
11 March 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Chierici, A., Chirco, L., Le Chenadec, V., Scardovelli, R., Yecko, P., Zaleski, S. (2022). An optimized VOFI
library to initialize the volume fraction field. COMPUTER PHYSICS COMMUNICATIONS, 281, 1-11
[10.1016/j.cpc.2022.108506].

Published Version:

An optimized VOFI library to initialize the volume fraction field

Published:
DOI: http://doi.org/10.1016/j.cpc.2022.108506

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/902860 since: 2022-11-15

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cpc.2022.108506
https://hdl.handle.net/11585/902860

An optimized Vofi library to initialize the volume

fraction field

A. Chiericia, L. Chircoa,b, V. Le Chenadecc, R. Scardovellia, Ph. Yeckod, S.
Zaleskib,e

aDIN – Lab. di Montecuccolino, Università di Bologna, Via dei Colli 16, 40136 Bologna,
Italy

bSorbonne Université & CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, Paris,
F-75005, France

cMSME, Univ. G. Eiffel, UMR CNRS 8208, Marne-la-Vallée, 77454, France
dPhysics Department, Cooper Union, New York, NY, USA

eInstitut Universitaire de France (IUF), Paris, France

Abstract

The Vofi (Volume Of Fluid Initializer) library has been developed to ini-
tialize the volume fraction field determined by implicitly-defined interfaces.
The major conceptual changes in the numerical algorithms of the library are
discussed and a few new features, including the computation of the reference
phase centroid and of the interface length/area, are presented and applied to
grid cells that are cuboids. Several numerical tests are considered to demon-
strate both the accuracy of the new features, as the grid resolution and the
number of integration points are varied, and the considerably improved effi-
ciency of the library with respect to its previous version. A few of these tests
are also included in the software distribution written in C, examples of C++

and Fortran interfaces are also provided.

Key words: implicit function; numerical integration; volume fraction
function; VOF method

NEW VERSION PROGRAM SUMMARY
Program Title: Vofi – Volume Of Fluid Initializer

Licensing provisions: GPLv3

Programming language: C

Journal reference of previous version: Comput. Phys. Comm. 200 (2016) 291-299

Does the new version supersede the previous version?: YES

Preprint submitted to Computer Physics Communications August 1, 2022

Reasons for the new version: optimization of the library and new features have

been added

Summary of revisions: most of the routines have been rewritten, several numerical

algorithms have been revised, as detailed in the paper, added features include the

computation of the reference phase centroid and of the interface length in 2D and

area in 3D; furthermore heights and triangulation data can now be printed for

graphics

Nature of problem: The Vofi library computes the volume fraction of a cuboid

cut by an interface described by a user-defined implicit function, and optionally

the centroid of the cut volume and the area (length in 2D) of the portion of the

interface inside the cell

Solution method: The Vofi library reorders the three Cartesian directions, x, y, z,

in ascending order, x3, x2, x1, computes the integration limits along the third and

second directions, respectively x3 and x2, and determines the local height func-

tion, along x1, that is the integrand of a double Gauss-Legendre integration with

a variable number of nodes. Optionally, the same heights are used to compute the

centroid of the cut volume and to triangulate the interface.

1. Introduction

Direct numerical simulation (DNS) is a popular method for detailed stud-
ies of multiphase flows which are encountered in many scientific disciplines,
such as thermo-fluid dynamics, oceanography, chemistry and engineering.
The Volume-of-Fluid (VOF) method is one of the numerical techniques that
is used to predict the evolution of interfaces in multiphase flows within the
framework of DNS [1, 2]. The method is based on the characteristic function
χ(x, t), a multidimensional Heaviside step function, with value 1 in the ref-
erence phase and 0 elsewhere, at time t. The integral of the function χ over
a computational domain D provides the volume of the portion of D that is
occupied by the reference phase. The volume fraction C is associated to the
function χ and it represents the fraction of a grid cell that is occupied by the
reference phase, as defined by Eq. (2).

An accurate representation of the volume fraction field is necessary for
an exact initialization of the total mass at the beginning of a numerical sim-
ulation. It is also required to compute convergence rates with grid spacing
of geometric properties of the interface, such as its normal vector and cur-

2

vature, and of instability growth rates [3]. In a previous paper [4], we have
presented the first release of the Vofi library that can be used to initialize
the volume fraction C in a computational grid with cubic cells of edge l0,
given a user-defined implicit equation of the interface, f(x) = 0. The library
is based on two main assumptions: 1) in a cell cut by the interface the im-
plicit equation can be locally written explicitly as x1 = h(x2, x3), where each
xi is one of the three coordinate directions; 2) the interface cannot intersect
a cell edge more than twice. Both assumptions are verified if the local radius
of curvature R of the interface is greater than the spatial step l0.

The Vofi algorithm is divided into three parts, as shown in the flowchart
of Fig. 1. In the first part each grid cell is investigated to determine if it
is empty, full or cut by the interface. In a cut cell, the function gradient is
estimated in the cell with finite differences to change from the reference sys-
tem with coordinates (x, y, z) to a local coordinate system with (x1, x2, x3).
In the second part the limits of integration are computed. In the third part
the local height function h(x2, x3) is computed numerically along the first
direction x1 at each node (x2, x3) and the cut volume is computed with a
double Gauss-Legendre quadrature rule. The function h satisfies the relation
0 ≤ h ≤ l0. The internal integration is performed along direction x2 with n2

nodes, while the external integration along direction x3 with n3 nodes.
In this paper we discuss the major changes in the numerical algorithms,

demonstrate the improved efficiency of the library with respect to its previous
version, and present a few new features. Most of the routines have been
completely rewritten in order to considerably reduce the number of calls
of the implicit function, where the CPU-time is mostly spent. The grid
cell analysis and the numerical integration scheme are based on different
algorithms, while the new features include the computation of the reference
phase centroid and of the interface length in 2D and area in 3D. Moreover,
grid cells now can be cuboids.

The library is written in C, as was the first release of Vofi, and a few
two-dimensional and three-dimensional tests are provided with the software
distribution, including visualization of the height data and interface trian-
gulation. A version of the numerical tests, written both in Fortran and in
C++, is also included to show how to call the library routines from these two
languages.

3

2. Revised numerical algorithms and new features

Let D ⊂ Rn be a computational domain and Ω the portion occupied by
the reference phase

Ω = {x ∈ D : f(x) ≤ 0} , (1)

where points on the interface satisfy f(x) = 0, and f(x) < 0 for points in the
interior of Ω. The interface Γ is a planar curve when n = 2, and a surface
when n = 3. The characteristic function χ(x, t0) at the initial time t0 is equal
to 1 inside Ω and 0 elsewhere.

We consider a Cartesian subdivision of the domain D with cuboids with
edges of length lx, ly and lz. The edges length may change from cell to cell.
The volume fraction C(t0) is defined by the integral

C(t0) =
1

V0

∫

V

χ(x, t0) dV , (2)

where V is the grid cell and V0 its volume, V0 = lx ly lz. We use the implicit
function f(x) to determine the cell type. If the cell is empty or full with
respect to the reference phase, the function f(x) does not change its sign
inside the cell, and the integration in (2) is straightforward. On the other
hand if the interface cuts the cell, we compute the limits of integration and
perform the integration to evaluate the measure of the volume delimited by
the cell boundary and the interface itself.

A two-dimensional configuration is shown in Fig. 2 to illustrate the re-
lation among the different variables. The reference phase, where the char-
acteristic function χ is equal to 1, is inside the droplet and below the wavy
interface. The implicit function f is negative inside the reference phase and
its sign determines whether a cell with no interface is empty or full. In
the cells cut by the interface local heights h are computed to approximate
the two-dimensional integral of Eq. (2) with a one-dimensional numerical
integration.

2.1. Cell analysis

In the first release of the library the user was required to call a routine to
estimate a threshold value fth, a characteristic function value for the whole
interface. This routine has been removed from the library and the value fth
is now computed in each cell. In the two-dimensional example of Fig. 3a
the function is evaluated at the Nve vertices of the cell (Nve = 22 in 2D,

4

Nve = 23 in 3D) to approximate the components of the local gradient ∇f
with centered finite differences

∂f

∂x
≈ (f2,2 + f2,0)− (f0,2 + f0,0)

2lx
,

∂f

∂y
≈ (f2,2 + f0,2)− (f2,0 + f0,0)

2ly
. (3)

The threshold value is then given by the expression fth = lm |∇f |, where
lm = max(lx, ly)/2 is the maximum distance of a point on the cell boundary
from a vertex. Afterwards, we compute fmin, the minimum in absolute value
of the Nve function values. If the function has the same sign at the vertices
and fmin > fth then the cell is either full, when its sign is negative, or
empty. In 3D the approximation of the local gradient follows from (3) in a
straightforward manner, for example

∂f

∂z
≈ (f2,2,2 + f0,2,2 + f2,0,2 + f0,0,2)− (f2,2,0 + f0,2,0 + f2,0,0 + f0,0,0)

4lz
. (4)

and lm = max(lx, ly, lz)/
√

2. For empty or full cells with fmin > fth the
analysis ends with 2n function evaluations, whereas in the previous release of
the library the function was evaluated at Nno = 3n nodes of a local submesh,
as shown in Fig. 3b for n = 2.

More computations are required when the cell is closer to the interface
and fmin < fth. The two points in Fig. 3a with positive values f0,0 and f0,2
satisfy that inequality and we have to check if the configuration is compatible
with a sign change in the function value. We consider the lower-left vertex
x0, the unit horizontal vector ix, and compute fα = f(x0 + ix ε), with ε� lx.
The following condition is verified

|fα| > |f0,0| , (5)

therefore we assume that the interface does not cut the horizontal edge.
As a matter of fact, condition (5) implies that points along the horizontal
edge are initially moving away from the interface, then a sign change in the
function value along that edge would be associated with a perturbation in the
interface line with a characteristic lengthscale smaller than lx. This feature
is not consistent with the requirement that the relevant lengthscales of the
implicit function should be a few times greater than the spatial step.

Afterwards, along the vertical edge we compute fβ = f(x0 + iy ε), but
now |fβ| < |f0,0|. In these conditions the analysis proceeds with a minimum
search along that edge. For the interface Γ1 a sign change is detected at point

5

P , therefore the interface intersects the edge and the search is stopped; for
the interface line Γ2 a positive minimum is found and the edge is not cut by
the interface. In 3D we check again for a sign change along the cell edges,
but we have to consider the cell faces as well. The minimum search routines
along a cell edge and on a cell face have not been changed and we refer to
[5] for their detailed description.

Next we consider a cut cell and we assume that the implicit function
f(x) = 0 can be written in the explicit form x1 = h(x2, x3), where each xi
is a different coordinate direction. In the previous release of the library we
computed the gradient with centered finite differences in the Npt points of
the local submesh of Fig. 3b where the function value f satisfied |f | < fth,
with 1 ≤ Npt ≤ Nno. The numerical computation of a gradient required
four more function evaluations in 2D and six in 3D. The cell gradient was
then defined as the average of the point gradients, and the main coordinate
direction x1 was associated to the cell gradient component with the greatest
absolute value, while the second and third directions, x2 and x3, to the other
two components in decreasing absolute value.

In the new release, we consider again the function values at the Nno nodes
of the submesh, but the cell gradient is now the average of the gradients
computed in the 4 subcells of Fig. 3b (8 subcells in 3D) with centered finite
differences and no further function evaluation. To decrease the influence of
nodes far from the interface, we assign a weight w to the gradient components
in each subcell. For example for the lower-left subcell of Fig. 3b we have

∂f

∂x
≈ w

(f1,1 + f1,0)− (f0,1 + f0,0)

lx
,

∂f

∂y
≈ w

(f1,1 + f0,1)− (f1,0 + f0,0)

ly
.

(6)
The value of the weight w is related to the number of sign changes of the
function at the subcell vertices and is given in a lookup table. For the cell of
Fig. 3a and interface Γ1 the first direction x1 is along the x-axis, the second
direction x2 along the y-axis.

The final step in the analysis of a cut cell is the determination of a ten-
tative number of integration nodes n∗, which is now based on an estimate
of the local curvature κ. For an implicit equation of the interface line the
curvature κ in absolute value is given by the expression

|κ| =
∣∣− f 2

y fxx + 2fxfyfxy − f 2
xfyy

∣∣
(f 2
x + f 2

y)3/2
=

1

R
, (7)

6

involving the first and second partial derivatives of the function f , with R be-
ing the local radius of curvature. We approximate the partial derivatives with
centered finite differences in a nondimensional fashion by defining a charac-
teristic length lc. For example the two terms fx and fxy are approximated
by the expressions

fx ≈
(f2,1 − f0,1)

lx
lc , fxy ≈

(f2,2 − f0,2)− (f2,0 − f0,0)
lx ly

l2c . (8)

We have considered three different expressions for lc that provide the same
value in the case of square cells

lc =
√
lx ly , lc = (lx + ly)/2 , lc = max(lx, ly) .

and several elongation ratios lx/ly. The geometric mean provides a tenta-
tive number of nodes n∗ very close to the value obtained with square cells,
while the third expression considerably overestimates it. We have decided to
select the intermediate expression, i.e. the aritmetic mean, because of the
elongation of the cell and the mild overestimate. In 3D we compute the cur-
vature on the two cell faces perpendicular to the third direction x3 and in the
midplane between them and then average the results. We have considered
circles and spheres of different radius, center position and resolution of the
unit domain for a total of 1200 test cases in both 2D and 3D. For each test we
have computed the error E in absolute value between the analytical value of
the area/volume and the numerical integration with a fixed number of points
in each cell. We have fixed a target error E ≈ 10−14 in 2D and E ≈ 10−12

in 3D and computed a cubic relation with a least-squares method between
the nondimensional curvature |κ∗| and the number of integration nodes n∗.
These two relations have been implemented in the library and are shown in
Fig. 4.

2.2. Internal and external limits of integration

In 2D the limits of integration are defined by the intersections of the
interface line with the cell edges along the second direction x2. A single
intersection is computed by the root-finding routine, a double intersection,
as shown on the right of Fig. 5, requires the detection of a sign change at
point P and then the computation of the two zeros x21 and x22. The measure
of the colored area in the central rectangle is computed with a numerical
integration.

7

In 3D the internal limits of integration are computed as in the 2D prob-
lem, while the external limits of integration include the intersections of the
interface with the four cell edges along the third direction x3. However, there
is also the possibility of a very small intersection of the interface with a cell
that is represented by the cap on the left of Fig. 5, with the two external
limits x31 and x32, that are computed starting from point S.

To illustrate the changes in the new release we consider the ellipsoid
f(x′, y′, z′) = (x′/4)2 + (y′/5)2 + (z′/6)2−1 = 0. The axis z′ is parallel to the
coordinate axis z, while the other two axis x′ and y′ are rotated 60 degrees
counterclockwise with respect to x and y. The ellipsoid center in Fig. 6a is
at (0.35, 0.35,−5.97) and the ellipse represents the intersection of its surface
with the plane z = 0, while in Fig. 6b the center is at (0.26, 0.26,−5.97). In
both cases the cap height is ∆h = 0.03 and the grid cells are cubes of edge
length l0 = 1.

In the top-right cell of Fig. 6a the function is positive at the four vertices
of the face at z = 0 and the minimum search routine detects a sign change
at point S. Another routine, which is based on the root-finding algorithm,
is then called to get a sequence of approximations converging to the external
limit x33. This routine has been discussed in [5] and the first two steps of
the iterative procedure are shown graphically in Fig. 6a. The other two
integration limits x31 and x32 are found as intersections of the interface with
a cell edge.

In the top-right cell of Fig. 6b the function value is negative at the
bottom-left vertex and positive at the other three. In the first release of
the library the routine to compute the external limit x32 was not called in
this case, and the tiny volume between the two limits x31 and x32 was not
computed. A possibile solution to this issue is to call the routine starting
from any internal point S1 and converging to the external limit x32. If we
do not discriminate among cells, we should also call the routine from a point
S2 in the bottom-right cell that converges to x31, an integration limit which
is also found as an intersection of the interface with a cell edge. Since an
external limit in the interior of a face is a rather rare situation, we would
waste a considerable amount of CPU time. To avoid this, from the external
limits on the edges, such as x31 in Fig. 6b, we now compute the function
value at two points along the second direction x2, the first one very close to
x31 and the other on the opposite edge. In the top-right cell the function
has a different sign at these two points, hence the routine to compute the
external limits will be called, while in the bottom-right cell the sign is the

8

same and there will be no further action.

2.3. Numerical integration
The root-finding algorithm implemented in the previous release was a hy-

brid secant-bisection method. We now consider three consecutive iterations
(y0, f0), (y1, f1) (y2, f2) and compute the next one in the following way

y3 = y2 −
f(y2)

n′k(y2)
(9)

where nk(y) is Newton’s divided-differences polynomial of order k and n′k(y)
its derivative. For k = 1 we recover the secant method with n′1(y2) = f21 =
(f2 − f1)/(y2 − y1). For k = 2 we define f10 = (f1 − f0)/(y1 − y0) and
f210 = (f21 − f10)/(y2 − y0), then n′2(y2) = f21 + f210(y2 − y1). The method
requires only one function evaluation at each iteration, and as k → ∞ the
order of convergence p approaches 2 from below [6]. With k = 2 the order
of convergence increases from the value p = 1.6180 of the secant method
to p = 1.8393, both values rounded to four significant digits. The bisection
portion of the root-finding algorithm has not been changed. At the beginning
of the algorithm or after a bisection step a secant iteration is performed.

In Fig. 7 we illustrate an integration with 8 nodes in 2D. In the previous
version each height hi was computed independently from the neighboring
ones. The function value was evaluated at two points on opposite edges
(blue squares of Fig. 7a) to initialize the root-finding routine and compute
the local height hi (red circles). In the new release we consider three con-
secutive couples (x2,i, hi), i = 0, 1, 2, and again Newton’s divided-differences
polynomial of order 2

h∗(x) = h0 + h10(x− x2,0) + h210(x− x2,0)(x− x2,1) (10)

where h10 and h210 are defined as f10 and f210, respectively. The starting
point for the root-finding routine is the extrapolation h∗3 of the polynomial
(10) at x = x2,3. In Fig. 7b the blue squares represent the starting points h∗i :
for the first height at x2,0 we use the old method, at point x2,1 we use h∗1 =
h0, at x2,2 we use a linear extrapolation and from the fourth point x2,3 the
extrapolation is quadratic, thereafter the three points for the extrapolation
(10) are shifted by one position. To start the iteration (9) we also need
to approximate the derivative, that we extrapolate from three consecutive
couples

(
x2,i, n

′
2(x2,i)

)
and the associated Newton’s polynomial. With the

polynomial extrapolation and the generalized secant method we usually save
at least a couple of iterations per height calculation.

9

2.4. New features: cut volume centroid and interface area

In the first release of the library the grid cells were cubes of edge l0,
now they can be cuboids of edges that may vary from cell to cell. Once
the external limits of integration are computed, the cell is further subdivided
into subcells and a double Gauss–Legendre integration is performed when the
subcell is cut by the interface to compute the cut volume and its centroid.
Let us consider a cell of edges l1, l2 and l3 along the three ordered coordinate
directions x1, x2 and x3. Furthermore, we assume that the cell has been
divided in three subcells: the first is full and fills up the region 0 ≤ x3 ≤ x31,
the second is a cut subcell with x31 ≤ x3 ≤ x32, the third is empty with
x32 ≤ x3 ≤ l3. The volume of the first subcell is V01 = l1 l2 x31 and its
centroid is positioned at xc1 =

(
l1/2, l2/2, x31/2

)
. The empty subcell gives

no contribution. The cut volume V02 and the centroid xc2 of the central
subcell are given by the following expressions

V02 =

∫

V2

χ(x, t0) dV ; xc2 =
1

V02

∫

V2

xχ(x, t0) dV (11)

where V2 is the domain of integration of the subcell. To illustrate how the
numerical integrations are done we consider the central subcell of Fig. 5 and
let ∆x3 = (x32 − x31). The internal limits x22 and x21 and the length of the
interval ∆x2 = (x22 − x21) vary with the third coordinate x3, even when not
explicitly stated in the following expressions. The cut volume V02 is then
approximated by

V02 =

∫

V2

χ(x, t0) dV =

∫ x32

x31

A(x3) dx3 ≈
∆x3

2

n3∑

k=1

ωk Ak , (12)

where the coefficients ωk are the integration weights, and the areas Ak are the
integrals of the local height function h(x2, x3,k) along the second direction x2

Ak =

∫ x22

x21

dx2

∫ h

0

dx1 =

∫ x22

x21

h(x2, x3,k) dx2 ≈
∆x2,k

2

n2∑

j=1

ωj hj,k . (13)

The number of nodes n2 of the internal integration is the minimum value
between the previously–defined parameter n∗ and that of a linear function
of the nondimensional length δ2 = ∆x2,k/ln, with ln = max(l1, l2, l3), while
n3 of the external integration is given by a linear function of the length

10

δ3 = ∆x3/ln. Furthermore, the user can also set a minimum and a maximum
value for both n2 and n3, which should be in the range between 3 and 20. The
user-defined values are compared with and can supersede those determined
by the library routines.
The coordinates of the centroid xc2 are then given by the following expressions

xc2;1 =
1

V02

∫ x32

x31

dx3

∫ x22

x21

dx2

∫ h

0

x1 dx1 =
∆x3
2V02

ne∑

k=1

ωk

(
∆x2,k

2

ni∑

j=1

ωj
2
h2j,k

)

xc2;2 =
1

V02

∫ x32

x31

dx3

∫ x22

x21

x2 dx2

∫ h

0

dx1 =
∆x3
2V02

ne∑

k=1

ωk

(
∆x2,k

2

ni∑

j=1

ωj x2,j,k hj,k

)

xc2;3 =
1

V02

∫ x32

x31

x3 dx3

∫ x22

x21

dx2

∫ h

0

dx1 =
∆x3
2V02

ne∑

k=1

ωk x3,k Ak

Finally, the centroid xc of the cut cell is

xc =
V01 xc1 + V02 xc2

V01 + V02
(14)

In 2D an n-point Gauss-Legendre quadrature rule uses n nodes in the
interior of the interval of integration [x2a, x2b]. In order to calculate the
length of the interface line which is inside a two-dimensional cell, we first
compute the height at the two endpoints x2a and x2b. In this way we divide
the interval [x2a, x2b] in n + 1 subintervals. We have implemented a node-
based method that approximates the interface arc in each subinterval with
a polynomial and then computes its length by quadrature [7]. The method
is fourth-order accurate and it requires the computation of the height hj+1/2

at the midpoint x2,j+1/2 between two consecutive nodes x2,j and x2,j+1. The
Newton’s polynomial approach of Section 2.3 is used to initialize the root-
finding routine to compute hj+1/2. The method consider three points in
each subinterval, x2,j =

(
x2,j, hj

)
, x2,j+1/2 =

(
x2,j+1/2, hj+1/2

)
and x2,j+1 =(

x2,j+1, hj+1

)
, and the arclength L of the subinterval is approximated by the

expression
L
(
x2,j, x2,j+1

)
≈ |x2,j+1 − r|+ |r− x2,j| , (15)

where the shifted intermediate point r is

r = 1
2

(
x2,j + x2,j+1

)
+ 1

3

√
3
(
− x2,j + 2x2,j+1/2 − x2,j+1

)
. (16)

11

To illustrate the surface triangulation in three-dimensions we consider
again the ellipsoidal cap of Section 2.2 but with center at (0.5, 0.45,−5.97),
then the cap is inside a single grid cell and the coordinates ordering is x1 = z,
x2 = y and x3 = x. We compute the cap volume with n2 = n3 = 6 nodes for
both the internal and external integrations and show the position of all the
nodes in Fig. 8a (blue squares). From this nodes distribution and considering
the internal integration at x3,k, we compute the height at the two endpoints
(x21, x3,k) and (x22, x3,k), and substitute them into the first and last elements
of the array containing nodes position and height at x3,k. We do the same for
the external integration, we remove the first and last arrays of internal nodes
and substitute them with the nodes computed at x31 and x32. The new nodes
are shown as red circles in Fig. 8b, in particular in the external limits at x31
and x32 only a single node is present. We have decided upon this choice for
a more homogeneous distribution of the triangles position and size. Indeed,
by simply adding the new nodes, the triangles tend to accumulate near the
boundaries and become much smaller.

We then consider two consecutive arrays of nodes, say at x3,k and x3,k+1.
If the number of internal nodes n2 is the same we take couples of consecutive
nodes on both arrays, and define intermediate nodes by computing their
average position, shown as green squares in Fig. 8b, and their average height
to start the iteration (9) to calculate the local height. The two couples
of consecutive nodes on both arrays and their intermediate node are then
connected to form four triangles, that share a vertex at the intermediate
node, as shown in Fig. 8b. If the number of internal nodes is not the same,
a few triangles will be defined with two consecutive nodes on the array with
more nodes and one on the other array, until the number of remaining nodes
is the same. This is what is done with the single node in the external limits at
x31 and x32. The number of external nodes n3 can change from cell to cell and
nodes may not match across the cell boundary, therefore the triangulation is
continuous within a cell but it may have holes at the boundary between cells
where the edges of the triangles can connect different nodes. The measure of
the interfacial area is approximated by the sum of the triangles area.

3. User manual

In the previous release the implicit function f(x) was defined by the user,
possibly with a set of fixed parameters, for example the center coordinates
and the radius of a sphere. These parameters now can be passed also dynami-

12

cally as an additional argument of the function call. Furthermore, we provide
the possibility to print heights and triangulation data in TECPLOT ASCII file
format that can be easily visualized with the help of graphics software, as
shown in Fig. 10 with the ParaView visualization application.

3.1. C/C++ calls

The Vofi library has been developed in C and the user can call two
functions. The first function vofi get cc computes the volume fraction in
a given cell and returns a real number (in double precision)

cc = vofi get cc(impl func, par, x0, h0, xext, next, npts,

nvis, ndim);

The interface position is often used in adaptive mesh refinement as a
criterion to increase the local resolution. In this case it is required only to
know if the cell is full, empty or cut, and not the actual value of the volume
fraction. The second function vofi get cell type returns an integer with
one of the three values 1, 0 and −1 if the cell is respectively full, empty or
cut by the interface

icc = vofi get cell type(impl func, par, x0, h0, ndim);

The input arguments are defined as follows

• impl func: the external function that computes f(x) and is expected
to be declared as

double impl func(const double x0[], void * const par)

{...}

• par: parameters to be passed to impl func (pointer to a data structure
defined by the user)

• x0: coordinates of cell vertex with smallest values (1D array of 3 real
numbers)

• h0: cell edges (1D array of 3 real numbers)

• xext: center of mass coordinates and interface length/area (1D array
of 4 real numbers, the length/area is always the fourth element)

13

• next: switches either to compute or not to compute the center of mass
and/or the interface length/area (1D array of 2 integer numbers, with
each value respectively 1 or 0)

• npts: minimum and maximum number of nodes allowed by the user
for both the internal and external integrations (1D array of 4 integer
numbers, to be effective each integer n should be in the range 3 ≤ n ≤
20)

• nvis: switches either to print or not to print heights and triangulation
data (1D array of 2 integer numbers, with each value respectively 1 or
0). This feature should be used sparingly, as the size of the output
files grows very rapidly with grid resolution and number of integration
nodes.

• ndim: space dimension (integer number, either 2 or 3)

The prototypes for the external implicit function and the two library func-
tions are

typedef double (*integrand) (const double [],void * const);

double vofi get cc(integrand,void * const,const double [],const

double [],double [],const int[],const int[],const int [],const int);

int vofi get cell type(integrand,void * const,const double [],

const double [],const int);

The prototypes are contained in the header file vofi.h that should be
included when using the Vofi library. To link the library it is necessary to
add -lvofi to the compiler command line. More details are given in the
README file of the software distribution.

3.2. Fortran calls

The Vofi library has been developed in C and for its usage in Fortran

codes we have written the interface module fvofi.f90 that calls the cor-
responding C functions. The examples in Fortran use the ISO C BINDING

module that defines intrinsic procedures for C interoperability. The user
should read the README file and look at the examples for different ways to
pass the parameters to the external function that computes f(x).

14

4. Testing and validation

To illustrate the new features of the library we consider the circle with
radius r = 0.25 and center of coordinates (xC , yC) = (0.623, 0.377), inside
a unit square domain subdivided into N2 square cells. As we double the
edge resolution starting from N = 10 and up to N = 80, the number of cut
cells mI doubles as well. The number of integration nodes n2 is the same
in all the cells and we compare the numerical area, centroid coordinates and
circumference length with their analytical values. The results are presented
in Tables 1 and 2 where each error is defined as the difference in absolute
value between the numerical and analytical values. The interface arclength
changes from cell to cell and Gauss nodes are not evenly spaced inside each
cut cell, as seen in Fig. 9a. Therefore, we define the convergence rate p of
the length of the circumference in the following way

p ≈ log
(
EL,1

/
EL,2

)

log
(
k2
/
k1
) (17)

In Table 1 the error EL,1 is computed with a fixed number n2 = 4 of inte-
gration nodes, corresponding to ns = 5 sectors of the interface arc in each
cell, and edge resolution N , and EL,2 with the same number of sectors ns,
but edge resolution 2N . The integer k in the denominator of (17) is then
the number of cut cells, k = mI . In Table 2 the edge resolution N is kept
fixed as we change the number of sectors, ns = 5, 10, 20, in each cell, hence
k = ns (in the usual definition of the convergence rate a step size appears
in the denominator, which is inversely proportional to the resolution that is
used in (17)).

The results of Table 1 suggest that the accuracy of the computation of
the centroid of a geometric figure is limited from above by the accuracy of the
area computation, but the error for one of the centroid components can be
one or two orders of magnitude smaller in particular symmetrical conditions.
This is what we observe in both 2D and 3D numerical tests. The theoretical
convergence order of 4 for the length of the interface line is recovered both
by doubling the edge resolution N at constant number of sectors ns in each
cell and by doubling the number of sectors ns at constant N .

In Fig. 9b we show the heights with n2 = 4 of the same circle in a
rectangular grid with N = 10. The area error is EA = 5.71 10−7 which is
similar to the error EA = 4.17 10−7 of Table 1 with N = 5, but with the same
number of cut cells, mI = 12.

15

In 3D we consider the sphere with radius r = 0.34 and center of co-
ordinates (xC , yC , zC) = (0.503, 0.451, 0.463), inside a unit cube with edge
resolution N = 10 and cubic cells. In Table 3 we present the results with a
different number of integration nodes, but keeping n2 = n3. At this resolu-
tion the convergence rate for the measure of the interfacial surface is linear.
However, as we increase the grid resolution N we observe that the measure
of the surface tends to saturate as the convergence rate decreases. The tri-
angulation of the interface with N = 10 and n2 = n3 = 4 is shown in Fig.
10, together with the heights and triangles of a selected cell.

Finally we compare the number of function calls that are required to
initialize circular and spherical droplets. In 2D the edge resolution of the
unit square is N and the total number of grid cells N2, while the number
of cut cells is proportional to N and the total number of heights to the
product N n2. The ratio of cut cells to the total number of cells scales as
1/N , therefore the number of empty or full cells becomes more and more
predominant with N and the ratio of implicit function calls between the old
and new versions should tend to the value 9/4 = 2.25, where 9 and 4 are the
minimum numbers of function calls in the two library versions to determine
the cell type. This asymptotic behavior is clearly observed in the results
on the left of Table 4. The value of the ratio remains always greater than
2, while the average number of function calls to initialize a cut cell in the
new version increases from an average value of 33 when n2 = 4 to 70 when
n2 = 16. It is also interesting to note that the ratio increases slightly with
the value of n2 as seen on the right of Table 4. The reason for this behavior is
that when n2 = 4 the quadratic extrapolation (10) is applied only once, while
with n2 = 16 it is applied to 13 nodes. Therefore, the distance between two
consecutive nodes diminishes, the initial guess (10) is more precise, and the
average number of iterations to compute the local height is slightly reduced.

In 3D the edge resolution of the unit cube is still N and the total number
of grid cells is now N3, while the number of cut cells is proportional to N2

and the total number of heights to the product N2 n2 n3. The asymptotic
value at large N is now 27/8 = 3.375, and the results on the left of Table 5
show that the numerical ratio is slowly decreasing towards this value. The
library optimization is more efficient in 3D than in 2D, as the ratio between
the function calls is a bit less than 5 for values of N up to 20 and n2 = n3 = 4,
which implies the computation of 16 local heights. However at fixed N , the
numerical ratio decreases with n2 and n3. First, we observe that the number
of computed heights divided by the number of grid cells is now n2 n3/N (it was

16

only n2/N in 2D) so that the CPU time spent in their calculation becomes
predominant in 3D, as there are 256 local heights when n2 = n3 = 16. More
precisely, with the optimized algorithm to compute the local height, that is
described in Section 2.3, we gain at most a factor of order 2, and the results
on the right of Table 5 clearly demonstrate this behavior.
To summarize our findings in 3D, at moderate edge resolution N of the unit
cube and number of local heights in each cut cell, we observe that the implicit
function calls in the new version of the Vofi library are reduced by a factor
close to 5 with respect to its first release. If we increase only the resolution N ,
the initialization of empty or full cells becomes predominant and the factor
tends to the asymptotic value 3.375. On the other hand, if we increase only
the number of local heights, that factor tends to the value 2.

5. Conclusions

Several numerical algorithms of the Vofi library have been rewritten in
order to reduce the number of calls of the user-defined function that defines
implicitly the interface. In particular, the grid cell analysis and the numerical
integration scheme have been considerably optimized. New features of the
software distribution include the subdivision of the computational domain in
cuboids and the calculation of the reference phase centroid and the interface
length in 2D and area in 3D in each cut cell. The library is written in C, and
its functions can be called from Fortran routines using a supplied interface
module and the ISO C BINDING module.

Acknowledgements

We thank Dr. S. Manservisi for useful discussions on the topics of this pa-
per and in particular on its revision. The simulation data in 3D are visualized
by the open-source software ParaView.

References

[1] R. Scardovelli and S. Zaleski. Direct numerical simulation of free–surface
and interfacial flow. Annu Rev Fluid Mech, 31:567–603, 1999.

[2] G. Tryggvason, R. Scardovelli, and S. Zaleski. Direct Numerical Sim-
ulations of Gas–Liquid Multiphase Flows. Cambridge University Press,
Cambridge, UK, 2011.

17

[3] A. Bagué, D. Fuster, S. Popinet, R. Scardovelli, and S. Zaleski. Instability
growth rate of two-phase mixing layers from a linear eigenvalue problem
and an initial-value problem. Phys. Fluids, 22:092104–1–092104–9, 2010.

[4] S. Bnà, S. Manservisi, R. Scardovelli, P. Yecko, and S. Zaleski. Vofi
- a library to initialize the volume fraction scalar field. Comput. Phys.
Commun., 200:291–299, 2016.

[5] S. Bnà, S. Manservisi, R. Scardovelli, P. Yecko, and S. Zaleski. Numerical
integration of implicit functions for the initialization of the VOF function.
Comput Fluids, 113:42–52, 2015.

[6] A. Sidi. Generalization of the secant method for nonlinear equations.
Applied Mathematics E-notes, 8:115–123, 2008.

[7] M.S. Floater and A.F. Rasmussen. Point-base methods for estimating
the length of a parametric curve. Journal of Computational and Applied
Mathematics, 196:512–522, 2006.

18

Table 1: Number of subdivisions N of the unit edge and number of cut cells mI for the
circle of Fig. 9; errors of the numerical computation of the circle area, EA, centroid
coordinates, Ex and Ey, and circumference length, EL, with a fixed number of integration
nodes, n2 = 4, and of arc sectors, ns = 5, per cell; convergence rate p of the circumference
length with edge resolution N .

N mI EA Ex Ey EL (5) p
5 12 4.17e-07 1.12e-07 1.10e-07 2.08e-06 —–
10 20 4.68e-08 2.47e-09 5.52e-08 3.58e-07 3.446
20 40 1.16e-10 1.02e-11 1.02e-11 2.26e-08 3.983
40 80 5.04e-13 9.36e-14 9.36e-14 1.36e-09 4.059
80 160 1.03e-15 1.55e-15 2.22e-16 6.59e-11 4.364

Table 2: Number of subdivisions N of the unit edge and number of cut cells mI for the
circle of Fig. 9; errors of the numerical computation of the circumference length, EL, with
a fixed edge resolution N and different arc sectors, ns = 5, 10, 20, per cell; convergence
rate p of the circumference length with number of sectors ns.

N mI EL (5) EL (10) EL (20) p (5→ 10) p (10→ 20)
5 12 2.08e-06 1.16e-07 6.74e-09 4.159 4.110
10 20 3.58e-07 2.00e-08 1.16e-09 4.160 4.112
20 40 2.26e-18 1.26e-09 7.28e-11 4.163 4.116
40 80 1.36e-09 7.56e-11 4.36e-12 4.165 4.117
80 160 6.59e-11 3.67e-12 2.12e-13 4.165 4.110

19

Table 3: Number of internal and external nodes, n2 and n3, for the sphere of Fig. 10 with
edge resolution N = 10; errors of the numerical computation of the sphere volume, EV ,
centroid coordinates, Ex, Ey and Ez, and interface surface, ES .

n2, n3 EV Ex Ey Ez ES
4 4.25e-09 6.49e-10 2.16e-10 1.81e-09 1.65e-03
8 2.23e-14 5.33e-15 8.33e-16 1.47e-14 6.36e-04
16 0.00e-00 6.66e-16 2.22e-16 5.55e-17 2.96e-04

Table 4: Ratio of implicit function calls between the old and new versions of the Vofi
library in 2D: at constant number of internal nodes n2 = 4 (left), and at constant number
of subdivisions N = 5 of the unit edge (right).

N n2 ratio N n2 ratio
5 4 2.037 5 4 2.037
10 4 2.133 5 8 2.058
20 4 2.134 5 16 2.118
40 4 2.213
80 4 2.222

20

Table 5: Ratio of implicit function calls between the old and new versions of the Vofi
library in 3D: at constant number of integration nodes n2 = n3 = 4 (left), and at constant
number of subdivisions N = 5 of the unit edge (right).

N n2 = n3 ratio N n2 = n3 ratio
5 4 4.607 5 4 4.607
10 4 4.844 5 8 3.325
20 4 4.740 5 16 2.043
40 4 4.400
80 4 4.038

21

PART I:
cell investigation

cut cell?
empty cell: C = 0

full cell: C = 1
no

local coordinate system:
(x, y, z) → (x1, x2, x3)

PART II:
limits of integration

yes

external limits of
integration along x3

PART III:
numerical integration

number of external nodes n3

and their coordinate x3,k

for each x3,k compute:

• internal limits of integration
along x2

• number of internal nodes n2

and their coordinate x2,j

local heights hjk

(
x2,j , x3,k

)

cut cell: 0 < C < 1

optional computations:

• cut cell centroid

• interface area

Figure 1: A graphical representation of the Vofi algorithm in three dimensions.

22

 χ = 1

 f < 0

 χ = 1 f < 0

 χ = 0 f > 0 local heights h

Figure 2: A droplet impacting on a wavy interface in two dimensions. Inside the reference
phase χ = 1 and f < 0, in the secondary phase χ = 0 and f > 0. In the cells crossed by
the interface the local heights h are used to compute numerically the cut area.

23

f
0,0

f
1,0

f
2,0

f
0,2

f
1,2 f

2,2

f
0,1 f

2,1f
1,1

|f | > f2,0 th

|f | > f2,2 th|f | < f0,2 th

|f | < f0,0 th

P

Γ

Γ1

2

xx

yy

ly
lx

(a) (b)

Figure 3: A two–dimensional cell with edges lx and ly: (a) the function value is positive
at the four vertices for both interface lines, but only interface Γ1 cuts the vertical edge;
(b) the function value is computed at the nodes of a local 3× 3 subgrid to change from a
system with coordinates (x, y) to (x1, x2).

24

0 2 4 6 8 10 12

1 / |κ*| = R / lave

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

E

 4 points

 8 points

16 points

cubic fit

0.1 0.2 0.3 0.4 0.5 0.6 0.7

|κ*|

4

6

8

10

12

14

16

18

20

n
*

2D (E=10
-14)

3D (E=10
-12)

(a) (b)

Figure 4: (a) Error E as a function of the nondimensional curvature |κ∗| for a fixed number
of integration nodes, n2 = n3 = 4, 8, 16. Each point corresponds to an average over 10
different spheres with the same radius R. For a few points near the corresponding value
of the cubic fit (black squares) the minimum and maximum errors are shown as vertical
bars. (b) Cubic relations between the tentative number of integration nodes n∗ and the
nondimensional numerical curvature |κ∗|.

25

x1

x2

x3

x31 x32x21

x22

x1

x21 x22 x2P 2l

l1

S

O

Figure 5: The grid cell is subdivided into three cuboids after the computation of the
two external limits of integration x31 and x32, starting from point S (left); each internal
integration requires the computation of two internal limits of integration x21 and x22,
starting from point P (right).

26

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

S

x x x31 32 33

2x

x3

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x31 32x

f < 0

f > 0

S

S2

1
u

v

u’

v’

x

x

2

3

(a) (b)

Figure 6: Intersection of the ellipsoid surface with the plane z = 0. (a) Ellipsoid center at
(0.35, 0.35,−5.97): in the top-right cell the external limit x33 is computed iteratively from
point S. (b) Ellipsoid center at (0.26, 0.26,−5.97): in the top-right cell the function sign
is evaluated at points u and v to start the iterative computation of x32 from S1, while in
the bottom-right cell the function sign at u′ and v′ is the same with no further action.

x2,2 2x

x1

2,0x x2,1 2,3x 2x

x1

*
3

h*
0

h1
*

h2
* h

h*
4

(a) (b)

Figure 7: Integration with 8 nodes: a) in the previous hybrid secant-bisection method the
algorithm is initialized with the function value at two points (blue squares), on opposite
edges, that bracket the zero (red circles), b) in the new generalized secant method the
starting value h∗i (blue square) is extrapolated from previous height values.

27

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x3

x2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

x

3

2

(a) (b)

Figure 8: Triangulation of an ellipsoidal cap: (a) nodes position for the volume integration
with n2 = n3 = 6 (blue squares). The nodes of an internal integration form an array of
nodes (dashed lines); (b) first and last elements of internal arrays and first and last arrays
are substituted with boundary nodes (red circles). Two couples of consecutive nodes on
consecutive arrays are used to define intermediate nodes (green squares) and to form four
triangles.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 9: Integration of the circle with center at (0.623, 0.377) and radius r = 0.25 with
n2 = 4 nodes and ns = 5 sectors in each cell and edge resolution N = 10: (a) square cells,
a cut cell at the highest resolution N = 80 is also shown; (b) rectangular cells.

28

(a) (b)

(c) (d)

Figure 10: Integration of the sphere with center at (0.503, 0.451, 0.463) and radius r = 0.34
in the unit cube with edge resolution N = 10, and n2 = n3 = 4 in each cut cuboid:
(a,b) heights and triangles in a selected cell subdivided in 3 cuboids; (c,d) heights and
triangulation of the sphere (top face of the selected cell outlined in red).

29

