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A B S T R A C T   

A cross-docking terminal enables consolidating and sorting fast-moving products along supply chain networks 
and reduces warehousing costs and transportation efforts. The target efficiency of such logistic systems results 
from synchronizing the physical and information flows while scheduling receiving, shipping and handling op-
erations. Within the tight time-windows imposed by fast-moving products (e.g., perishables), a deterministic 
schedule hardly adheres to real-world environments because of the uncertainty in trucks arrivals. In this paper, a 
stochastic MILP model formulates the minimization of penalty costs from exceeding the time-windows under 
uncertain truck arrivals. Penalty costs are affected by products’ perishability or the expected customer’ service 
level. A validating numerical example shows how to solve (1) dock-assignment, (2) while prioritizing the 
unloading tasks, and (3) loaded trucks departures with a small instance. A tailored stochastic genetic algorithm 
able to explore the uncertain scenarios tree and optimize cross-docking operations is then introduced to solve 
scaled up instaces. The proposed genetic algorithm is tested on a real-world problem provided by a national 
delivery service network managing the truck-to-door assignment, the loading, unloading, and door-to-door 
handling operations of a fleet of 271 trucks within two working shifts. The obtained solution improves the 
deterministic schedule reducing the penalty costs of 60%. Such results underline the impact of unpredicted 
trucks’ delay and enable assessing the savings from increasing the number of doors at the cross-dock.   

1. Introduction 

The pressure for reducing the distribution time of products is 
increasing due to supply chain competition and services (Yu et al., 2016; 
Abad et al., 2018). Consumer demands for urgent deliveries together 
with the complexity of supply chain networks compel adopting 
cross-docking hubs to reduce holding costs and lead time (Chuang & Yin, 
2016). Cross-docking avoids the most time-intensive tasks of ware-
housing, i.e., storage and retrieving, saving up to 70% of costs (Vahdani 
and Zandieh 2010) being convenient for fast-moving products (e.g. 
perishables). The cross-docking operations are as follows. Trucks depart 
from the suppliers and are assigned to a dock-door waiting until it be-
comes newly available. Workers unload the trucks, check documents, 
label pallets or cartons and sort within a temporary storage area (Yu and 
Egbelu, 2008). The operators consolidate products at the outbound dock 
door according to their destination, and, once loaded, the truck departs 
(Kuo, 2013). As only temporary storage is allowed, cross-docking 

enhances the customer service level in terms of on-time deliveries while 
decreasing holding costs (Joo and Kim 2013). The efficacy of 
cross-docking arises from the simultaneous arrival of trucks (Lee et al., 
2006), the prioritization of unloading and loading operations at the 
inbound/outbound docks, and the consolidation of loads in agreement 
with the vehicle routing strategy. Synchronizing such processes is of 
vital importance and determines the ability of cross-docking to achieve 
its intended aims in practice (Buijs et al., 2014). 

Optimization aids such synchronization. Although literature con-
centrates on deterministic formulation of the cross-docking operations 
management (Larbi et al., 2011), more recently significant contributions 
dealing with uncertain truck arrivals are proposed (Wide, 2020). The 
main sources of uncertainty affecting truck arrivals are weather condi-
tions, i.e., rainy, snowing or foggy weather, roadways traffic and 
congestion, and lack of transport tracking or tracing infrastructures 
(Dulebenets, 2019). Unpredictable trucks arrivals result in disrupting 
cross-docking operations and decisions incurring in decreased service 
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level and delay-induced costs. Hence, the consideration of arrival time 
as a stochastic variable is crucial in real-world cross-docking 
decision-making (Shen et al., 2016; Khani 2019). 

We formulate a stochastic MILP model integrating the scheduling of 
truck-to-door, door-to-door handling, and door-to-truck loading tasks 
while minimizing the cross-docking makespan and delivery delays 
under uncertain trucks arrival time. The combined management of these 
aspects into a unique formulation represent the first novel contribution 
of this study. This model is validated with a numerical example show-
casing the benefits achieved by a stochastic formulation. When the 
instance scales up, optimization fails to provide a solution in reasonable 
time, whereas heuristics or meta-heuristic algorithms provide quasi- 
optimal solutions (Joo and Kim, 2013). This paper then illustrates a 
novel stochastic genetic algorithm (GA) implementing scenario tree 
(SGA-ST) to minimize penalty costs resulting from late deliveries, rep-
resenting the second novel contribution to the literature. The proposed 
metaheuristic schedules the door-to-door handling operations at the 
cross-dock, prioritizing unloading and loading tasks while minimizing 
the lateness of goods deliveries. The algorithm is applied to a real case 
provided by an Italian pallet delivery network provider. This company 
collects fully-loaded-pallet of perishable products from the suppliers, 
sorts and consolidates the shipments at the cross-dock, and loads 
departing trucks for delivery to the retailers. To further support 
cross-docking practitioners and logistic providers, we develop a 
ready-to-use decision-support tool (DST) incorporating the novel 
SGA-ST to aid timely daily decision-making. This DST, representing the 
third contribution of this paper, solves the door-assignment and sched-
uling operations for hundreds of trucks within a computational time of 
on average 1 hone hour, enabling timely daily decision-making and 
workflow organization. The solution resulting from the scenario tree 
exploration showcases the savings compared to deterministic 
decision-making. 

The remainder of this paper is organized as follows. Section 2 pre-
sents a literature review support-decision models, heuristics and meta- 
heuristics methods for cross-docking operations management. Section 
3 formulates stochastic MILP model validated with a numerical 
example. A SGA to solve large-instanceistance problem is illustrated and 
described in Section 4, whilst in Section 5 validates the SGA-ST 
compared to the SMILP optimizationoptimaztion. Section 6 applies 
SGA-ST to a real-world case study from a national perishables delivery 
network from suppliers to retailers. Section 7 discusses the managerial 
implications of this research while Section 6 concludes the paper and 
highlights possible future research directions. 

2. Literature review 

The literature on cross-docking is quite recent. It covers broad de-
cisions on two dimensions (Buijs et al., 2014). The “time-dependent” 
decisions distinguishes among strategic, i.e. facility location and 
cross-dock shape and capacity setting (Kheirkhah and Rezaei 2016; 
Bartholdi and Gue 2000; Mousavi and Tavakkoli-Moghaddam 2013); 
and operational i.e. scheduling and vehicle routing (Larbi et al., 2011; 
Ahmadizar et al., 2015). The second dimension pertains the “scope” 
involving network-wide decisions (Sung and Yang 2008; Wisittipanich 
et al., 2019; Castellucci et al., 2021) and single-hub decisions (Liao et al., 
2012). 

Operational models gained increasing attentionattettion since syn-
chronizing operations and dock door-assignment were identified as the 
main issues of cross-docking. Lee et al. (2006) integrates vehicle routing 
and dock-assignment by managing truck arrivals and consolidation 
simultaneously without temporary storage. Yu and Egbelu (2008) 
introduced the truck-docking scheduling problem to set the priority of 
dock assignments, using conveyors for door-to-door handling. Musa 
et al. (2010) developed an algorithm to manage load consolidation. 
Others formulated objective functions for the makespan to minimize the 
time spent at the cross-dock (Vahdani and Zandieh 2010; Arabani et al., 

2011). Joo and Kim (2013) also considered compound trucks as service 
vehicles. Agustina et al. (2014) integrated vehicle scheduling and 
routing into a cross-docking model for perishable products. Moghadam 
et al. (2014) considered a fleet of trucks. Ahmadizar et al. (2015) 
illustrated a two-level vehicle routing problem to manage consolidation 
at the cross-dock and perform last-mile deliveries. Küçükoğlu and 
Öztürk (2015) formulated a packing problem for departing vehicle 
loading. Mohtashami et al. (2015) proposed a multi-objective model to 
minimize the cross-docking makespan and transportation costs simul-
taneously. Küçükoğlu and Öztürk (2017) proposed a two-stage model to 
manage supply chain shipments across a cross-dock hub. Others 
considered environmental impacts (Evangelista 2014; Yin and Chuang 
2016; Abad et al., 2018), labour and workforce tasks requirements 
(Rezaei and Kheirkhah 2018; Tadumadze et al., 2019), or reverse lo-
gistics of end-of-life products in closed-loop networks (Rezaei and 
Kheirkhah 2017). 

Table 1 classifies operational support-decision models for cross- 
docking. Some attempt to minimize the cross-docking makespan 
despite it does not necessarily convey service level increase. Delay- 
induced costs must be included in the objective function (Agustina 
et al., 2014) particularly to deal with perishables deliveries, where 
unmet due dates incurs in losses. In such circumstance, time-windows 
constraints could be relaxed instead and violation allowed with pen-
alties (Theophilus et al., 2021). 

Only a few studies have attempted to tackle the uncertainty in cross- 
docking scheduling problems (Theophilus et al., 2019). Mousavi et al. 
(2014) and Mousavi and Vahdani (2017) employed fuzzy programming 
and robust optimization, respectively. Larbi et al. (2011) provided three 
formulations for cross-docking operations scheduling problem with full, 
partial, and no information regarding the truck arrival times. Uncer-
tainty is addressed in naval container shipping considering weather 
conditions or port congestion (Li et al. 2016; Wang and Meng 2012), in 
flights route scheduling (Kenan et al., 2018) or in the urban public 
transportation time-tables (Tong and Wong, 1999; Vodopivec and 
Miller-Hooks, 2017). To the best of our knowledge, no formulations deal 
with uncertainty in truck arrival at cross-dock hub using stochastic 
programming. We hereby formulates a stochastic MILP that schedule 
dock-assignment, door-to-door handling with temporary storage, and 
door-to-truck loading tasks under uncertain arrivals, while minimizes 
the costs from the violating the time-windows. 

Because of the inherentlyinerenthly NP-hard complexity of cross- 
docking scheduling problems, alternative solving methods have been 
explored to provide good solutions in reasonable time. Cross-docking 
algorithms can be classified for network-oriented or single terminal al-
gorithms (Buijs et al., 2014). 

2.1. Cross-docking networks algorithms 

Sung and Yang (2008) proposed an exact branch-and-price algorithm 
for cross-docking network design. Others integrate a terminals location 
problem with flows allocation decisionsdeicisions (Sung and Song, 
2003), dock-assignment (Küçükoğlu and Öztürk, 2017), or vehicle 
routing (Mousavi and Tavakkoli-Moghaddam, 2013; Mokhtarinejad 
et al., 2015). Rezaei and Kheirkhah (2018) addressed sustainability as-
pects modeling a closed-loop network where the cross-dock manage 
even the reverse flow of end-of-life. 

Vehicle routing solving algorithms for cross-docking networks are 
investigated. Musa et al. (2010) proposed an ant colony optimization 
(ACO) algorithm to minimize transportation to customers with multiple 
pick-up terminals. Ahmadizar et al. (2015) proposed a GA, while 
Mousavi and Vahdani (2017) implemented a self-adaptive imperialist 
competitive algorithm (ICA). 

2.2. Single-terminal algorithms 

These focus on a single cross-docking terminal. Most of the literature 
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formulates meta-heuristics to solve vehicle routing problems starting at 
the cross-dock. Lee et al. (2006) and Wen et al. (2009) use tabu search 
(TS). Yu et al. (2016) adopt simulated annealing (SA) considering the 
simultaneous arrival of all trucks. Santos et al. (2011) proposed an 
heuristic based on branch-and-price algorithm to minimize vehicle 
routing costs. Grangier et al. (2017) proposed a large neighborhood 
search algorithm. Küçükoğlu and Öztürk (2015) combined TS-SA to 
solve a vehicle routing and packing problem. Yin and Chuang (2016) 
introduced environmental impact constraints within adaptive artificial 
bee colony (ABC) algorithm. 

Others focused on vehicle-induced operations scheduling at the ter-
minal. The objective function is commonly minimizing the makespan 
(Mohtashami, 2015; Wisittipanich and Hengmeechai, 2017; Arabani 
et al., 2012) or the transportation costs (Mohtashami et al., 2015). Some 
compares the computational performance of alternative meta-heuristic 
algorithms (Vahdani and Zandieh, 2010; Arabani et al., 2011; Joo and 
Kim 2013). Moghadam et al. (2014) merge ACO and SA to solve a 
vehicle routing and scheduling problem that minimizes the total cost. 
Others solve vehicle pick-up and delivery problems (Abad et al., 2018; 
Santos et al., 2013) and truck arrivals sequencing problems (Liao et al., 
2012; Yu and Egbelu, 2008). 

2.3. Classification of cross-docking algorithms 

Table 2 classifies the most significant contributions upon the scope 
and goal of the problem and the type of solving method adopted. For 
further details we remaind to Theophilus et al. (2019). 

The pioneering work by Fathollahi-Fard et al. (2019) illustrates the 
adoption of the novel Social Engineering Optimizer (SEO) to solve 
large-instance truck-induced operations scheduling and minimizing the 
makespan. Shahmardan and Sajadieh (2020) solve a truck scheduling 

problem for a single-terminal where inbound trucks are also used for 
deliveries through a reinforced learning of a tailored neighborhood 
search. Dulebenets (2021) sheds a light on new efficient hybrid solving 
method for cross-docking operations scheduling by proposing a Adap-
tive Polyploid Memetic Algorithm (APMA) which outperform the state 
of the art of meta-heuristics algorithms. 

Considering the reported literature, solely Larbi et al. (2011), Rah-
bari et al. (2019) and Xi et al. (2020) addressed uncertain in truck ar-
rivals. Larbi et al. propose two heuristics for partial and no information 
on truck arrivals with the attempt to prioritize the departures by 
decreasing probability to be completely loaded, while minimizing costs 
for handling, transportation and penalties. Rahbari et al. provide a 
bi-objective formulation for an integrated VRP and scheduling for per-
ishables suggesting the adoption of meta-heuristics or genetics to solve 
the problem with large real-world instances. Xi et al. brought out an 
exact method based on column and constraint generation to minimize 
cost under uncertain truck arrivals. 

In this paper, we illustrate a two-stage SGA implementing a scenario 
tree (SGA-ST) to solve each realization of the stochastic parameters, and 
scheduling dock-assignmentassingment, door-to-door handling, and 
door-to-truck loading task while minimizing penalties from undelivered 
products (i.e. losses) time-windows violation. Developing a tailor-made 
SGA-ST to implement the scenario tree of a stochastic cross-docking 
scheduling problem in single-terminal operations represents the sec-
ond novel contribution of this research. 

3. Stochastic problem formulation 

3.1. Problem boundaries 

A delivery service network for perishables is organized by a 3 PL 

Table 1 
Classification of cross-docking modeling.   

Dock-door 
assignments 

Vehicle 
routing 

Operations 
scheduling 

Temporary 
storage 

Model 
Formulation 

Objective Function Uncertainty 

Abad et al., (2018) X ✓ ✓ ✓ MILP Costs & fuel X 
Agustina et al., (2014) ✓ ✓ ✓ ✓ MILP Costs X 
Ahmadizar et al., (2015) X ✓ X ✓ MILP Costs X 
Alpan et al., 2011 ✓ ✓ ✓ ✓ DP Costs X 
Arabani et al., (2011) X X ✓ ✓ MILP Makespan X 
Joo and Kim (2013) ✓ X ✓ ✓ MILP Makespan X 
Kheirkhah and Rezaei (2016) X ✓ X X MILP Costs X 
Kucukoglu and Ozturk 2015 X ✓ X X MILP Costs X 
Kucukoglu and Ozturk 2016 ✓ ✓ ✓ X MILP Costs X 
Lee et al., (2006) X ✓ X X IP Costs X 
Moghadam et al., (2014) X ✓ ✓ X MIP Costs X 
Mohtashami et al., (2015) X ✓ ✓ X MILP Makespan, costs & 

trips 
X 

Mokhtarinejad et al., (2015) X ✓ ✓ X MILP Costs & waiting 
time 

X 

Mousavi and Tavakkoli-Moghaddam 
(2013) 

X ✓ X X MIP Costs X 

Mousavi and Vahdani (2017) X ✓ ✓ ✓ MILP Costs ✓ 
Mousavi et al., (2014) X ✓ ✓ ✓ MILP Costs ✓ 
Musa et al., (2010) X ✓ X X IP Costs X 
Rezaei and Kheirkhah (2017) X ✓ X X MILP Costs X 
Rezaei and Kheirkhah (2018) X ✓ X X MILP Sustainability X 
Santos et al., (2011) X ✓ X X IP Costs X 
Santos et al., (2013) X ✓ X X IP Costs X 
Sung and Song (2003) X ✓ X X IP Costs X 
Sung and Yang (2008) X ✓ X X IP Costs X 
Vahdani and Zandieh (2010) X X ✓ ✓ MILP Makespan X 
Wen et al., (2009) X ✓ ✓ X MILP Travel time X 
Wisittipanich and Hengmeechai 

(2017) 
✓ X ✓ ✓ MIP Makespan X 

Yin and Chuang (2016) X ✓ X X IP Costs X 
Yu and Egbelu (2008) X X ✓ ✓ MILP Makespan X 
Yu et al., (2016) X ✓ X X MILP Costs X 

This paper ✓ X ✓ ✓ SMILP Costs ✓  
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company through cross-docking terminal which consolidates palletized 
products from growers and suppliers and deliver, after consolidation, to 
the retailers, C (Fig. 1). For each retailer c ∈ C, the accepted receiving 
time-window opens at time otwc and closes at ctwc. This time window is 
affected by a service level agreement, corresponding to the level of 
target freshness guaranteed by the retailer to the costumers. When a 
delivery exceeds the time window, a reward is paid to the retailer for 

decayed products shelflife. Retailers prefer on-time partial deliveries 
rather than delayed complete order. This yields a penalty cost upcc paid 
for pallet unit delivered to c and time-unit after ctwc. 

Let IT be the set of inbound trucks arriving at the cross-dock. Each of 
the trucks i ∈ IT delivers products p ∈ P in quantity iqi,p. Incoming truck 
must be assigned to an inbound dock door ∈ ID. Pallets are unloaded 
from trucks with time ut and temporary stored in front of the door 

Table 2 
Classification of solving methods for cross-docking problems.  

Authors Year Scope Objective Function Meta- 
heuristics 

Heuristics Uncertainty 

Sung and Song 2003 Network design, flows allocation Min. costs ✔ X X 
Lee et al. 2006 Vehicle routing Min. costs ✔ X X 
Sung and Yang 2008 Network design Min. costs X ✔ X 
Yu and Egbelu 2008 Truck sequencing problem Min. makespan X ✔ X 
Wen et al. 2009 Vehicle routing Min. travel time ✔ X X 
Musa et al. 2010 Vehicle routing Min. costs ✔ X X 
Vahdani and Zandieh 2010 Trucks operations scheduling Min. makespan ✔ X X 
Arabani et al. 2011 Trucks operations scheduling Min. makespan ✔ X X 
Larbi et al. 2011 Trucks operations scheduling Min. costs X ✔ ✔ 
Santos et al. 2011 Vehicle routing Min. costs X ✔ X 
Arabani et al. 2012 Trucks operations scheduling Min. makespan & lateness ✔ X X 
Liao et al. 2012 Truck sequencing problem Min. makespan ✔ X X 
Joo and Kim 2013 Trucks operations scheduling Min. makespan ✔ X X 
Kuo 2013 Truck sequencing and dock 

assignment 
Min. makespan ✔ X X 

Mousavi and Moghaddam 2013 Network design, vehicle routing Min. costs ✔ X X 
Santos et al. 2013 Pick-up and delivery problem Min. costs X ✔ X 
Moghadam et al. 2014 Trucks operations scheduling Min. costs ✔ X X 
Ahmadizar et al. 2015 Vehicle routing Min. costs ✔ X X 
Kucukoglu and Ozturk 2015 Vehicle routing Min. costs ✔ X X 
Mohtashami et al. 2015 Trucks operations scheduling Min. makespan, costs & trips ✔ X X 
Mohtashami 2015 Trucks operations scheduling Min. makespan ✔ X X 
Mokhtarinejad et al. 2015 Network design, vehicle routing Min. costs & truck waiting time ✔ X X 
Kucukoglu and Ozturk 2016 Network design, dock assignment Min. costs ✔ X X 
Yin and Chuang 2016 Vehicle routing Min. costs ✔ X X 
Yu et al. 2016 Vehicle routing Min. costs ✔ X X 
Grangier et al. 2017 Vehicle routing Min. costs ✔ X X 
Mousavi and Vahdani 2017 Vehicle routing Min. costs ✔ X X 
Wisittipanich and 

Hengmeechai 
2017 Trucks operations scheduling Min. makespan ✔ X X 

Rezaei and Kheirkhah 2018 Network design Min. costs, environmental impact, max. social 
benefit 

✔ X X 

Fathollahi-Fard et al. 2019 Truck operations scheduling Min makespan ✔ ✔ X 
Xi et al. 2020 Truck operations scheduling Min. costs X X ✔ 
Shahmardan and Sajadieh 2020 Truck operations scheduling Min makespan ✔ ✔ X 
Dulebenets 2021 Truck operations scheduling Min. costs ✔ ✔ X 

This paper  Truck operations scheduling Min. costs (direct and delays) ✔ X ✔  

Fig. 1. Stochastic cross-docking scheduling problem boundaries.  
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waiting for door-to-door handling. The mean transfer time for door-to- 
door handling is trt. Each pallet is assigned to available departing 
trucks OT under a capacity cap [pallets]. The cross-dock operations are 
pulled by a demand demp,c. The joint availability of trucks and workers 
trigger the loading task in time lt. When loading is completed, trucks 
head to retailers with routing time ttc, c ∈ C. Deliveries can be split to 
reduce penalties. Secondary deliveries are enabled by an urgent call for 
transport which incurs a further cost ucsdc. 

The proposed formulation undertakes the following assumptions, 
considered in the literature when no otherwise expressed (Theophilus 
et al., 2019):  

• The temporary storage capacity inside the hub is unlimited; 
• Trucks and dock doors are dedicated to inbound or outbound oper-

ations only;  
• External cross-dock area for trucks waiting is unlimited;  
• Unlimited outbound fleet for secondary deliveries;  
• No preemption of loading and unloading tasks is allowed. 

3.2. Stochastic truck arrivals 

The arrival time of an inbound truck i ∈ IT at the cross-docking hub is 
denoted by τ̃i as in Eq. 1: 

τ̃i = τdep
i + τ̃i

tt
,∀i ∈ IT, (1)  

where τdep
i is the departure time of truck i from the supplier, and τ̃i

tt is the 
corresponding travel time. This time is affected by weather conditions or 
roadways state (i.e., traffic, congestion, unpaved roads) as well as other 
drivers like seasonality. These result in uncertain arrival which lead to 
poor accuracy of the scheduling. 

τ̃i
tt is defined as a stochastic variable with probability distribution 

function f(τtt
i ) defined within the interval [τmin

i , τmax
i ], where τtt

i is a 
realization of the random variable τ̃i

tt , and τmin
i and τmax

i are two positive 
numbers representing the minimum and maximum travelling times 
respectively. 

As a consequence, τ̃i is also a random variable with a probability 
distribution function f(τi) defined over the interval [τdep

i + τmin
i , τdep

i +

τmax
i ]. The distribution of random variable τ̃i can be discretized by per-

forming a frequency analysis on the historical travel times per each 
supplier-terminal route. The values assumed by the stochastic variable i. 
e., variable realization, correspond to a scenarios s ∈ S. The basic sce-
nario with predictable on-time arrivals (i.e., arrivals at the expected 
time) is defined by s0. By introducing the set of scenarios S, the sto-
chastic arrival times of the inbound trucks is denoted by τis. Each sce-
nario is characterized by the realization’s probability ps of a discrete 
random variable, following the property: 
∑

s∈S
ps = 1 (2) 

The probability of scenario s is estimated as the relative frequency of 
τis. The variability of the arrival times affect the robustness of the 
scheduling. To not exceed the drivers’ working shift, the arrivals and the 
associated unloading operations must be scheduled precisely along with 
the occupation of the dock-doors. By incorporating the stochastic nature 
of the arrivals, decision-making conveys reducing lead time at the cross- 
dock and optimizing the delivery service level. 

3.3. Estimation of delivery routing time 

To decrease the problem’s complexity, the retailers served by a single 
truck are considered destinations of a generic delivery route whose de-
mand is the sum of the single orders: 

demp,c =
∑

i∈Ic

demp,i,where Ic ⊆ C (3) 

This prompts implementing the vehicle routing problem separately 
and estimating travel time or evaluating the time-windows violation. 
Good approximations can be obtained using quasi-optimal methods, as 
showcased by Figliozzi (2008). The approximation of the vehicle routing 
time leads to several simplifications of the model:  

• The scheduling problem does not involve vehicle routing for 
departing trucks.  

• The number of retailers c ∈ C is a subset holding groups of delivery 
points served by a single truck;  

• Each outbound truck serves a cluster of retailers whose route is 
denoted by c;  

• Each vehicle must deliver within a single time-window. 

3.4. Two-stage stochastic model 

Sets, variables, parameters are defined in this section according to 
the scheme of Figs. 1 and 2. A set of linear constraints ensure that the 
precedence graph is respected and explain the link between variables. 

3.4.1. Sets 
f ∈ F Suppliers 
c ∈ C Retailers 
i ∈ I Inbound trucks 
o ∈ O Outbound trucks 
p ∈ P Products 
id ∈ ID Inbound dock doors 
od ∈ OD Outbound dock doors 
s ∈ S index of scenarios 

3.4.2. Parameters 
ctwc closing time of the time window of client c 
upcc unit penalty cost for each pallet delivered one time-unit late 
iqi, pallets of product p carried by inbound truck i 
ut unit unloading time 
trt door-to-door average transfer time. 
lt unit loading time 
cap capacity of outbound trucks 
demp, demand of product p by client c 
ttc travel time from the cross-dock to client c 
ucsdc unit penalty cost for each late pallet delivered with a secondary 

shipment 
τis arrival time of inbound truck i in scenario s 
ps probability of scenario s. 

3.4.3. Decision variables 
latc absolute lateness value of the load delivered to customer c 
dto,c delivery time of outbound truck o to client c; dto,c = 0 if 

outbound truck o does not serve client c 
delo,c = 1 if outbound truck o serves client c (0, otherwise). 
suis starting time of the unloading process of inbound truck i in sce-

nario s 
pli1 ,i2 ,o = 1 if the products from inbound truck i1 are loaded into 

outbound truck o before products from inbound truck i2 (0, otherwise). 
sli,o starting time of the loading process for products coming from 

inbound truck i into outbound truck o 
trp,i,o,s number of pallets of product p transferred from inbound truck i 

to outbound truck o in scenario s 
ltpc,p,i,o,s number of pallets of product p from inbound truck i that 

should have been carried by outbound truck o to customer c but arrived 
late and must be delivered with a second truck 

exchi,o = 1 if inbound truck i transfers products to outbound truck o 
(0, otherwise). 

udaidis = 1 if inbound truck i is assigned to inbound dock door di in 
scenario s (0, otherwise). 
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ldaodo = 1 if outbound truck o is assigned to outbound dock door do 

(0, otherwise). 
pdiidi ,i1 ,i2 ,s = 1 if inbound truck i1 immediately precedes inbound 

truck i2at dock door di in scenario s (0, otherwise). 
pdiadi ,i1 ,i2 ,s = 1 if inbound truck i1 precedes inbound truck i2at dock 

door di in scenario s (0, otherwise). 
pdoido ,o1 ,o2 = 1 if outbound truck o1 immediately precedes outbound 

truck o2at dock door do (0, otherwise). 
pdoado ,o1 ,o2 = 1 if outbound truck o1 precedes outbound truck o2at 

dock door do (0, otherwise). 
tmco,c departure time of outbound truck o from the cross-dock trav-

eling to client c; tmco,c = 0 if outbound truck o does not serve client c 

3.4.4. Objective function 
The objective function minimizes the penalty costs incurred for 

violating the time-windows. These costs are split into penalties for late 
prime delivery or urgent secondary delivery. The freshness of delivered 
products, affected by delays, is agreed with the retailers resulting into a 
target service level. Even deliveries before the time-window are not 
acceptable by the retailer generating a cost. The objective function is 
expressed as follows: 

min
∑

c∈C

∑

p∈P
latcupccdemp,c +

∑

s∈S

∑

c∈C

∑

i∈IT

∑

p∈P
psltpc,p,i,o,sucsdc. (4) 

The first term of Eq. (4) corresponds to the total costs for earliness 
and tardiness of the deliveries. Such cost is avoided when a truck re-
spects the retailer time-window. The costs of secondary deliveries i.e., 
urgent transport services, are not time-dependent. 

3.4.5. Constraints 

latc ≥ otwc −
∑

o∈OT
dtoc ∀c ∈ C (5)  

latc ≥
∑

o∈OT
dtoc − ctwc ∀c ∈ C (6)  

∑

o∈OT
deloc ≥ 1 ∀c ∈ C (7)  

∑

c∈C
delo,c = 1 ∀o ∈ OT (8)  

dto,c ≤ M • delo,c ∀o ∈ OT, c ∈ C (9)  

tmco,c ≤ M • delo,c ∀o ∈ OT, c ∈ C (10)  

(
tmco,c + delo,c • ttc

)
= dto,c ∀o ∈ OT, c ∈ C (11)

∑

s∈S

∑

i∈IT

(
trp,i,o,s + ltpc,p,i,o,s

)
≥
∑

c∈C
demp,c • delo,c ∀p ∈ P, o ∈ OT, s ∈ S

(12)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

trp,i,o,s ≤ iqi,p

if sli,o ≥ sui,s +
∑

p∈P
iqi,p(ut + trt) − M

(
1 − exchi,o

)

trp,i,o,s = 0

otherwise

∀p ∈ P, i ∈ I, s ∈ S

(13)  
∑

p∈P
trp,i,o,s ≤ M • exchi,o ∀i ∈ IT, o ∈ OT, s ∈ S (14)  

∑

o∈OT

(

trp,i,o,s +
∑

c∈C
ltpc,p,i,o,s

)

≤ iqi,p ∀p ∈ P, i ∈ I, s ∈ S (15)  

tmco,c ≥ sli,o +
∑

p∈P
lti,o • trp,i,o,1 − M

(
1 − exchi,o

)
∀o ∈ OT, c ∈ C, i ∈ IT

(16)  

sli,o ≥ sui,1 +
∑

p∈P
iqi,p • (ut + trt) − M

(
1 − exchi,o

)
∀i ∈ IT, o ∈ OT (17)  

sui,s ≥ τis ∀i ∈ IT, s ∈ S (18)  

∑

i1∈IT,i1

pli1 ,i2 ,o = exchi2 ,o ∀i2 ∈ IT, o ∈ OT (19)  

∑

i1∈IT
pli2 ,i1 ,o = exchi2 ,o ∀i2 ∈ IT, o ∈ OT (20)  

∑

i∈IT
pl0,i,o = 1 ∀o ∈ OT (21)  

∑

i∈IT
pli,H,o = 1 ∀o ∈ OT (22)   

Fig. 2. Formulating stochastic arrivals with scenario tree.  
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sli,o ≥ sli2 ,o2 +
∑

p∈P
lt • trp,i2 ,o2 ,s0 − M

(

1 −
∑

d∈OD
pdoid,o2 ,o

)

∀i, i2 ∈ IT,o,o2 ∈OT

(23)  

sli,o ≥ sli1,o +
∑

p∈P
lt • trp,i1 ,o,s0 − M

(
1 − pli1 ,i,o

)
∀i, i1 ∈ IT, o ∈ OT (24)  

sui,s ≥ sui1,s +
∑

p∈P
ut • iqi1 ,p − M

(

1 −
∑

d∈ID
pdiid,i1 ,i,s

)

∀i, i1 ∈ IT, s ∈ S

(25)  
∑

d∈ID
udad,i,s = 1 ∀i ∈ IT, s ∈ S (26)  

∑

d∈OD
ldad,o = 1 ∀o ∈ OT (27)  

uda0,d,s = 1 ∀d ∈ ID, s ∈ S (28)  

udaH,d,s = 1 ∀d ∈ ID, s ∈ S (29)  

lda0,d = 1 ∀d ∈ OD (30)  

ldaH,d = 1 ∀d ∈ OD (31)  

∑

i1∈IT: i1<H
pdiid,i1 ,i,s = udai,d,s ≥ pdiad,i,i2 ,s ∀i, i2 ∈ IT, d ∈ ID, s ∈ S (32)  

∑

o1∈OT: o1<H
pdoid,o1 ,o = ldao,d ≥ pdoad,o,o2 ∀o, o2 ∈ OT, d ∈ OD (33)  

∑

i1∈IT: i1>0
pdiid,i,i1 ,s = udai,d,s ≥ pdiad,i2 ,i,s ∀i, i2 ∈ IT, d ∈ ID, s ∈ S (34)  

∑

o1∈OT: o1>0
pdoid,o,o1 = ldao,d ≥ pdoad,o2 ,o ∀o, o2 ∈ OT, d ∈ OD (35)  

pdiid,i1 ,i2 ,s ≤ pdiad,i1 ,i2 ,s ≤ 1 − pdiad,i2 ,i1 ,s ∀i1, i2 ∈ IT, d ∈ ID, s ∈ S (36)  

doid,o1 ,o2 ≤ pdoad,o1 ,o2 ≤ 1 − pdoad,o2 ,o1 ∀o1, o2 ∈ OT, d ∈ OD (37)  

pdiad,0,i,s ≤ udai,d,s ≥ pdiad,i,H,s ∀i ∈ IT, d ∈ ID, s ∈ S (38)  

pdoad,0,o ≤ ldao,d ≥ pdoad,o,H ∀o ∈ OT, d ∈ OD (39)  

pdiad,i,0,s = pdiad,H,i,s = 0 ∀i ∈ IT, d ∈ ID, s ∈ S (40)  

pdoad,o,0 = pdoad,H,o = 0 ∀o ∈ OT, d ∈ OD (41)  

pdiad,i2 i3 ,s ≥ pdiid,i1 i2 ,s + pdiad,i1 i3 ,s − 1 ∀d ∈ ID, i1, i2, i3 ∈ IT, s ∈ S (42)  

pdoad,o2o3 ≥ pdoid,o1o2 + pdoad,o1o3 − 1 ∀d ∈ OD, o1, o2, o3 ∈ OT (43)   

delo,c,pli1 ,i2 ,o,exchi,o,udai,di ,s,ldao,do ,pdiidi ,i1 ,i2 ,s,pdiadi ,i1 ,i2 ,s,pdoido ,o1 ,o2 ,pdoado ,o1 ,o2

∈{0,1},∀c∈C,o,o1,o2∈OT,∀i,i1,i2∈IT,di∈ID,do∈OD,s∈S  

latc, dto,c, sui,s, sli,o, tmco,c ∈R+, ∀c ∈ C, o ∈ OT, ∀i ∈ IT, s ∈ S  

trp,i,o,s, ltpc,p,i,o,s ∈Z+, ∀c ∈ C, p ∈ P, ∀i ∈ IT, o ∈ OT, s ∈ S 

Constraints (5) and (6) define the absolute lateness value. Con-
straints (7–9) ensure that each client is served by one outbound trucks. 
The delivery time of each truck is calculated as the departing time from 
the cross-dock plus the routing time (10,11). The reatiler’s demand must 
be fulfilled, either with the scheduled delivery or through a secondary 
delivery (12, 15). Constraints (13) and (14) impose deliveries only for 
received pallets. 

Inequalities (16–18) define the timing of the cross-dock operations. 
An outbound truck departs from the terminal only after the loading 
activities have been completed (16); Loading starts after door-to-door 
handling (17); Unloading is triggered by inbound trucks arrival (18). 

Constraints (19,20, 24) prioritizes the loading operations, imposing 
the FIFO sequence. Each truck is preceded by the dummy truck 0 (21) 
and succeeded by the dummy truck H (22). Inequalities (23,24) define 
the minimum time to start loading of an outbound truck. Loading of a 
new truck starts when loading of previous have been completed (23). 
The minimum loading times are estimated on the expected arrival times 
of inbound trucks given scenario s0 (i.e., no late arrivals). 

For inbound trucks, the unloading starts once the previous truck 
assigned to a door is completely unloaded (25). Unloading tasks are 
driven arrivals, so that this time is determined for each possible repre-
sentation of the stochastic variable τis (i.e., arrival time). Conversely, for 
departing trucks, the cross-docker establishes when loading begins. 

All trucks are assigned to a dock-door (26,27), except for dummy 
trucks 0 and H assigned to all the doors simultaneously (28–31). The 
remaining (32–43) define the precedence order of inbound and 
outbound trucks at the corresponding dock doors, prioritizing the op-
erations at the terminal. 

All the inbound operations are dependent on scenario s. Outbound 
operations need to be scheduled in advance to guarantee the trucks’ 
availability. This requires such operations to be scheduled in advance 
without knowing the actual arrival time. 

The proposed formulation is a two-stage stochastic model with 
complete recourse so that the feasibility of the solution at the second 
stage is always guaranteed. Such assumption is not unrealistic owing to 
the broad availability of extra-paid delivery trucks in the transport 
market. Whether all carriers are unavailable at a given time, they will 
reach the cross-docking hub as soon as they complete their previous 
missions. 

4. Stochastic GA implementing scenario tree 

Cross-docking scheduling problems are inherently NP-hard (Abad 
et al., 2018) and are not solvable by a commercial solver in a reasonable 
time for real-world sized problems (Joo and Kim, 2013). GA proved to be 
effective in solving NP-hard optimization problems, particularly for VRP 
and cross-dock scheduling (Ahmadizar et al., 2015; Kusolpuchong et al., 
2019). GAs can provide a quasi-optimal solution for complex instances 
with dozens of trucks and outperform most state-of-art meta-heuristics 
(Vahdani and Zandieh, 2010). In this paper, a tailor-made SGA imple-
menting the scenario tree (SGA-ST) is proposed to solve the problem 
formulation in 3.4 when the instance scales up. 

4.1. Chromosome definition 

Each chromosome is made of an array of genes that represent the 
entities/variables of the problem to solve. The proposed GA encodes a 
random sequence of trucks into each chromosome. Each gene labels a 
specific truck. Since no compound trucks exist and each truck can be 
either devoted to inbound or outbound, this algorithm introduces two 
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types of chromosomes, namely inbound and outbound chromosomes. 
Inbound chromosomes count a number of genes equal to the 

incoming trucks. The sequence encoded into such chromosomes repre-
sents the priority for the unloading operations. SGA-ST converts such 
priority into a solution for the inbound scheduling problem through the 
application of the algorithm described in Section 4.3. Likewise, the 
priority order given by the outbound chromosome generates a solution 
for departures scheduling as illustrated in Section 4.3. At the first stage, 
the proposed SGA-ST sets |S| + 1 chromosomes: |S| inbound chromo-
somes whose number is equal to the number of scenarios of different 
arrivals, and one outbound chromosome. The latter encoded the final 
schedule of the outbound trucks loading and departing operations aimed 
to minimize the penalty costs from late deliveries. For each inbound 
chromosome (i.e. scenario), SGA-ST extracts a random sequence be-
tween 1 and |I|. Similarly, a random sequence between 1 and |O| is also 
generated for the outbound chromosome. 

Given the two-stage nature of the problem, the assignment of in-
bound trucks to the corresponding dock-door represents a second-stage 
decision. Therefore, by providing a schedule for each scenario, the cross- 
docker implements the optimal decision based on the actual leaf of the 
scenarios tree. 

Outbound chromosomes count a number of genes equalizing the 
departing vehicles, and consequently, the sequence of the chromosome 
represents the priority for loading. Such list indicates the candidate 
trucks to be assign to the next available door. Scheduling outbound 
trucks’ operations consists of the first-stage decision as it needs a-priori 
management of the vehicles fleet for deliveries. 

We then solve the stochastic scenario tree built upon the realization 
of the uncertain arrival time. Each feasible solution of the scheduling 
problem is represented by the inbound chromosomes corresponding to 
scenario s. Since a scenario corresponds to sequence of arrivals, SGA-ST 
provides a schedule for each sequence. Settings two sets of chromosomes 

for inbound and outbound respectively, enables generating only feasible 
solutions and avoids time-consuming cuts. Fig. 3 draws the pattern used 
to set chromosomes, and the main steps of the proposed genetic 
algorithm. 

4.2. Fitness function 

A fitness function determines the most promising chromosomes that 
will evolve to the next generation. As chromosomes represent feasible 
solutions for the cross-docking scheduling problem, the objective func-
tion determines (4) provides a formulation of the fitness function. 

4.3. Decision rules 

The algorithm randomly generates a chromosome’s array. A set of 
tailor-made rules are applied to obtain the decision variables and 
quantify the fitness function. 

4.3.1. Door assignment procedure 
The truck with the highest priority (i.e., the first gene in the chro-

mosome) is assigned to the first available dock door. When no doors are 
available, the algorithm calculates the release time 
rt:=sui0 ,s +

∑

p∈P
ut • iqi0 ,p ∀id ∈ ID, and assigns the incoming truck to the 

door with the earlier release time. 
Because of the uncertain arrival time, the door-assignment algorithm 

pseudo-code is repeated for each scenario s thus providing |S| different 
door-assignments and truck-induced operations schedules. The pseudo 
code 2., based on the comparison between release rt and available time, 
availTime: = sui0s +

∑

p∈P
ut • iqi0 ,p + trt • trp,i,o,s, aids determining the 

assignment of outbound dock-doors OD.  
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Pseudo code 1. Inbound dock-door assignment.   

Pseudo code 2. Outbound dock-door assignment. 

4.3.2. Final outbound schedule 
The dock-door assignment procedure determines a schedule for the 

inbound operations per each realization of the stochastic parameter τis. 
It is then possible to obtain an outbound schedule by assessing the ex-
pected costs for each scenario s ∈ S and the probability ps of its 
realization. 

The final outbound schedule procedure proposed in Pseudo code 3. 
determines the optimal schedule of the outbound truck loading opera-

tions based on the fitness function value described in Equation (4). It 

evaluates ∀ scenario s1 the cost function upcc •

(
∑

p∈P
demp,c − latePal

)

•

latc + latePal • ucsdc • ps2 resulting from the outbound schedule based on 
s1. Assuming this schedule, the procedure computes the associated error 
cost due to the realization of any other scenario s2. This cost is weighted 
to the probability of s2 given by ps. The final outbound schedule is that 
which minimizes the error cost from the inaccurate forecast of trucks’ 
arrival.   
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Pseudo code 3. Outbound truck scheduling. 

4.4. Parents selection, crossover and swap 

The parents selection procedure links two consecutive generations of 
GA. The most promising chromosomes (i.e., with high fitness value) 
transmit their pattern to the next generations. Once the parents are 
selected, they undergo recombination of their genes to shape the 
offspring. Parents’ selection mechanism uses a random selection based 
on roulette wheel pattern (Ahmadizar et al., 2015). The new generation 
recombines with a new population randomly generated to prevent the 
risk of local-minimum considering a mutation rate (MR) of 0.1. 

Crossover combines the parents’ genes to shape two new solutions 
(Arabani et al., 2011). In agreement with the stochastic two-stage 
formulation, the cross-over rate (CR) change at each generation in the 
interval [0,1]. The crossover position r is indeed chosen randomly using 
a roulette wheel. The genes in the batch [1, r] are exchanged as in Fig. 3. 
The generation of feasible solutions is guaranteed by removing dupli-
cated genes, replaced by new random sequences. 

The swap operator performs a second random rearrangement of the 
genes at each chromosome (Joo and Kim, 2013). Here, the roulette 
wheel extracts two random positions r1 and r2 to swap in the interval [1, 
|I|] or [1, |O|]. 

5. SGA-ST validation 

A gap estimation is carried out to assess the quality of the SGA-ST 
solution. It consists of two steps intended for lower and upper bound 
respectively. By definition, the lower bound could be unfeasible because 
of the constraints’ relaxation, while the upper bound always coincides 
with a feasible solution. 

5.1. Lower-Upper bound estimation 

To get the lower bound, we relax the constraints of the dock-doors’ 
availability (Constraints 23–25). The workers unload the trucks as soon 
as they reach the cross-docking terminal. The same relaxation applies to 
outbound dock doors. Trucks are loaded as soon as the ordered pallets 
are available in the temporary storage, with no delays due to limited 
capacity. These steps are applied to each chromosome, calculating a 
fitness value, and providing a lower bound to each solution. 

The upper bound estimation procedure generates a feasible solution 
by determining a ranked sequence for inbound and outbound trucks. 
Inbound trucks are scheduled according to the FIFO policy. When the 
full order is ready, the gene corresponding to the outbound truck is 
added to the chromosome. The procedure illustrated in the previous 
section evaluates the chromosomes and tallies the fitness value of the 
upper bound. 
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5.2. SGA-ST vs. SMILP comparison 

The validation of the proposed SGA-ST is carried out by comparing 
the solution obtained with a Stochastic MILP (SMILP) formulation 
defined in Section 3. The SMILP has been implemented in AMPL and 
solved using the Gurobi solver running on a 2.59 GHz Dual Core PC with 
12 GB of RAM for a small instance. As the prosed stochastic scheduling 
problem is intrinsically NP-hard, validation is only possible with a small 
instance. While reporting estimates upper and lowe bounds, Table 3 
underlines that SGA-ST achieves the optimum quickly when the instance 
scales up. When the total number of trucks exceeds 20, the optimization 
model lacks to provide a solution on time while the SGA-ST finds its best 
within 12 seconds. 

6. Real-world application 

The proposed SGA-ST algorithm is applied to a real-world scheduling 
problem of a national delivery service company. This company is 
specialized in delivering fast-moving and perishable products to re-
tailers. Two type of services are ruled in agreement with the retai-
lersreatilers. These correspond to two delivery time-windows, service 
levels, and penalties. The Gold service completes deliveries within 24 h 
hours and is intended for highly perishable products like some fresh 
spring varieties (e.g. cherries, strawberries). The Silver service is cheaper 
but ensures delivery within 48 h hours. Both time-windows begin when 
the truck departs from the supplier. 

The cross-docking terminal layout is made of 14 dock-doors, split 
equally for inboundindound and outbound tasks. Table 4 summarizes 
the input data of the large-scale instance. Records of unloading, loading, 
and door-to-door handling tasks have been gathered and calculated 

Fig. 3. Chromosomes definition over the scenario tree and SGA-ST steps.  
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through discrete frequency analyses conducted on field. Fig. 4 shows the 
distribution of the arrival time τi for the inbound trucks departing from 
the 130 Italian provinces. The best-fitting PDF f(τi) can vary with the 
supplier, the type of route, and with seasonality on weather and traffic 
conditions. The collection of historical arrivals recommends setting a ST 

made of 33 scenarios s ∈ S. Each scenario corresponds to different arrival 
times τisand probability ps of realization in agreement with the CDF of 
Fig. 5. 

The proposed SGA-ST has been implemented into a expert system 
developed in .NET C# programming language and run on a 2.59 GHz 
Dual Core PC with 12 GB of RAM. A graphic user interface (GUI) allows 
setting the number of mutations of the GA algorithm and the chromo-
somes population’s size. At the first generation, the upper and lower 
bounds of the fitness function (4) are quantified. For the others, the 
decision-support tool provides the current best solution, the number of 
late deliveries, the best mutation, and the corresponding gap with the 
lower bound as in Fig. 6. 

After instance-induced tuning, ten chromosomes are initialized at 
each generation. The SGA-ST requires one random chromosome for all 
the departing trucks and one chromosome per scenario s for the inbound 
trucks. A problem solution is encoded into 34 chromosomes. Each in-
bound chromosome schedules 130 trucks, whilst a outbound chromo-
some considers 141 trucks. The testbed of the algorithm demonstrates it 
converges after 103 generations, resulting into 34⋅104 chromosomes to 
solve such a instance. 

Fig. 7 draws the dock-door utilization over the scheduling horizon of 
daily operations. The chart splits the inbound and outbound docks and 
shows up- and down-times of the unloading and loading operations 
carried out at each door id ∈ ID and od ∈ OD respectively. It provides a- 
priori practical insights to the cross-docker about which will the mostly 
utilized door will be, and how to organize workers’ teams for unloading, 
handling and shipping preparation accordingly. Fig. 7 also highlights 
layout bottle necks and assessesasseses the contribution of the dock- 
doors to improve the overall cross-docking performance, to reduce 
penalties and increase retailers service level. 

The dock-doors utilization is further explored via a sensitivity anal-
ysis. We tested other two cross-dock layout configuration with 12 and 16 
doors respectively, still equally distributed between inbound and 
outbound. The comparison is illustrated in Fig. 8. 

We confirm that dock-doors utilization rates are affected by their 
number, but such evidence can change with the seasonal traffic and 
delivery service intensity. More considerations arise from Table 5. SGA- 
ST schedules 271 trucks with an expected penalty costs (i.e. fitness 
function) of 45.78 [€/day] with |ID| = 7, |OD| = 7, and only three de-
liveries result to be late. The total lateness is 6.19 [h/day], mainly due 
the traveling time (i.e. 23 h/route) required to achieve the farthest 
retailer. The upper bound is quantified in 303.91 [€/day] resulting from 
28 late deliveries, whilst the lower bound is 1.97 [€/day], with only one 
late delivery. 

Because arrivals are concentrated in the time-window 06:00–10:00 
p.m.PM, utilization is maximum in this batch requiring for accurate 
arrangement of the workforce during the day (Tadumadze et al., 2019). 
Whether we tried new layout configurations by increasing or decreasing 
the number of doors, the DST could estimates the penalties paid by the 
cross-docker during a broad horizon (i.e. one year) and assess whether 
or when layout re-design might pay off. 

The fitness’s lower bound, obtained by relaxing the dock-doors’ 
availability (23–25), seems not influenced by the number of dock-doors. 
The lower bound efficacy in the proposed SGA-ST increases with prop-
erly designed cross-docking layout, whose dook-doors are sufficient to 

Table 3 
Results of the comparison between the SGA-ST and a stochastic MILP model.   

Inbound data Outbound data Scenarios SMILP solving time 
[s] 

SGA-ST solving 
time [s] 

SMILP optimal 
solution 

SGA-ST best 
solution 

Upper 
bound 

Lower 
bound 

Trucks Doors Trucks Doors 

1 4 1 2 1 2 5 8 27 27 46 3 
2 4 2 5 2 1 399 0.5 104.364 104.364 118.93 90.32 
3 4 2 5 2 2 47 0.5 118.785 118.785 127.76 112.58 
4 6 2 8 2 1 140 1 174.32 174.32 196.52 170.12 
5 10 2 10 2 1 NA 12 NA 208.88 309.87 195.48  

Table 4 
Input data of the case study   

Value 

Inbound/Outbound trucks |I|; |O| 130; 141 
Gold service deliveries 70 out of 141 
Silver service deliveries 71 out of 141 
Inbound/outboundOurbound dock-doors |ID|; |OD| 7; 7 

Average load of inbound truck 

∑

i

∑

p
iqip

|I|
[pallets] 

30 

ut [s/pallet] 55 
trt [s/pallet ⋅ trip] 46 
lt [s/pallet] 55 
upcc 1 
ucsdc 10  

Fig. 4. Frequency distribution of expected truck arrival times.  

Fig. 5. Scenarios’ Cumulative Distribution Function (CDF).  
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avoid any trucks queues (|ID|→|I| ∧ |OD|→|O|) or when arrivals are 
uniformly distributed. Conversely, it is less effective when dock-doors 
are bottlenecks. 

The solutions’ benchmark is the Business-As-Usual (BAU) scenario 
which accounts penalties for 111.76 [€/day] resulting from 6 late de-
liveries with a total lateness of 7.5 [h]. The proposed SGA-ST provides a 
cost saving of 59.04%. compared to the BAU scenario. 

7. Discussion of managerial implications 

As uncertainty significantly affects cross-docking operations sched-
uling, the adoption of still fascinating deterministic decision-making, 
broadly explored in the literature (e.g. Tadumadze et al., 2019; Theo-
philus et al., 2021), could not convey cost savings in real-world appli-
cations characterized by uncertain truck arrivals. In this paper, we 
formulate a stochastic two-stage of a single-terminal cross-docking op-
erations scheduling problem and develop a tailor-made SGA-ST solving 
method for large-scale instance under uncertainty. The savings provided 
by the SGA-ST are assessed and compared to the deterministic problem 
using two well-known estimators: the Benefit Stochastic Solution (BSS) 
and the Expected Value of Perfect Information (EVPI) (see Birge and 
Louveaux, 2011). The comparison entails the expected value (EV) of the 
solution which approximates the stochastic parameters with their EVs. 
The resulting optimal function (4) is equal to 362.52 [€/day], even 
worse than the upper bound with SGA-ST. The BSS quantifies the cost 
burden (i.e., corresponding to +87.38%) reached when approximation 
to EVs of the stochastic parameters are used instead of stochastic 
modeling. 

To further benchmark the proposed SGA-ST, the EVPI, representing 

the gain from full information availability, is quantified. The full in-
formation availability (PI) consists of the actual arrival time of each 
incoming truck acknowledged before the scheduling. The SGA-ST esti-
mates EVPI by considering the certain scenario s* i.e., PI, which 
generate a cost function of 36.68 [€/day] with a burden of 9.1 [€/day] (i. 
e. compared to 45.78 [€/day]). We reasonably conclude that the optimal 
schedule provided by SGA for each scenario (i.e. inbound chromosome) 
of the ST, supports decision-making under uncertainty achieving a cost 
reduction close to EVPI (i.e. full information availability). The mana-
gerial implications resulting from adopting the DST incorporating the 
novel SGA-ST consist on the chance for scheduling daily cross-docking 

Fig. 6. Decision-support tool GUI: fitness functions throughout generations.  

Fig. 7. Decision-support tool GUI: Dock-door utilization over the day.  

Fig. 8. Comparisons of two layout configurations based on available 
dock-doors. 
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operations with no a-priori knowledge of the arrival times, a better or-
ganization of the workforce during the shift, and the allocation of the 
most-skilled workers to the expected bottlenecks or late deliveries with 
the highest penalty costs (i.e. highly perishable products’ deliveries). 

The conducted sensitivity analysis on the layout configuration in 
terms of dock-door availability (Table 5) provides other practical in-
sights. It aids the terminal-logistic manager while assessing the daily 
costs resulting from uncertain arrivals, the unmet service level for the 
retailers, and the penalties paid due to the lack of dock-doors. According 
to the quantified savings or costs, two dimensions of improvement can 
be tried and simulated using the DST: (1) reconfiguring the terminal 
layout by increasing the number of dock-doors (if possible), or (2) 
reducing the unloading, door-to-door, and loading tasks’ time through 
more expert labour or more efficient storage/handling equipment. SGA- 
ST enables predicting time and cost savings generated daily when the 
number of dock-doors increases. While solving the real-world instance, 
we reveal how reducing daily penalty costs of 80% is possible by 
establishing a new dock-door. Similarly, SGA-ST could assess the costs 
saving associated with a reduction of the cross-docking tasks time. 

This research is triggered by an industrial and managerial decision- 
making issue: scheduling cross-docking operations under uncertain 
truck arrivals. With respect to excellent contributions to solve complex 
cross-docking scheduling (Fathollahi-Fard et al., 2019; Shahmardan 
et al., 2020; Theophilus et al., 2021; Dulebenets, 2021), we found a gap 
in the research where uncertainty is not broadly investigated. A first 
tentative to address this gap, is proposed in this paper with a tailor-made 
SGA-ST heuristics solving a two-stage SMILP when the instance scale up. 
We first respond to managerial needs with a user friendly DST incor-
porating the SGA and enabling timely operational decision-making and 
service level-induced costs optimization. Future research is intended for 
developing new functionalities in the DST and benchmarking the pro-
posed SGA-ST with other solving algorithm (e.g., SA, VNS, TS, ACO, ICA, 
ABC, SEO, APMA) adopted to address other problems’ dimensions to 
seek greater cross-docker’s benefits. 

8. Conclusions and future research 

Cross-docking terminal enables consolidating and sorting fast- 
moving and perishables products throughout the supply chain net-
works and contributes to reducing warehousing costs and transportation 
efforts. Synchronization between inbound and outbound operations 
leads to cost reduction and increases on-time deliveries, but it is sensi-
tive to uncertain truck arrivals. 

Scheduling unloading, door-to-door and loading operations in a 
cross-docking terminal is a true challenge for practitioners, in real-world 
logistic environments characterized by uncertainty. Decision-support 
systems aid logistic managers to tackle such issue, but the inheren-
tlyinerently complexity of stochastic optimizationoptimzation models 
discourages their adoption in practice. We found very few stochastic 
formulations and solving methods for cross-docking operations sched-
uling are illustrated in the literature. 

This paper aims to fill this gap by proposing a tailor-made SGA-ST to 
schedule truck services and handling operations at the cross-docking 
terminal. The proposed SGA-ST algorithm optimizes the penalty costs 
paid to the retailers for late deliveries of perishable products. After 
validation and comparison with SMILP, we applied SGA-ST to a real- 

world instance of a national delivery service company of perishable 
products serving retailers operating. SGA-ST, fueled by the historical 
profile of the trucks arrival times, provides significant reduction of such 
costs and increases retailers service compared to a deterministic deci-
sion. Furthermore, GA overcomes the computational complexity of 
SMILP and enables solving large instances in reasonable time. To further 
support managerial decisions, the proposed SGA-ST has been incorpo-
ratedincoroporated into a user-friendly DST and GUIs to assess and 
quantify daily savings. 

Future research is intended for handling strategic decisions like the 
optimal number of dock-doors to avoid queues and increase service 
level. Additionally, the minimization of forklift traveling time in door- 
to-door handling tasks can be considered into a bi-objective problem 
formulation. Lastly, further studies will benchmark the proposed SGA- 
ST with other metaheuristic algorithms and incorporate the best- 
performing techniques within the DST. 
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