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ABSTRACT
To date the true global incidence of intrahepatic cholangiocarcinoma (iCCA) and the 
underlying risk factors remain to be fully defined, in particular, the role of occupational 
and environmental factors. Currently, the putative role of asbestos exposure as a risk 
factor for iCCA is gaining increased attention in the international scientific community 
and agencies.

In this commentary we review and integrate available epidemiological and mechanistic 
evidences that support a potential role of asbestos exposure in iCCA etiology.
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INTRODUCTION
Intrahepatic cholangiocarcinoma (iCCA) arises from the epithelial cells within the liver bile ducts 
and represents the second most common primary liver cancer after hepatocellular carcinoma 
(HCC). One of the major challenges in the field of iCCA is to define the true global incidence of 
this disease and the underlying risk factors. Although still considered a rare malignancy in Europe 
and USA, in the past decades age-standardized iCCA incidence appeared to steadily increase in 
most locations worldwide [1]. However, this trend needs to be interpreted with caution due to the 
lack of a separate code for iCCA, extrahepatic (eCCA) and perihilar (pCCA) cholangiocarcinomas 
in the historical versions of the International Classification of Diseases (ICD) coding system. It 
is undeniable, though, that the hospital charge of patients with a diagnosis of iCCA is increased 
in the last 15 years; this increase has been registered not only in USA, but also in other  
international referral centers for hepato-biliary cancers worldwide, including Italian hospitals [2, 
3]. An important issue that has been raised by some authors as a possible bias in the identification 
of the true iCCA global incidence is the misclassification of this disease as HCC or liver metastases. 
However, it is important to underline that in international referral centers for hepato-biliary 
cancers, the differential diagnosis among these hepatic lesions is quite easy. Indeed, apart 
from the morphology and the obvious search of the primary cancer (in case of suspect for liver 
metastases), a panel of specific antibodies for immunohistochemistry (IHC) analysis is routinely 
employed for diagnostic purpose and include: CK20(+), CK7(–/+), CDX2(+) for metastatic colorectal 
cancer (CRC); CK7(+), TTF1(–), p40(+) for squamous-cell lung cancer; CK7(+), TTF1(+), p40(–) for 
lung adenocarcinoma; synaptophisin(+), cromogranin(+), TTF1(+) for lung small-cell carcinoma 
(which is morphologically very different from iCCA anyway); HSA(+), arginase-1(+) and glutamine 
synthetase(+) for HCC; CK7(+), CK19(+) and CEAp(+) for iCCA. As the diagnostic reliability of this 
standardized procedures is recognized worldwide, the suspect of a misleading diagnosis may be 
ruled out with reasonable confidence. Overall, the data from the real world of clinical practice, along 
with the finding that about 21% of the diagnosed cancers of unknown primary sites (CUPs) are 
biliary tract cancers [4], seem to suggest that the global incidence of iCCA is likely underestimated 
than overestimated. 

Currently certain pathological/genetic conditions (including primary sclerosing cholangitis, 
hepatolithiasis, bile duct cysts, Caroli’s disease, liver fluke infections and hemochromatosis type 
1) have been recognized as risk factors for iCCA [1, 5]. In East Asia (Thailand, Laos, Cambodia 
and Vietnam), where liver flukes are endemic, parasitic infections with Clonorchis sinensis and 
Opisthorchis viverrini represent the dominant risk factor for this disease [1]. A different scenario 
occurs in Western countries, where the associated risk factors still remain unknown in most of 
the diagnosed iCCA cases [1]. To date the role of occupational and environmental risk factors in 
iCCA development has been little investigated. An increased iCCA incidence has been reported 
among Japanese printing workers following chronic exposure to the volatile organic solvents 
1,2-dichloropropane and dichloromethane [6, 7]. Interestingly, whole-exome sequencing 
(WES) analysis of the tumor tissue of these workers has revealed a unique mutational profile 
and a mutation burden 30-fold higher to that observed in iCCAs of patients not exposed to 
these solvents [8]. However, as the global number of subjects exposed to 1,2-dichloropropane 
and dichloromethane is limited, other occupational and environmental risk factors need to be 
considered to explain the worldwide increase in iCCA incidence. 

In this commentary we review current epidemiological and molecular evidence that support a 
potential link between asbestos exposure and increased iCCA risk.

ASBESTOS AND ICCA: FINDINGS FROM EPIDEMIOLOGICAL, 
MOLECULAR AND HISTOLOGICAL STUDIES
The possible association between asbestos exposure and biliary tract cancers was firstly observed 
some decades ago by Selikoff et al. who reported a significant increase (RR = 2.42, p < 0.01) of 
death for gall bladder/bile duct cancer among 17 800 asbestos insulation workers of USA and 
Canada from 1967 to 1986 [9]. This possible association has been investigated in subsequent 
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cohort studies [10, 11], even if the lack of distinction between iCCA and HCC makes the results of 
these studies difficult to interpret (Table 1). More compelling evidences have been provided from 
the first two case-control studies ever published on this topic [12, 13]. The first study was carried 
out in Italy and included 69 iCCAs and 86 eCCAs patients matched up to four controls per case. An 
increased risk for iCCA in workers exposed to asbestos (OR = 4.81 95% CI 1.73–13.33) was observed, 
whereas limited evidence was found for eCCA (OR = 2.09 95% CI 0.83–5.27) [12]. The second case-
control study was nested in the Nordic Occupational Cancer (NOCCA) cohort and included 1 458 
iCCA and 3 972 eCCA cases from population-based cancer registries of Finland, Iceland, Norway 
and Sweden [13]. National decennial census data on occupations from 1960 to 1990 were linked 
to the NOCCA asbestos job-exposure matrix; notably it was observed an increasing risk of iCCA 
with cumulative exposure to asbestos, with an OR of 1.7 (95% CI 1.1 to 2.6) for subjects with a 
cumulative exposure of ≥15.0 f/mL × years compared to never exposed [13].

In order to hypothesize a role of asbestos exposure in iCCA development, the detection of fibers in 
the intrahepatic biliary tract is mandatory. Two recent exploratory studies reported the deposition 
of asbestos fibers in the bile/gallbladder of patients with benign diseases of the biliary tract and, 
more interestingly, in the liver of iCCA patients living in Casale Monferrato, an area of Italy at 
high level of environmental exposure to asbestos [14, 15]. These findings are in line with previous 
studies showing that, beyond the respiratory tract, asbestos fibers may disseminate through other 
organs in the body, including the liver and the biliary tract [16, 17]. Undoubtedly, the detection of 
fibers in the liver does not represent per se a sufficient condition to sustain a causal link between 
asbestos exposure and iCCA development, as they have been detected also in some cancers not 
related to asbestos exposure [16]. Nevertheless, this finding deserves further investigations to 
shed more light on the whole spectrum of extra-pulmonary cancers related to asbestos exposure. 
Indeed, the susceptibility to asbestos-induced carcinogenesis seems to vary among the different 
tissue types, making some organs at a higher cancer risk (or more prone to earlier cancer 
development) compared to other ones [9]. It is widely recognized that inflammatory response 
plays an important role in cancer onset and progression, and biliary tract diseases associated with 

TYPE OF 
STUDY

NO OF 
SUBJECTS 

WORKERS’ 
CATEGORY

YEARS ASBESTOS EXPOSURE 
ASSESSMENT

CANCER 
SITE

EFFECT MEASURES

Cohort 
[10]

•  4427 workers
•  22135 
matched controls

Shipbreaking 
workers

1975–1989 A panel of seven experts 
was asked to assess 
exposure subjectively

Liver and 
Intrahepatic 
bile ducts

HRadj 1.6 (95% CI 1.08-2.36)

Cohort 
 [11]

12578 workers Asbestos-
cement 
workers

1934–2006 Two expert industrial 
hygienists estimated 
asbestos exposure based 
on already collected data, 
for each plant and period

Liver and 
Intrahepatic 
bile ducts

SMR 0.99 (95% CI 0.81–1.20) (Males)
SMR 0.87 (95% CI 0.42–1.60) 
(Females)

Case-control 
[12]

•  41 iCCA cases
•  149 controls

All the different 
occupations 
of cases and 
controls were 
considered

2006–2010 Based on detailed entire 
job history and calendar 
periods, assessment of 
past asbestos exposure 
(Yes/No) was performed 
independently by two 
Occupational Physicians, 
unaware of case/control 
status

Intrahepatic 
bile ducts

Occupational exposed to asbestos 
vs not exposed ORadj 4.81 (95% CI 
1.73–13.33)

Case-control 
[13]

•  1458 iCCA cases
•  6773 controls

All the different 
occupations 
of cases and 
controls were 
considered

1971–2005 The exposure to asbestos 
for each subject was 
estimated by applying 
the NOCCA job-exposure 
matrix (JEM) to the 
available occupational 
codes of cases and 
controls

Intrahepatic 
bile ducts

Cumulative exposure
1.0 (reference):0 f/mL × years
OR adj 1.1 (95% CI 0.9-1.3): 0.1–4.9 
f/mL × years
OR adj 1.3 (95% CI 0.9-2.1): 5.0–9.9 
f/mL × years
OR adj  1.6 (95% CI 1.0-2.5): 10.0–14.9 
f/mL × years
OR adj  1.7 (95% CI 1.1-2.6): ≥15.0 
f/mL × years

Table 1 Cohort and case-control 
studies investigating 
occupational asbestos exposure 
and iCCA risk.
a Estimates from logistic 
regression models conditioned 
on matching variables (year 
of birth, gender and country). 
Abbreviations: HRadj: adjusted 
hazard ratio; SMR: standardized 
mortality ratio; ORadj: adjusted 
Odds ratio; f/mL: fibers/mL; 
NOCCA: Nordic Occupational 
Cancer Study.

nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
nce):0 f/mL � years OR adj 1.1 (95% CI 0.9-1.3): 0.1-4.9 f/mL � years OR adj 1.3 (95% CI 0.9-2.1): 5.0-9.9 f/mL � years OR adj  1.6 (95% CI 1.0-2.5): 10.0-14.9 f/mL � years OR adj  1.7 (95% CI 1.1-2.6): <2265>15.0 f/mL � year
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chronic inflammation (primary sclerosing cholangitis, hepatolithiasis, choledochal cysts and liver 
fluke infections) have been established as risk factors for iCCA development [1]. Interestingly, thin 
and long asbestos fibers can induce a state of chronic inflammation in target tissues, due to their 
ability to persist for a very long time and to stimulate the prolonged release of pro-inflammatory 
cytokines by activated macrophages [18]. In this scenario, it is possible that asbestos fibers 
trapped in the smaller hepatic sinusoids may induce a state of chronic inflammation in the liver, 
similarly to what occurs in biliary tract diseases associated with chronic inflammation, leading to 
cell malignant transformation and cancer development.

From a molecular point of view, the knowledge of the mechanisms driving iCCA carcinogenesis is 
rapidly evolving due to the availability of high throughput analytical technologies such as next-
generation sequencing. In lung cancer, genomic profiling identified a distinctive molecular signature 
in asbestos-exposed patients compared to not-exposed, including copy number aberrations in the 
2p16, 9q33.1 and 19p13 loci and MRPL1, INPP4A, SDK and SEMA5B somatic mutations [19, 20]. 
In malignant pleural mesothelioma, a classic model of asbestos-related cancer, BAP1 has been 
reported as the most frequently altered gene, with a frequency ranging from 23% to 57% of cases 
[21, 22]. Similarly, a recent WES analysis on iCCA patients, categorized according to recognized risk 
factors for this disease and to the Italian National Mesothelioma Register (ReNaM) questionnaire 
for asbestos exposure, revealed a higher rate of BAP1 somatic mutations in asbestos-exposed 
patients compared to non-exposed (27% vs 5%, p-value = 0.0289) [23]. Furthermore, the first 
clinical case of a 47 years-old patient developing an iCCA in absence of risk factors, except for 
occupational exposure to low levels of asbestos for about 15 years, has been reported [24]. This 
patient, along with BAP1 loss of heterozygosity in tumor cells (a frequent genetic event in iCCA [25]), 
also carried a BAP1 germline mutation (c.255_255 + 6del). Interestingly, in humans, cells with BAP1 
germline mutations have been shown to be more susceptible to asbestos carcinogenesis, because 
of their reduced ability to repair DNA damages and to trigger apoptosis following exposure to 
environmental carcinogens [26]. However, as BAP1 molecular alterations have been detected also 
in cancer patients occupationally not-exposed to asbestos [27, 28], further studies are needed to 
better clarify the role of BAP1 gene in asbestos-induced carcinogenesis.

CONCLUSIONS
Currently, about 125 million of people are still environmentally exposed to asbestos worldwide, 
even in countries that banned its use [29]. Recently, the possible role of asbestos exposure as a 
risk factor for iCCA is gaining increased attention in the international scientific community and 
agencies [30, 31].

Overall, the body of evidences coming from epidemiological and mechanistic studies addresses to 
a putative causal role of asbestos in the genesis of iCCA, deserving further investigations in large 
observational studies with accurate asbestos exposure assessment.
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