CNAs (Table 1).
As shown in Fig. 5 A and B and in Table 1, the S-CLs of MM-BO and
CoMMpass datasets were almost superimposable; in addition, the
chromosomal regions included in the two S-CLs were in agreement
with data of the literature [4–6,9]. The two MM S-CLs pertinence
was also validated by manually reviewing the IGV (Integrative
Genomics Viewer) CN density plots which identify the chromo-
somes with the lowest amount of CNAs in the analyzed datasets.
Results showed that the same chromosome regions included in
the S-CLs (Table 1 and Fig. 5) were observed also in the related
IGV CN density plots, thus confirming the power of ComputeNor-
malChromosome to correctly estimate lists of diploid and clonal
chromosomes, that can be used as reference in DRrefit. Overall,
we showed that ComputeNormalChromosome was able to generate
tumor-specific S-CLs, which, once generated, could be used to ana-
lyze any datasets derived from the same tumor, providing the CN
data are calculated by median-based algorithms. Importantly, the
S-CL should be generated using a dataset large enough to represent
the heterogeneity of the disease.

3.1.2. Application and validation of DRrefit on a MM dataset
DRrefit was first tested in the MM-BO dataset, including CNAs

data derived from SNPs array experiments.
As shown in Fig. 6, overall, 19 out of 595 samples (3.2%) have

been refitted and 10 (1.9%) have been recalibrated. To prove the
validity of these results, for each sample of the MM-BO cohort,
we compared the CN baseline regions, pre- and post-correction,
to the corresponding BAF signals: concordant signals, either pre-
or post-correction, were considered suggestive of a correct defini-
tion of the baseline region.

The comparison showed that, in the pre-correction analysis, 20
samples had BAF and CN discordant values (Supplementary data1),
whereas after DRrefit correction, just 2 samples remained discor-



Fig. 2. DRrefit CN profile plots of three samples, labeled with class identified by function. In the panel are showed the tree DRrefit classes and how they are plotted. The x-
axis reports the chromosomes with their genomic position and the y-axes the copy number value. The plots with CR � 0.1 show that the new segments and the old segments
are orange and red colored, respectively; on the contrary, the plots with CR > 0.1 show that the new segments and the old segments are green and red colored, respectively. a)
No Changes class with CR 0.0077; b) Recalibrated class with CR 0.2; c) Refitted class with CR �0.688. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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dant. Of these, the first one had very low BAF quality parameters
(MM-BO_24), the second one carried a loss of heterozygosity
(LOH) event on chromosome 1p, following an amplification event
on the same chromosomal arm (MM-BO_25). BoBafit cannot rec-
ognize LOH events because it uses the CN values, whereas BAF is
needed to highlight LOH events.

Moreover, a manual review of all samples with DRrefit-detected
discordances (20 samples) was performed, by comparing raw CN
profiles and DRrefit plots, confirming the goodness of the refitting
process.

Finally, DRrefit was applied in a cohort of 102/595 samples with
FISH data available. While in 70/102 samples the CNAs FISH and
3722
SNP array calls were in agreement both pre and post-correction,
in 26/102 the pre-correction discrepancies were resolved by DRre-
fit, whereas in 6/102 the refit led to new small discrepancies
between the two types of calls. Notably, in these last 6 cases, the
CNAs were subclonal and this pitfall will be further discussed in
chapter 3.1.5.

Overall, our results showed that CN profiles, as obtained by
SNPs array data might be biased by an incorrect baseline region
setting. Therefore, the use of DRrefit, which can correctly estimate
the baseline region, would help to overcome this issue. This was
validated by comparing DRrefit refitted data both to BAF values
and to FISH results. The limit of the method remains LOH events,
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altered. In this plot the chromosomal arms with a tolerance value less than or equal to 15% were selected (it is also the default value of the function).
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since, by using just the CN signal, the alleles contribution cannot be
discriminated, thus impairing the chromosomes’ inclusion among
those suitable for the diploid region check.

3.1.3. Stability of the DRrefit corrections
DRrefit performances depend on the NbClust clustering tool,

which have been employed to ultimately define the ‘‘winner clus-
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ter” and then the F-CL (see section 2.3.1). We therefore aimed at
evaluating whether different clustering methods (other than
ward.D2, which have been used in the present analysis) might
impact the results. To this purpose, we analyzed all datasets using
two different clustering methods (complete and average) and then
compared the samples’ correction factors to those obtained
with the ward.D2 method. The comparisons showed a complete



Table 1
Starting Chromosome lists (S-CLs) obtained by ComputeNormalChromosome. The
function was applied to all database with different tolerance values The tolerance
rates have been chosen in order to include a sufficient number of chromosomal arms
with the lowest probability of alteration. The TCGA-OV chromosome list was further
revised due to the high percentage of alteration per chromosome (minimum 47% - see
Fig. 5) in the dataset so it is different from the function output.

Database Chromosome list Tollerance
rate

MM-BO 1p, 2p, 2q, 4p, 4q, 8q, 10p, 10q, 12p, 12q, 16p,
17p, 17q, 20p, 20q,

15%

CoMMpass 1p, 2p, 2q, 4p, 4q, 8q, 10p, 10q, 12p, 12q, 16p,
17p, 17q, 18q, 20p, 20q, 22q

15%

TCGA-BRCA 1p, 2p, 2q, 3p, 3q, 4p, 4q, 9q, 10p, 10q, 11p, 11q,
12q, 14q, 15q, 19p, 19q, 21q

15%

TCGA-OV 1p, 3p,7p, 7q, 11p,11q, 14q, 21q 50%
TCGA-LUAD 1p, 32q, 4q, 10q, 11p 20%
TCGA-COAD 1p, 2p, 2q, 3p, 3q, 6q, 10p, 10q, 11p, 11q, 19p 20%
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equivalence of the three approaches, as the correction factors were
exactly the same, thus demonstrating the method reliability,
regardless from the clustering approach employed (Supplementary
data2).
3.1.4. DRrefit on a second MM dataset analyzed by NGS
In order to confirm the DRrefit power to refit CNAs profiles, a

second MM dataset was employed (CoMMpass dataset), including
MM genomic data, as obtained by NGS technology.

As shown in Fig. 6, overall 7 out of 1044 samples (0.7%) have
been refitted and 76 (7.3%) have been recalibrated. Since the
CoMMpass genomic data analysis pipeline includes the tool tCoNut
[17], which is specifically aimed at correcting the baseline regions,
a small, even though appreciable, number of samples remained to
Fig. 5. Starting chromosome list(S-CL) plots. In the panel are showed the S-CL histogram
reported the alteration rate of the chromosomal arm and the dotted line highlight the tole
S-CL, tolerance rate = 0.15; B) the CoMMpass S-CL, tolerance rate = 0.15; C) the TCGA-B
TCGA-LUAD S-CL, tolerance rate = 0.20; F) the TCGA-COAD S-CL, tolerance rate = 0.20.
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be refitted by DRrefit. This indirectly confirmed the specificity of
DRrefit, since any false positive was highlighted within samples
already corrected for ploidy. Moreover, since 7.3% of data still
needed to be recalibrated, we showed that DRrefit might even
improve the baseline region estimation, both by using the cluster-
ing method and by implementing the S-CL. Of note, DRrefit correc-
tion can be performed without the need of BAF values or germline
samples’ profiles (both required by tCoNut tool [17]).

In conclusion, we showed that DRrefit is able both to recalibrate
and refit data, even obtained by NGS technologies, and to produce a
baseline regions’ output comparable to that produced by an
already validated method.

3.1.5. Clinical relevance in Multiple Myeloma
CNAs are considered important prognostic factors for many

tumor types. Therefore, the right definition of baseline regions is
crucial, in order to correctly call CNAs.

To confirm the clinical relevance of correct CN calls, we com-
pared pre- and post-refit CNAs profiles of patients included in
the MM-BO dataset. We focused on five alterations (1q amplifica-
tion, 1p, 13 and 17p deletions, and odd-numbered chromosomes
Hyperdiploidy- HD - as defined by the presence of at least two
amplificated chromosomes among chr 3, 5, 7, 9, 11, 15, 19 and
21), whose prognostic role has been repeatedly demonstrated
[4,6,9,24]. Each CNAs should be present in at least 10% of sample’s
cells (amplification CN � 2.10 and deletion CN � 1.90), except for
HD, which should be clonal (i.e., present in at least 50% of cells,
CN � 2.50).

Venn diagrams of pre- and post-correction CN profiles high-
lighted that the frequency of most alterations and of their co-
segregation changed after the BoBafit correction process (Fig. 7A
and B): for example, HD patients were 84 pre- and 112 post-
correction process, respectively.
s of ComputeNormalChromosome once performed on each database. In the y-axes is
rance rate below which the chromosomes are considered ‘‘normal”. A) MM Bologna
RCA S-CL, tolerance rate = 0.15; D) the TCGA-OV S-CL, tolerance rate = 0.50; E) the
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In order to describe each sample’s refitting trajectory, all pre-
and post-correction groups generated by the Venn diagrams were
used to define the trajectory’s starting and ending points (Fig. 7C).
As expected, the refitting trajectory remained stable for most sam-
ples (438/595, 73.6%), whose baseline region was not adjusted by
DRrefit correction. On the contrary, in a remarkable number of
patients (157/595, 26.4%), a shift from one group to another was
observed. In particular, both HD and 1q amplification were the
most frequently misclassified CNAs (Fig. 7C), thus affecting their
overall frequency, either as single or as co-occurring alterations.
These results showed that in more than a quarter of patients the
definition of clinically relevant prognostic factors was not accurate.

Since 17p deletion and, more recently also 1q amplification,
have been included in the most frequently employed MM risk scor-
ing systems [10,25], their correct CN call is crucial for patients’
prognostic stratification. Therefore, we checked how the BoBafit
correction process may affect the assignment of patients to the dif-
ferent risk categories, as defined by the Revised International Stag-
ing System (R-ISS) [10] and/or the mSMART guidelines [25]: in
particular, according to the presence of 17p deletions and/or 1q
amplification, patients were stratified in High (HR) or Standard
Risk (SR), (Table 2).

In 29/595 (4.87%), the 17p deletion was corrected (Fig. 7 A and
B), thus causing a transition from R-ISS HR to SR and from SR to HR
in 27 and 2 samples, respectively, (Table 2 and Fig. 8). The results
of 17p deletion calls’ corrections were compared to FISH data
3725
(available in the context of the daily clinical practice for 102/595
included in the study), in order to confirm the corrections’ accu-
racy. In 23/29 samples, the corrections allowed to get the same
results provided by FISH analysis. On the contrary, in the remain-
ing 6 cases (also mentioned in chapter 3.1.2), results were discor-
dant, despite the CN calls correction. In these cases, 17p deletion
was sub-clonal, with frequencies very close to either FISH or SNPs
array CN detection cut-offs, thus impairing the correct CN call by
SNPs array, not rectifiable even after the BoBafit correction. Nota-
bly, most cases have a ‘‘no changes” profile and very small CR
(<0.1), leading to a slight CN value shift around the pre-defined
SNPs array cut-off (Supplementary data 3).

Concerning the mSMART stratification, minor changes in the SR
and HR samples were highlighted post BoBafit correction (Table 2
and Supplementary Fig. S2).

These results support the importance to accurately call these
critical alterations, in order to correctly stratify patients according
to their prognostic risk. Mostly, it will become important in case
MM patients, enrolled in risk-oriented clinical trials, would be trea-
ted differently according to their prognostic risk score.

3.2. DRrefit application on the CN profiles of different tumors

DRrefitwas finally tested on datasets derived from solid tumors,
in order to check its performances on highly fragmented and com-
plex genomic profiles. Four solid tumors’ datasets were down-



Fig. 7. Clinically relevant alterations pre and post BoBafit correction in MM-BO samples. a) Five-way Venn diagram of pre-correction alterations and b) Five-way Venn
diagram of post-correction alterations, which allow to appreciate the number of samples that belongs to each alteration group. In the top left are indicated the number of
samples without alterations; c) Sankey network diagram, on the left are represented the starting alteration groups (pre-correction, purple) and on the right the final
alteration groups (post-correction, yellow). The gray bands indicate the flow of the samples, some remain in the starting group while others acquire / lose alterations and
change their alteration group. The thickness of the line changes according to the number of samples in the trajectory. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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loaded from the TCGA project, namely TCGA-BRCA, TCGA-OV, TCG-
COAD and TCGA- LUAD and, for each dataset, a tumor-specific S-CL
was generated by ComputeNormalChromosome function (Table 1).
Table 2
MM-BO samples stratified according to R-ISS and mSMART cytogenetic guidelines pre
and post BoBafit correction.

R-ISS

PRE POST SAMPLES

pre HR post HR 86
pre HR post SR 27
pre SR post HR 2
pre SR post SR 480
High risk (HR) = presence 17p deletion; Standard risk (SR) = no deletion

mSMART

PRE POST SAMPLES

pre HR post HR 297
pre HR post SR 3
pre SR post HR 4
pre SR post SR 291

High risk (HR) = presence 17p deletion and/or 1p amplification; Strandard risk (SR)
= none of the two.
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Due to their higher genomic complexity, the tolerance rates
employed for the generation of the S-CL of TCGA-OV, TCG-COAD
and TCGA- LUAD were higher, as compared to those of MM and
TCGA-BRCA datasets: in fact, for these tumors the lowest tolerance
value between chromosomal arms was over 15% (Fig. 5). For the
TCGA-OV dataset the tolerance rate was increased to 50%, and
the output data were revised and corrected according to disease-
related published data [26] (Table 1), since the use of a very high
tolerance rate might increase the probability to include false refer-
ences in the S-CL, thus limiting the applicability of DRrefit in can-
cers with very high frequencies of alterations per chromosome
arm. In these cases, either the S-CL list should be manually gener-
ated, or the function output should be revised, with the support of
disease-related published data.

Once the S-CLs were generated and reviewed, DRrefit was
applied to the segmentation files of the cancers’ datasets: all TCGA
datasets had higher percentage of both refitted and recalibrated
alterations, as compared to MM datasets (Fig. 6). This was mostly
due to the high number of CNAs that characterizes all the analyzed
tumors, causing an overall baseline region distortion; in addition,
we observed that TCGA CN profiles were overall more fragmented,
as compared to those obtained from MM (Supplementary data 4),
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Fig. 8. Sankey Network diagram of MM-BO samples. The diagram shows how
samples change risk class from the start profile (pre) and end profile (post)
according to R-ISS cytogenetic guidelines.
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thus significantly impacting the correct baseline region definition
(p value < 2e-16, Supplementary data 5).

These results show that BoBafit can be employed to correctly
estimate the baseline regions of CN profiles derived from a wide
range of genomically heterogeneous diseases, even those with very
fragmented and low-quality CNAs profiles.
4. Conclusions

By analyzing genomic datasets including data related to five
types of tumors with complex karyotypes and obtained by using
two different molecular technologies (SNPs array and NGS), we
have been able to show the benefit of BoBafit as implemented in
the analysis workflow of tumor samples’ CNAs profiles and the reli-
ability of DRrefit in correcting the baseline region assignment. In
particular, the implementation of a S-CL within BoBafit allowed
the use of this analysis pipeline regardless from the tumor type,
thus highlighting the universality of this bio-informatic approach.
Moreover, the use of BoBafit pipeline has been shown to be simple
and reproducible, as it requires just CN data as input, without the
need of either germline samples, or BAF values, as against other
similar tools (e.g., tCoNut [16]). By employing chromosomes arms
instead of raw segments as basic information unit, BoBafit has also
the advantage to be computationally manageable and applicable to
data already processed. Particularly, the generation of S-CL from
clinical knowledges and the visualization of both clonal and sub-
clonal CN clusters for any tumor sample (JABBA plot), both make
BoBafit very user-friendly.

We observed that, overall, CN profiles from samples of tumors
with high numbers of alterations (e.g. OV cancer) and with low
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quality parameters (e.g. highly fragmented) need baseline region
adjustment. In these cases, a wrong baseline region estimate might
lead to a bias in patients’ prognostic risk assignment based on the
presence of chromosomal aberrations, thus supporting the need of
a bio-informatic adjustment of CNAs output data. By refitting and
recalibrating CNAs results, as derived from high throughput molec-
ular approaches’ data, BoBafit significantly reduces the incorrect
estimate of whole-chromosome, arm-level and focal CNAs, thus
leading to correct CNAs calls.

Of note, we are aware that both Whole Genome Doublings
(WGD) and Loss of Heterozygosity (LOH) events, by altering the
tumor ploidy, remain bias that cannot be corrected by BoBafit,.
In fact, in bulk analyses, when WGD occurs, the CN state appears
equivalent to itself with the CN state doubled [27], thus impairing
WGD events to be considered; on the contrary, to detect LOH
events, allele frequency data are needed. The total CN signal is
the only data required for the analysis by BoBafit, which therefore
possess this intrinsic ambiguity in its results. However, our
approach does not claim to solve these issues, which in turn are
well-managed by other tools, specifically designed to these aims
(ASCAT [16], ABSOLUTE [14], FACETS [28]). On the contrary, we
support the application of BoBafit to raw segments (fractional CN
values) generation either by ASCAT [16] or by any other segmenta-
tion tools.

In conclusion, we propose the implementation of BoBafit as
crucial step of the standard CN analysis pipelines for data derived
from all type of molecular platforms, particularly in the daily clin-
ical routine analysis, in order to guarantee an unbiased patient’s
stratification, based on the CNAs prevalence in the examined pop-
ulation. Including BoBafit can only become an advantage, as the
computational time for the diploid correction is very minimal
and does not affect costs, as the R packages is currently available
for download from the Bioconductor open-source repository [23].
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