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Abstract: This paper investigates two existence theorems for the path-dependent heat equation, which is the
Kolmogorov equation related to the window Brownianmotion, considered as a C([−T, 0])-valued process. We
concentrate on two general existence results of its classical solutions related to different classes of terminal
conditions: the first one is given by a cylindrical not necessarily smooth random variable, the second one is
a smooth generic functional.
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1 Introduction
The path-dependent heat equation is a natural extension of the classical heat equation to the path-dependent
world. If the heat equation constitutes the Kolmogorov equation associated with Brownian motion viewed
as a real-valued process, then the path-dependent heat equation is the Kolmogorov equation related to the
Wiener process as C([−T, 0])-valued process, that we will denominate as window Brownian motion. One par-
ticularity of C([−T, 0]) is that it is a (even non-reflexive) Banach space, and for integrator processes taking
values in it, it is not obvious to define a stochastic integral. In the recent past, many works were devoted
to various types of path-dependent PDE under different perspectives (for instance, under the perspective of
viscosity solutions; see e.g. [2, 5, 14]), using generally approaches close to the functional Itô calculus of [9].
A recent contribution in the study of the path-dependent heat equation (in the spirit of Banach space) was
carried on by [10], which considered (not necessarily smooth in time) mild type solutions, involving at the
same time a path-dependent drift; see also references therein for related contributions. The problem of find-
ing classical or smooth solutions has been neglected, especially using the Banach space approach, except for
some particular final conditions; see e.g. [4, 6].

In this paper, we focus on classical solutions of the path-dependent heat equation with two types of
terminal conditions. In reality, this work updates [6, 7], somehow a pioneering (never published) work of the
authors, which formulated similar results in a Hilbert framework.
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Let H : C([−T, 0]) → ℝ be continuous, and let σ be a real constant. Even though some results can be
extended to a more general context, we have preferred for clarity to work with σ being a constant. See Sec-
tion 4.3 for some results with general σ : [0, T] × ℝ → ℝ.

Our path-dependent heat equation can be expressed as

{{
{{
{

∂tu(t, η) + ∫
]−t,0]

D⊥dxu(t, η) d
−η(x) + 12σ

2⟨D2u(t, η), 𝟙{0} ⊗𝟙{0}⟩ = 0 for (t, η) ∈ [0, T[ × C([−T, 0]),

u(T, η) = H(η) for η ∈ C([−T, 0]).
(1.1)

A function u : [0, T] × C([−T, 0]) → ℝ will be a classical solution of (1.1) if it belongs to

C1,2([0, T[ × C([−T, 0])) ∩ C0([0, T] × C([−T, 0]))

in the Fréchet sense and if it verifies (1.1). For any given (t, η) ∈ [0, T] × C([−T, 0]), DF(t, η) denotes the first-
order Fréchet derivativewith respect to η,Dδ0F(t, η) the component ofDF(t, η) concentrated on theDirac zero
defined by Dδ0F(t, η) := DF(t, η)({0}), and D⊥F(t, η) denotes the component of DF(t, η) singular to the Dirac
zero component, i.e. themeasure defined by D⊥F(t, η) := DF(t, η) − DF(t, η)({0})δ0. For every η ∈ C([−τ, 0]),
we observe that t 󳨃→ Dδ0F(t, η) is a real-valued function. If, for each (t, η), D⊥F(t, η) is absolutely continuous
with respect to Lebesgue measure on the reals, DacF(t, η) denotes its density, and in particular, it holds that
D⊥dxF(t, η) = D

ac
x F(t, η) dx.

A central object appearing in the path-dependent heat equation PDE (1.1) is the deterministic integrals
denoted by

∫
]−t,0]

D⊥dxu(t, η) d
−η(x),

where D⊥u(t, η) is a measure on [−T, 0] and η ∈ C([−T, 0]). We will give a sense, for −T ≤ a ≤ b ≤ 0, to the
term∫]a,b] D

⊥u(t, x) d−η(x) as the deterministic forward integral limϵ→0 ∫]a,b] D
⊥
dxu(t, x)

η(x+ϵ)−η(x)
ϵ dx; see Def-

inition 2.2. More generally, let μ be a finite Borel measure on [−T, 0] and f a càdlàg function; we will give
a sense to the integral ∫]a,b] μ(dx) d

−f(x). Whenever f has bounded variation and μ is absolutely continu-
ous with respect to the Lebesgue measure, it will coincide with the classical Riemann–Stieltjes integral; see
Proposition 2.3.

As we mentioned, we state two existence theorems of the classical solution of (1.1) under two different
types of terminal condition given by a function H. In Proposition 3.4, we consider as terminal condition
a possibly not smooth function H of a finite numbers of integrals of the type ∫0−T φ d

−η. The reason of validity
of that result (when σ ̸= 0) can be understood through the non-degeneracy feature of Brownian motion.

In Theorem 4.11, we suppose the terminal condition function H to be C3(C([−T, 0])). This result general-
izes an existence result already established in the unpublished monograph [6, Sections 9.8 and 9.9], where
we assumed a Fréchet smooth dependence with respect to L2([−T, 0]).

In this paper, we have only concentrated our efforts on the problem of existence of a solution of (1.1), the
uniqueness constituting a simpler task which can be obtained as an application of a Banach space valued Itô
formula established in [8].

Let W = (Wt)0≤t≤T be a classical real Brownian motion on some probability space (Ω,F,ℙ); (Ft) will
denote its canonical filtration. (Wt( ⋅ )) (or simplyW( ⋅ )) stands for the window Brownian process with values
in C([−T, 0]) defined byWt(x) := Wt+x; see Definition 2.1.

An application of our two existence results consists in obtaining a Clark–Ocone type formula for a path-
dependent random variable h := H(XT( ⋅ )), where X is a finite quadratic variation process with quadratic
variation given by [X]t = σ2t, but X not necessarily a semimartingale. A possible example of such process is
given by X = W + BH , i.e. a Brownian motion plus a fractional Brownian motion of parameter H > 1

2 or the
weak k-order Brownian motion of [11].

Let u be the solution of (1.1) provided by Proposition 3.4 or Theorem 4.11. By the Itô formula (see e.g.
[8, Theorem 5.2]), if u verifies some more technical conditions, then

h = u(0, X0( ⋅ )) +
T

∫
0

Lu(t, Xt( ⋅ )) dt +
T

∫
0

Dδ0u(t, Xt( ⋅ )) d−Xt , (1.2)
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where L denotes differential operator for u ∈ C1,2([0, T[ × C([−T, 0])) defined by

Lu(t, η) := ∂tu(t, η) + ∫
]−t,0]

D⊥dxu(t, η) d
−η(x) + 12σ

2⟨D2u(t, η), 𝟙{0} ⊗𝟙{0}⟩

for (t, η) ∈ [0, T] × C([−T, 0]). Now, by (1.2),

h = u(0, X0( ⋅ )) +
T

∫
0

Dδ0u(t, Xt( ⋅ )) d−Xt , (1.3)

where we remind that ∫t0 Y d
−X is the forward integral via regularization defined first in [15, 16] for X

(resp. Y) a continuous (resp. locally integrable) real process; see also [17] for a survey. Whenever X = W,
the forward real-valued integral equals the classical Itô integral; see [16, Proposition 1.1]. In particular,
if h ∈ 𝔻1,2, it holds that the representation stated in (1.3) coincides with the classical Clark–Ocone for-
mula h = 𝔼[h] + ∫T0 𝔼[D

m
t h|Ft] dWt, i.e. u(0,W0( ⋅ )) = 𝔼[h] and Dδ0u(t,Wt( ⋅ )) = Dm

t (h|Ft), Dm denoting the
Malliavin derivative. This follows by the uniqueness of decomposition of square integrable random variables
with respect to the Brownian filtration. We remark that our representation (1.3) can be proved in some cases,
where h ∉ 𝔻1,2; see e.g. Section 3.

The paper is organized as follows. After this introduction, in Section 2, we recall some preliminaries:
basic notions of calculus via regularization in finite and infinite dimension, Fréchet derivatives of functionals
and the important Subsection 2.2 about deterministic calculus via regularization. In Section 3, we show the
existence of a classical solution of the Kolmogorov PDE for a cylindrical H. Finally, in Section 4, we show the
existence for H being general but smooth.

2 Preliminaries

2.1 General notations

Let A and B be two general sets such that A ⊂ B; 𝟙A : B → {0, 1} will denote the indicator function of the set
A, so 𝟙A(x) = 1 if x ∈ A, and 𝟙A(x) = 0 if x ∉ A. Let k ∈ ℕ ∪ {+∞}; Ck(ℝn) indicates the set of all functions
g : ℝn → ℝwhich admits all partial derivatives of order 0 ≤ p ≤ k and is continuous. If I is a real interval and
g is a function from I × ℝn to ℝ which belongs to C1,2(I × ℝn), the symbols ∂tg(t, x), ∂ig(t, x) and ∂2ijg(t, x)
will denote respectively the partial derivative with respect to variable I, the partial derivative with respect to
the i-th component and the second-order mixed derivative with respect to j-th and i-th component evaluated
in (t, x) ∈ I × ℝn.

Let a < b be two real numbers; C([a, b])will denote the Banach linear space of real continuous functions
equipped with the uniform norm denoted by ‖ ⋅ ‖∞. Let B be a Banach space over the scalar fieldℝ. The space
of bounded linear mappings from B to E will be denoted by L(B; E), and we will write L(B) instead of L(B; B).
The topological dual space of B, i.e. L(B;ℝ), will be denoted by B∗. If ϕ is a linear functional on B, we shall
denote the value of ϕ at an element b ∈ B either by ϕ(b) or ⟨ϕ, b⟩ or even B∗⟨ϕ, b⟩B. Let K be a compact
space;M(K) will denote the dual space C(K)∗, i.e. the so-called set of all real-valued finite signed measures
on K. In the article, if not specified, the mention absolutely continuous for a real-valued measure will always
refer to the Lebesgue measure.

Let E, F, G be Banach spaces; we shall denote the space of G-valued bounded bilinear forms on the
product E × F by B(E × F;G) with the norm given by ‖ϕ‖B = sup{‖ϕ(e, f)‖G : ‖e‖E ≤ 1; ‖f‖F ≤ 1}. If G = ℝ,
we simply denote it by B(E × F). We recall that B(B × B) is identified with (B ⊗̂π B)∗; see [12, 18] for more
details.

We recall some notions about differential calculus in Banach spaces; for more details, the reader can
refer to [1]. Let B be a Banach space. A function F : [0, T] × B → ℝ is said to be C1,2([0, T] × B) (Fréchet),
or C1,2 (Fréchet), if the following three properties are fulfilled: (1) F is once continuously differentiable; the
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partial derivative with respect to twill be denoted by ∂tF : [0, T] × B → ℝ; (2) for any t ∈ [0, T], x 󳨃→ DF(t, x)
is of class C1, where DF : [0, T] × B → B∗ denotes the derivative with respect to the second argument; (3) the
second-order derivative with respect to the second argument D2F : [0, T] × B → B(B × B) is continuous.

If B = C([−T, 0]), we remark that DF defined on [0, T] × B takes values in B∗ ≅M([−T, 0]). For all
(t, η) ∈ [0, T] × C([−T, 0]), we will denote by DdxF(t, η) the measure such that, for all h ∈ C([−T, 0]),

M([−T,0])⟨DF(t, η), h⟩C([−T,0]) = DF(t, η)(h) = ∫
[−T,0]

h(x)DdxF(t, η).

Whenever B = E = F = C([−T, 0]), then the space of finite signed Borel measures on [−T, 0]2 is included in
the spaceB(B × B) in the following way:

M([−T,0]2)⟨μ, η⟩C([−T,0]2) = ∫
[−T,0]2

η(x, y)μ(dx, dy) = ∫
[−T,0]2

η1(x)η2(y)μ(dx, dy).

We convene that the continuous functions (and real processes) defined on [0, T] or [−T, 0] are extended
by continuity to the real line.

Definition 2.1. Given a real continuous process X = (Xt)t∈[0,T], we will call window process and denote by
X( ⋅ ) the C([−T, 0])-valued process

X( ⋅ ) = (Xt( ⋅ ))t∈[0,T] = {Xt(x) := Xt+x; x ∈ [−T, 0], t ∈ [0, T]}.

X( ⋅ ) will be understood, sometimes without explicit mention, as C([−T, 0])-valued. In this paper, B will be
often taken to be C([−T, 0]).

We recall now the integration by parts in Wiener space. Let δ be the Skorohod integral or the adjoint
operator of Malliavin derivative Dm as defined in [13, Definition 1.3.1]. If u belongs to Dom δ, then δ(u) is an
element of L2(Ω) characterized, for any F ∈ 𝔻1,2, by

𝔼[F δ(u)] = 𝔼[
T

∫
0

Dm
t F ut dt]. (2.1)

2.2 Deterministic calculus via regularization

Let −T ≤ a ≤ b ≤ 0; we will essentially concentrate on the definite integral on an interval J = ]a, b] and
̄J = [a, b], where a < b are two real numbers. Typically, in our applications, we will consider a = −T or a = −t
and b = 0. That integral will be a real number.

We start with a convention. If f : [a, b] → ℝ is a càdlàg function, we extend it naturally to two possible
càdlàg functions fJ and f ̄J in real line setting

fJ(x) =
{{{
{{{
{

f(b), x > b,
f(x), x ∈ [a, b],
f(a), x < a,

and f ̄J(x) =
{{{
{{{
{

f(b), x > b,
f(x), x ∈ [a, b],
0, x < a.

Definition 2.2. Let μ be a finite Borel measure on [0, T], μ ∈M([−T, 0]) and f : [a, b] → ℝ a càdlàg function.
We define the deterministic forward integral on J = ]a, b] and on ̄J = [a, b] denoted by

∫
]a,b]

μ(dx) d−f(x) (or simply ∫
]a,b]

μ d−f) and ∫
[a,b]

μ(dx) d−f(x) (or simply ∫
[a,b]

μ d−f)

as the limit of

I−(]a, b], f, ϵ) = ∫
]a,b]

fJ(x + ϵ) − fJ(x)
ϵ

μ(dx) and I−([a, b], f, ϵ) = ∫
[a,b]

f ̄J(x + ϵ) − f ̄J(x)
ϵ

μ(dx)

when ϵ ↓ 0, provided it exists.
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If μ is absolutely continuous, we denote by μac the density with respect to the Lebesgue measure. In this
case, we set

∫
]a,b]

μ d−f := ∫
]a,b]

μac d−f, ∫
[a,b]

μ d−f := ∫
[a,b]

μac d−f. (2.2)

The first integral on ]a, b] appears in the path-dependent PDE (1.1); the second one on the closed inter-
val [a, b] is fundamental in Section 3. The proposition below discusses the case when f or μ is absolutely
continuous.

Proposition 2.3. Let μ(dx) = μac(x) dx, i.e. μ be absolutely continuouswith Radon–Nikodymderivative density
denoted by μac. By default, the bounded variation functions will be considered as càdlàg.
(1) If f has bounded variation, then

∫
]a,b]

μac(x) d−f(x) = ∫
]a,b]

μac(x−) df(x) (classical Lebesgue–Stieltjes integral).

In particular, whenever μac ≡ 1, ∫]a,b] μ
ac(x) d−f(x) = f(b) − f(a).

(2) If the function μac : [a, b] → ℝ is càdlàg with bounded variation, then
(a)

∫
[a,b]

μac(x) d−f(x) = μac(b)f(b) − ∫
]a,b]

f(x) dμac(x), (2.3)

(b)

∫
]a,b]

μac(x) d−f(x) = μac(b)f(b) − μac(a)f(a) −
b

∫
a

f(x) dμac(x). (2.4)

Proof. The statements follow directly from the definition. Concerning the case when the integration interval
is [a, b], we remark that our definition is compatible with [3, Definitions 4, 18]; see also [3, Proposition 8].
By [3, Proposition 4], we get item (2) (a). The other items can be established by similar considerations and
are left to the reader.

3 The existence result for cylindrical terminal condition
The central object of this section is Proposition 3.4 which gives an existence result of the solution of the path-
dependent heat equation (1.1) when the terminal condition H depends on a finite number of integrals, but
it is not necessarily smooth. As we mentioned, here the idea is to exploit the non-degeneracy aspect of the
Brownianmotion in the sense that the covariancematrix of every finite-dimensional distribution is invertible.
In this section, the standard deviation parameter σwill be supposed to be different from 0. This in opposition
to the case of Section 4 where H is Fréchet smooth, but not necessarily cylindrical; there σ is allowed even
to vanish.

We introducenow the functionalH. For all i = 1, . . . , n, letφi : [0, T] → ℝbe C2([0, T];ℝ). Let f : ℝn → ℝ
be measurable and with linear growth. We consider the functional H : C([−T, 0]) → ℝ defined by

H(η) = f( ∫
[−T,0]

φ1(u + T) d−η(u), . . . , ∫
[−T,0]

φn(u + T) d−η(u)). (3.1)

We recall that, for smooth φi, i ∈ {1, . . . , n}, the deterministic integral ∫[−T,0] φi(u + T) d
−η(u) exists point-

wise, according to Definition 2.2. That integral exists since, by (2.3) in Proposition 2.3, we have

∫
[−T,0]

φi(u + T) d−η(u) = φi(T)η(0) −
T

∫
0

η(s − T) dφi(s). (3.2)



40 | C. Di Girolami and F. Russo, About the path-dependent heat equation

So, replacing η by the random path σWT( ⋅ ) in (3.1), we get

h = H(WT( ⋅ )) = f(σ ∫
[−T,0]

φ1(u + T) d−WT(u), . . . , σ ∫
[−T,0]

φn(u + T) d−WT(u))

= f(σ
T

∫
0

φ1(s) d−Ws , . . . , σ
T

∫
0

φn(s) d−Ws)

= f(σ
T

∫
0

φ1(s) dWs , . . . , σ
T

∫
0

φn(s) dWs). (3.3)

We stress that, in the first line of (3.3), the integrands are deterministic forward integrals; those integrals
exist pathwise; however, in the second line of (3.3), there appear stochastic forward integrals. The second
equality is justified because the convergence for every realization ω implies of course the convergence in
probability, which characterizes the stochastic forward integral. The latter equality holds because Itô inte-
grals with Brownianmotion are also forward integrals; see [16, Proposition 1.1]. On the other hand, for every
i ∈ {1, . . . , n}, since φi are of class C2, then Proposition 2.3 and in particular (2.3) gives

t

∫
0

φi(s) d−Ws = ∫
[−t,0]

φi(u + t) d−Wt(u) = φi(t)Wt −
t

∫
0

Ws dφi(s), (3.4)

where the first equality holds by similar reasons as for the first equality in (3.3). The second equality holds
by (2.3).

We formulate the following non-degeneracy assumption.

Assumption 1. For t ∈ [0, T], we denote by Σt the matrix in𝕄n×n(ℝ) defined by

(Σt)1≤i,j≤n = (
T

∫
t

φi(s)φj(s) ds)
1≤i,j≤n

.

We suppose det(Σt) > 0 for all t ∈ [0, T[.

Remark 3.1. (1) We observe that, by continuity of function t 󳨃→ det(Σt), there is always τ > 0 such that
det(Σt) ̸= 0 for all t ∈ [0, τ[.

(2) It is not restrictive to consider det(Σ0) ̸= 0 since it is always possible to orthogonalize (φi)i=1,...,n in
L2([0, T]) via a Gram–Schmidt procedure.

We remember that W is a classical Wiener process equipped with its canonical filtration (Ft). We set
h = H(WT( ⋅ )), and we evaluate the conditional expectation 𝔼[h|Ft]. It gives

𝔼[h|Ft] = 𝔼[f(σ
T

∫
0

φi(s) dWs , . . . , σ
T

∫
0

φn(s) dWs)|Ft]

= Ψ(t, σ
t

∫
0

φ1(s) dWs , . . . , σ
t

∫
0

φn(s) dWs)

= Ψ(t, ∫
[−t,0]

φ1(u + t) d−σWt(u), . . . , ∫
[−t,0]

φn(u + t) d−σWt(u))

= Ψ(t, ∫
[−T,0]

φ1(u + t) d−σWt(u), . . . , ∫
[−T,0]

φn(u + t) d−σWt(u)), (3.5)

where the function Ψ: [0, T] × ℝn → ℝ is defined by

Ψ(t, y1, . . . , yn) = 𝔼[f(y1 + σ
T

∫
t

φ1(s) dWs , . . . , yn + σ
T

∫
t

φn(s) dWs)] (3.6)
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for any t ∈ [0, T], y1, . . . , yn ∈ ℝ. In particular, Ψ(T, y1, . . . , yn) = f(y1, . . . , yn). The second equality in (3.5)
holds because, for every 1 ≤ i ≤ n,

t

∫
0

φn(s)σ dWs =
0

∫
−t

φn(u + t) d−σWt(u)

for the same reasons as in (3.4). We evaluate expression (3.6) introducing the density function p of the
Gaussian vector

(
T

∫
t

φ1(s) dWs , . . . ,
T

∫
t

φn(s) dWs),

whose covariance matrix equals Σt. The function p : [0, T] × ℝn → ℝ is characterized by

p(t, z1, . . . , zn) = √
1

(2π)n det(Σt)
exp{−
(z1, . . . , zn)Σ−1t (z1, . . . , zn)∗

2 },

and function Ψ becomes

Ψ(t, y1, . . . , yn) =
{{{
{{{
{

∫
ℝn
f( ̃z1, . . . , ̃zn) p(t,

̃z1 − y1
σ

, . . . ,
̃zn − yn
σ )

d ̃z1 ⋅ ⋅ ⋅ d ̃zn if t ∈ [0, T[,

f(y1, . . . , yn) if t = T.
(3.7)

Remark 3.2. (1) If f is not continuous, we remark that, at time t = T, Ψ(T, ⋅ ) is a function which strictly
depends on the representative of f and not only on its Lebesgue a.e. representative. So Ψ, as a class, does
not admit a restriction to t = T.

(2) The function p is a C3,∞([0, T[ × ℝn) solution of

∂tp(t, z1, . . . , zn) = −
1
2

n
∑
i,j=1

φi(t)φj(t)∂2ijp(t, z1, . . . , zn).

Therefore, the function Ψ is C1,2([0, T[ × ℝn) and solves

∂tΨ(t, z1, . . . , zn) = −
σ2

2

n
∑
i,j=1

φi(t)φj(t)∂2ijΨ(t, z1, . . . , zn). (3.8)

We define now a function u : [0, T] × C([−T, 0]) → ℝ by

u(t, η) = Ψ(t, ∫
[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s)), (3.9)

where Ψ(t, y1, . . . , yn) is defined by (3.7).
By the fact that, for every i, the functions φi are C2, so in particular with bounded variation, similarly

to (3.2), we can write

∫
[−t,0]

φi(s + t) d−η(s) = η(0)φi(t) −
t

∫
0

η(s − t)φ̇i(s) ds; (3.10)

see (2.3).

Remark 3.3. By construction, we have u(t, σWt( ⋅ )) = 𝔼[h|Ft] and in particular u(0,W0( ⋅ )) = 𝔼[h].

We state now the main proposition of this section.

Proposition 3.4. Let H : C([−T, 0]) → ℝ be defined by (3.1) and u : [0, T] × C([−T, 0]) → ℝ by (3.9).
(1) The function u belongs to C1,2([0, T[ × C([−T, 0])), and it is a classical solution of (1.1).
(2) If f is continuous, then we have moreover u ∈ C0([0, T] × C([−T, 0])).
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Proof. We will see that D⊥u(t, η) is absolutely continuous with density that we will denote x 󳨃→ Dac
x , so (1.1)

simplifies in

{{
{{
{

Lu(t, η) = ∂tu(t, η) + ∫
]−t,0]

Dac
x u(t, η) d−η(x) +

1
2D

2u(t, η)({0, 0}) = 0,

u(T, η) = H(η).

We first evaluate the derivative ∂tu(t, η), for a given (t, η) ∈ [0, T] × C([−T, 0]):

∂tu(t, η) = ∂tΨ(t, ∫
[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s))

+
n
∑
i=1
(∂iΨ(t, ∫

[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s))

⋅ (∂t ∫
[−t,0]

φi(s + t) d−η(s)))

= ∂tΨ(t, ∫
[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s))

+
n
∑
i=1
(∂iΨ(t, ∫

[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s)) ⋅ Ii), (3.11)

where

Ii := ( ∫
]−t,0]

φ̇i(s + t) d−η(s)).

Indeed, by usual theorems of Lebesgue integration theory and by Proposition 2.3, (2.3) and (2.4), for every
1 ≤ i ≤ n, we obtain

∂t( ∫
[−t,0]

φi(s + t) d−η(s)) = ∂t(η(0)φi(t) −
0

∫
−t

η(s)φ̇i(s + t) ds)

= η(0)φ̇i(t) − η(−t)φ̇i(0+) −
0

∫
−t

η(s)φ̈i(s + t) ds = Ii .

In order to evaluate the derivatives of u with respect to η, we observe that, by (3.9) and (3.10), we get

u(t, η) = Ψ(t, η(0)φ1(t) −
t

∫
0

η(s − t)φ̇1(s) ds, . . . , η(0)φn(t) −
t

∫
0

η(s − t)φ̇n(s) ds).

For every t ∈ [0, T], η ∈ C([−T, 0]), the first derivative Du evaluated at (t, η) is the measure on [−T, 0] defined
by

Ddxu(t, η) = Dac
x u(t, η) dx + Dδ0u(t, η) δ0(dx)

with

Dac
x u(t, η) = −

n
∑
i=1
(∂iΨ(t, ∫

[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s))) ⋅ (𝟙[−t,0](x)φ̇i(x + t)),

Dδ0u(t, η) =
n
∑
i=1
(∂iΨ(t, ∫

[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s))) ⋅ φi(t).

As anticipated, we observe that x 󳨃→ Dac
x u(t, η) has bounded variation.
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Deriving again in a similar way, for every t ∈ [0, T], η ∈ C([−T, 0]), the second-order derivative D2u eval-
uated at (t, η) gives

D2
dx,dyu(t, η) =

n
∑
i,j=1
(∂2i,jΨ(t, ∫

[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s)))

⋅ (φi(t)φj(t) δ0(dx) δ0(dy) − φi(t) 𝟙[−t,0](x)φ̈j(x + t) δ0(dy)
− φj(t) 𝟙[−t,0](y)φ̈i(y + t) δ0(dx) + 𝟙[−t,0](x) 𝟙[−t,0](y)φ̈i(x + t)φ̈j(y + t)). (3.12)

We get

∫
]−t,0]

Dac
x u(t, η) d−η(x) =

n
∑
i=1
(∂iΨ(t, ∫

[−t,0]

φ1(s + t) d−η(s), . . . , ∫
[−t,0]

φn(s + t) d−η(s))) ⋅ Ii . (3.13)

Using (3.8), (3.11), (3.13) and (3.12), we obtain thatLu(t, η) = 0. Condition u(T, η) = H(η) is trivially verified
by definition. This concludes the proof of point (1).

Point (2) is immediate.

Remark 3.5. In this section, we have often used the concept of deterministic forward integral on a closed
interval [−t, 0], given in Definition 2.2,

∫
[−t,0]

φi(s + t) d−η(s), instead of ∫
]−t,0]

φi(s + t) d−η(s). (3.14)

SinceW0 = 0, the two integrals are the same when we replace η = Wt( ⋅ ), so

∫
[−t,0]

φi(s + t) d−η(s)|η=Wt( ⋅ ) = ∫
]−t,0]

φi(s + t) d−η(s)|η=Wt( ⋅ ).

The choice of the left expression in (3.14), which is compatible with the fact of considering

∫
]−t,0]

Dac
x u(t, η) d−η(x)

in (1.1), is justified since
t 󳨃→ ∫
]−t,0]

φi(s + t) d−η(s)

is not differentiable.

4 The existence result for smooth Fréchet terminal condition

4.1 Preliminary considerations

In this section, we will prove an existence theorem for classical solutions of (1.1) under smooth Fréchet
terminal condition. In order to define explicitly the solution of the PDE, we need to introduce two central
objects for this section: the Brownian stochastic flow which is a real-valued stochastic flow denoted by
(Xs,xt )0≤s≤t≤T, x∈ℝ and the functional Brownian stochastic flow which is a C([−T, 0])-valued stochastic flow
denoted by (Y s,ηt )0≤s≤t≤T, η∈C([−T,0]).

Definition 4.1. Let ∆ := {(s, t) : 0 ≤ s ≤ t ≤ T} and η ∈ C([−T, 0]). We define the flows that will appear in this
section.
(1) We denote by (Xs,xt )0≤s≤t≤T, x∈ℝ the real-valued random field defined by

(s, t, x) 󳨃→ Xs,xt = x + σ(Wt −Ws). (4.1)

This will be called Brownian stochastic flow.
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(2) We denote by (Y s,ηt )0≤s≤t≤T, η∈C([−T,0]) the C([−T, 0])-valued random field defined by

(s, t, η) 󳨃→ Y s,ηt (x) =
{
{
{

η(x + t − s), x ∈ [−T, s − t[,
η(0) + σ(Wt(x) −Ws), x ∈ [s − t, 0].

(4.2)

This will be called functional Brownian stochastic flow.

Let H : C([−T, 0]) → ℝ be the functional appearing in equation (1.1) and a path-dependent random variable
h := H(σWT( ⋅ )). We define the functional u : [0, T] × C([−T, 0]) → ℝ by

u(t, η) = 𝔼[H(Y t,ηT )]. (4.3)

Since σWT( ⋅ ) = Y t,σWt( ⋅ )
T , we have

𝔼(h|Ft) = 𝔼[H(σWT( ⋅ ))|Ft] = 𝔼[H(Y t,σWt( ⋅ )
T )|Ft] = u(t, σWt( ⋅ )).

For this reason, u defined in (4.3) is a natural candidate to be a solution of (1.1). In Theorem 4.11, we will
show, under smooth regularity of H, that such a u is sufficiently smooth to be a classical solution of the
path-dependent heat equation (1.1).

We dedicate the next two subsections to investigate some properties of Y t,ηT that wewill use in the proof of
themain theorem. Section 4.2 below contains the general results for the flows introduced in Definition 4.1. In
Section 4.3,wewill introduce theMarkovian stochastic flow for a general σ : [0, T] × ℝ → ℝ, which coincides
with the Brownian stochastic flow when σ is constant. We will derive some properties for this flow that we
need in the theorem.We recall that, given X and Y two random elements taking values in the same space, we
write X ∼ Y if they have the same law. From now on, a realization ω ∈ Ω will be often fixed.

4.2 Some properties of the Brownian (resp. functional Brownian) flow

First of all, we observe that the functional Brownian stochastic flow is time-homogeneous in law.

Proposition 4.2. Y s,ηt and Y0,ηt−s have the same law as C([−T, 0])-valued random variables. In particular, for
every x ∈ [−T, 0], we have Y0,ηt−s (x) ∼ Y

s,η
t (x).

Proof. It follows from the two following arguments. For x ∈ [−T, s − t], Y s,ηt (x) and Y
0,η
t−s (x) are deterministic

and are equal to η(x + t − s). For x ∈ [s − t, 0], the real-valued processes Y s,ηt (x) = η(0) + σ(Wt(x) −Ws) and
Y0,ηt−s (x) = η(0) + σ(Wt−s(x) −W0) have the same law by well-known properties of Brownian motion.

The next proposition concerns the continuity of the field Y s,ηt with respect to its three variables.

Proposition 4.3. (Y s,ηt )0≤s≤t≤T, η∈C([−T,0]) is a continuous random field.

Proof. As usual in this section, ω ∈ Ω is fixed, and ϖη (resp. ϖW(ω)) is the modulus of continuity of η (resp.
the Brownian pathW(ω)).

Let (s, t, η) be such that 0 ≤ s ≤ t ≤ T, η ∈ C([−T, 0]), and let a sequence (sn , tn , ηn) be also such that
0 ≤ sn ≤ tn ≤ T, ηn ∈ C([−T, 0]) with

lim
n→∞
(|s − sn| + |t − tn| + ‖η − ηn‖∞) = 0.

We have to show that Y sn ,ηntn → Y s,ηt in C([0, T] when n →∞ i.e. uniformly. For x ∈ [0, T], we evaluate

|Y sn ,ηntn − Y
s,η
t |(x) ≤ (I1(n) + I2(n) + I3(n))(x),

where
I1(n)(x) = |Y sn ,ηntn − Y

sn ,η
tn |(x),

I2(n)(x) = |Y s,ηtn − Y
s,η
t |(x),

I3(n)(x) = |Y sn ,ηtn − Y
s,η
tn |(x).
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By Definition 4.1, it is easy to see that ‖I1(n)‖∞ ≤ ‖η − ηn‖∞ + |ηn(0) − η(0)| ≤ 2‖η − ηn‖∞. Since I3(n)
behaves similarly to I2(n), we only show that limn→∞ I2(n) = 0. Without restriction of generality, we will
suppose that tn ≤ t for any n since the case when the sequence (tn) is greater or equal than t could be treated
analogously. We observe that the following equality holds:

(Y s,ηtn − Y
s,η
t )(x) = η(x + tn − s) 𝟙[−T,s−tn](x) − η(x + t − s) 𝟙[−T,s−t](x)

+ (η(0) + σWtn (x) − σWs) 𝟙[s−tn ,0](x)
− (η(0) + σWt(x) − σWs) 𝟙[s−t,0](x)

= (η(x + tn − s) − η(x + t − s)) 𝟙[−T,s−t](x)
+ (η(x + tn − s) − η(0) − σWt(x) + σWs) 𝟙[s−t,s−tn](x)
+ (σWtn (x) − σWt(x)) 𝟙[s−tn ,0](x). (4.4)

Using (4.4) to evaluate ‖I2(n)‖∞, we obtain

sup
x∈[−T,0]
|Y s,ηtn (x) − Y

s,η
t (x)| ≤ sup

x∈[−T,0]
|η(x + tn − s) − η(x + t − s)|

+ sup
x∈[s−t,s−tn]

|η(x + tn − s) − η(0)|

+ sup
x∈[s−t,s−tn]

σ|Wt(x) −Ws|

+ sup
x∈[−T,0]

σ|Wtn (x) −Wt(x)|

≤ 2ϖη(|tn − t|) + 2σϖW(ω)(|tn − t|) 󳨀󳨀󳨀󳨀󳨀󳨀→n→+∞
0.

Since η andW(ω) are uniformly continuous on the compact set [0, T], both moduli of continuity converge to
zero when tn → t0.

At this point, we make some simple observations that will be often used in the sequel.

Remark 4.4. (1) There are universal constants C1, C2, C3 and C4 such that, for every t ∈ [0, T], ϵ > 0 with
t + ϵ ∈ [0, T], it holds

‖Y t,ηT ‖∞ ≤ C1(1 + ‖η‖∞ + sup
t∈[0,T]

σ|Wt|),

‖Y t+ϵ,ηT ‖∞ ≤ C2(1 + ‖η‖∞ + σ sup
t∈[0,T]
|Wt|)

(4.5)

and
‖YT−t,η0 ‖∞ ≤ C3(1 + ‖η‖∞ + σ sup

t∈[0,T]
|Wt|). (4.6)

Further, (4.5) implies that, for any α ∈ [0, 1], t ∈ [0, T], ϵ with t + ϵ ∈ [0, T], it holds

‖αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ‖∞ ≤ C4(1 + ‖η‖∞ + σ sup

t∈[0,T]
|Wt|). (4.7)

(2) For any α ∈ [0, 1], t ∈ [0, T], it holds

αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T

C([−T,0])
󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
ϵ→0

Y t,ηT . (4.8)

In fact, expanding the term Y t+ϵ,Y
t,η
t+ϵ

T , which equals Y t,ηT , we obtain

‖αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T − Y t,ηT ‖∞ = α‖Y

t+ϵ,η
T − Y

t,η
T ‖∞.

The right-hand side converges to zero because of Proposition 4.3.
(3) In the sequel, we will make explicit use of the expression

(Y t+ϵ,ηT − Y
t,η
T )(x) =

{{{
{{{
{

η(x + T − t + ϵ) − η(x + T − t), x ∈ [−T, t − T],
η(x + T − t + ϵ) − η(0) − σWT(x) + σWt , x ∈ [t − T, t − T + ϵ],
σWt − σWt+ϵ , x ∈ [t − T + ϵ, 0].
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4.3 About Markovian stochastic flow and functional Markovian stochastic flow

The Brownian (resp. functional Brownian) stochastic flow can be generalized considering σ : [0, T] × ℝ → ℝ
Lipschitz with linear growth, i.e. not necessarily constant. We introduce the Markovian flow, and we show
some properties.

Let σ, b : [0, T] × ℝ → ℝ be Lipschitz functions with linear growth. Let, for every s ∈ [0, T[, x ∈ ℝ,
X = Xs,x be the solution of the SDE

Xt = x +
t

∫
s

σ(u, Xu) dWu +
t

∫
s

b(u, Xu) du, t ∈ [s, T].

Let again ∆ := {(s, t) : 0 ≤ s ≤ t ≤ T}. It iswell known that the real-valued randomfield (s, t, x) 󳨃→ Xs,xt defined
over ∆ × ℝ → ℝ admits a continuous modification.

Definition 4.5 (Stochastic flows).
(1) The random field (s, t, x) 󳨃→ Xs,xt will be calledMarkovian stochastic flow.
(2) We denote by (Y s,ηt )0≤s≤t≤T,η∈C([−T,0]) the random field defined over ∆ × C([−T, 0]) → C([−T, 0]) by

(s, t, η) 󳨃→ Y s,ηt (x) =
{
{
{

η(x + t − s), x ∈ [−T, s − t[,
Xs,η(0)t , x ∈ [s − t, 0].

This will be called functional Markovian stochastic flow.

Remark 4.6. (1) The Brownian flow (Xs,xt ) introduced in Definition 4.1 is a particular case of the Markovian
flow when σ(t, x) = σ, σ a constant. We could have formulated this chapter in this more general framework,
but for simplicity of exposition, we have restricted us to the case σ constant.

(2) The Markovian stochastic flow verifies the flow property for 0 ≤ s ≤ t ≤ r ≤ T,

Xs,xr = X
t,Xs,xt
r . (4.9)

We set

Y s,ηt (x) =
{
{
{

η(x + t − s), x ∈ [−T, s − t],
Xs,η(0)t+x , x ∈ [s − t, 0].

(4.10)

The functional flow (Y s,ηt ) coincides of course with (4.2) when (X
s,x
t ) is given by (4.1).

The following lemma shows a “flow property” for the functional flow.

Lemma 4.7. Let η ∈ C([−T, 0]) for 0 ≤ s ≤ t ≤ r ≤ T. Then

Y s,ηr = Y
t,Y s,ηtr . (4.11)

Proof. It follows from the flow property (4.9) for the Markovian stochastic flow. For fixed ω ∈ Ω, we inject
̃η = Y t,ηs into Y t, ̃ηr obtaining

Y t,Y
s,η
tr (x) =

{{{{
{{{{
{

η(x + r − s), x ∈ [−T, s − r],

Xs,η(0)r+x , x ∈ [s − r, t − r],

Xt, ̃η(0)r+x = X
t,Xs,η(0)t
r+x = X

s,η(0)
r+x , x ∈ [t − r, 0],

}}}}
}}}}
}

= Y s,ηr (x),

which concludes the proof of the lemma.

We concentrate now on the derivatives of the functional Markovian stochastic flow. Let t ∈ [0, T[.
By (4.10), we remind that

Y t,ηT (ρ) =
{
{
{

η(ρ + T − t), ρ ∈ [−T, t − T[,
Xt,η(0)T+ρ , ρ ∈ [t − T, 0].

It is possible to calculate formally the first and second derivatives of Y t,ηT (ρ) for ρ ∈ [−T, 0].
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Remark 4.8. For ρ ∈ [−T, 0], then

Y t,⋅T (ρ) : C([−T, 0]) × Ω → ℝ,

DY t,⋅T (ρ) : C([−T, 0]) × Ω → (C([−T, 0]))
∗ =M([−T, 0]).

In particular, if f ∈ C([−T, 0]),

M([−T,0])⟨DY t,ηT (ρ), f⟩C([−T,0]) = ∫
[−T,0]

f(x)DdxY
t,η
T (ρ, ω).

In particular, we have

DdxY
t,η
T (ρ) =

{
{
{

δρ+T−t(dx), ρ ∈ [−T, t − T[,
δ0(dx)∂ξX

t,η(0)
T+ρ , ρ ∈ [t − T, 0],

(4.12)

and

D2
dy dxY

t,η
T (ρ) =

{
{
{

0, ρ ∈ [−T, t − T[,
δ0(dx) δ0(dy)∂2ξξX

t,η(0)
T+ρ , ρ ∈ [t − T, 0].

Avoiding some technicalities, it is possible to evaluate the first and second derivatives of the functional flow
itself. In the sequel, η will always be a generic element in C([−T, 0]). Let (Xs,xt ) be the real stochastic flow as
in (4.1) and the associated functional stochastic flow (Y s,ηt ) as in Definition 4.1.

Lemma 4.9. Let t ∈ [0, T[.
(1) The map Y t,⋅T : C([−T, 0]) × Ω → C([−T, 0]) acting as η 󳨃→ Y t,ηT is of class C2(C([−T, 0]); C([−T, 0])) a.s.
(2) The derivatives

DY t,⋅T : C([−T, 0]) × Ω → L(C([−T, 0]); C([−T, 0])),

D2Y t,⋅T : C([−T, 0]) × Ω → B(C([−T, 0]) × C([−T, 0]); C([−T, 0]))
are characterized as follows. For f, g ∈ C([−T, 0]), we have

ρ 󳨃→ ∫
[−T,0]

DdxY
t,η
T (ρ)f(x) =

{
{
{

f(ρ + T − t), ρ ∈ [−T, t − T[,
f(0)∂ξX

t,η(0)
T+ρ , ρ ∈ [t − T, 0],

ρ 󳨃→ ∫
[−T,0]2

D2
dy dxY

t,η
T (ρ)f(x)g(y) =

{
{
{

0, ρ ∈ [−T, t − T[,
f(0)g(0)∂2ξξX

t,η(0)
T+ρ , ρ ∈ [t − T, 0].

(4.13)

In the remark below, we express Lemma 4.9 in the case of the functional Brownian flow.

Remark 4.10. When σ(t, x) ≡ σ is a constant, by (4.1), the following holds.
(1)

∂ξX
s,ξ
t = 1 and ∂2ξξX

t,ξ
s = 0. (4.14)

(2) By (4.14), the derivatives given by (4.13) for the functional Brownian flow reduce to

ρ 󳨃→ ∫
[−T,0]

DdxY
t,η
T (ρ)f(x) =

{
{
{

f(ρ + T − t), ρ ∈ [−T, t − T[,
f(0), ρ ∈ [t − T, 0],

ρ 󳨃→ ∫
[−T,0]2

D2
dy dxY

t,η
T (ρ)f(x)g(y) = 0, ρ ∈ [−T, 0].

4.4 The existence result for smooth Fréchet terminal condition

In this section, Theorem 4.11 states the existence result and Fréchet regularity of the solution of the infinite-
dimensional PDE (1.1) when σ is constant and H is C3(C([−T, 0])). In particular, we will give conditions on
the function H such that u defined in (4.3) solves the PDE stated on (1.1). Those conditions are reasonable,
but they are however not optimal.
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Theorem 4.11. Let H ∈ C3(C([−T, 0])) such that D3H has polynomial growth (for instance bounded). Let u be
defined by u(t, η) = 𝔼[H(Y t,ηT )], t ∈ [0, T], η ∈ C([−T, 0]).
(1) Then u ∈ C0,2([0, T] × C([−T, 0])).
(2) Suppose moreover the following for every η ∈ C([−T, 0]):

(i) The measure DdxH(η) is Lebesgue absolutely continuous. We will denote by x 󳨃→ DxH(η) its density,
and we suppose that DH(η) ∈ H1([−T, 0]), i.e. the function x 󳨃→ DxH(η) is in H1([−T, 0]).

(ii) DH has polynomial growth in H1([−T, 0]), i.e. there is p ≥ 1 such that

η 󳨃→ ‖DH(η)‖H1 ≤ const (‖η‖p∞ + 1). (4.15)

In particular,

sup
t∈[−T,0]
|DxH(η)| ≤ const (‖η‖p∞ + 1) ≤ const (‖η‖p∞ + 1).

(iii) The map

η 󳨃→ DH(η) considered as C([−T, 0]) → H1([−T, 0]) is continuous. (4.16)

Then u ∈ C1,2([0, T] × C([−T, 0])) and u is a classical solution of (1.1) in C([−T, 0]), i.e. u solves

{{
{{
{

∂tu(t, η) + ∫
]−t,0]

D⊥dxu(t, η) d
−η(x) + 12σ

2⟨D2u(t, η), 𝟙{0} ⊗2⟩ = 0,

u(T, η) = H(η).

Remark 4.12. Contrarily to the (non-degenerate) situation of Section 3, Theorem 4.11 holds even when
σ = 0. In that case, one gets a first-order equation; the regularity on H could be relaxed, but we are not
specifically interested in this refinement.

Remark 4.13. (1) Assumption (4.15) implies in particular that DH has polynomial growth in C([−T, 0]), i.e.
there is p ≥ 1 such that

η 󳨃→ sup
x∈[−T,0]
|DxH(η)| = ‖DH(η)‖∞ ≤ const (‖η‖p∞ + 1). (4.17)

Indeed, it is well known that H1([−T, 0]) 󳨅→ C([−T, 0]) and for a function f ∈ H1 it holds ‖f‖∞ ≤ const ‖f‖H1 .
(2) By a Taylor’s expansion, given for instance by [1, Theorem 5.6.1], the fact that D3H has polynomial

growth implies that H, DH and D2H have also polynomial growth in C([−T, 0]).
(3) Du(t, η), D2u(t, η) and ∂tu(t, η)will be explicitly expressed in term of H at (4.21), (4.23) and (4.51).

Proof. By expression (4.3), it is obvious that u(T, η) = H(η).

Proof of (1). Continuity of function u with respect to time t. We consider a sequence

(tn) in [0, T] such that tn 󳨀󳨀󳨀󳨀→n→∞
t0.

By assumption, H ∈ C0(C([−T, 0])). Consequently, by Proposition 4.3,

H(Y0,ηT−tn )
a.s.
󳨀󳨀󳨀󳨀→
n→∞

H(Y0,ηT−t0 ). (4.18)

By Remark 4.13 (1), H has also polynomial growth; therefore, there is p ≥ 1 such that

|H(ζ)| ≤ const (1 + sup
x∈[−T,0]
|ζ(x)|p) for all ζ ∈ C([−T, 0]).

By (4.6), we observe that

|H(Y0,ηT−t)| ≤ const (1 + ‖Y
0,η
T−t‖

p
∞)

≤ const (1 + sup
x∈[−T,0]
|η(x)|p + σp sup

t≤T
|Wt|p).
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By the Lebesgue dominated convergence theorem, the fact that supt≤T |Wt|p is integrable and (4.18), it follows
that

u(tn , η) = 𝔼[H(Y
0,η
T−tn )] 󳨀󳨀󳨀󳨀→n→∞

𝔼[H(Y0,ηT−t0 )] = u(t0, η).

First-order Fréchet derivative. Weexpress now thederivatives of uwith respect to the derivatives ofH.We start
with Du : [0, T] × C([−T, 0]) →M([−T, 0]). Omitting some details, by integration theory for every t ∈ [0, T],
u(t, ⋅ ) is of class C1(C([−T, 0])). By usual derivation rules for composition, we have

DdxH(Y
t,η
T ) = ∫

[−T,0]

DdρH(Y
t,η
T )DdxY

t,η
T (ρ),

and
Ddxu(t, η) = 𝔼[DdxH(Y

t,η
T )] = 𝔼[ ∫

[−T,0]

DdρH(Y
t,η
T )DdxY

t,η
T (ρ)]. (4.19)

We compute explicitly (4.19) using expression (4.12). Integrating with respect to ρ (for a fixed x), we obtain
the following:

Ddxu(t, η) = 𝔼[ ∫
[−T,t−T[

DdρH(Y
t,η
T )DdxY

t,η
T (ρ)] + 𝔼[ ∫

[t−T,0]

DdρH(Y
t,η
T )DdxY

t,η
T (ρ)]

= 𝔼[ ∫
[−T,t−T[

DdρH(Y
t,η
T ) δρ+T−t(dx)] + 𝔼[ ∫

[t−T,0]

DdρH(Y
t,η
T )] δ0(dx). (4.20)

Consequently,
Ddxu(t, η) = D⊥dxu(t, η) + D

δ0u(t, η) δ0(dx), (4.21)

where
D⊥dxu(t, η) = 𝔼[Ddx−T+tH(Y

t,η
T )] 𝟙[−t,0[(x), (4.22)

and
Dδ0u(t, η) = 𝔼[ ∫

[t−T,0]

DdρH(Y t,ηT )].

Indeed, the first addend D⊥dxu(t, η) of (4.21), i.e. expression (4.22), comes from (4.20), using the fact that
δρ+T−t(dx) = δdx−T+t(dρ) and integrating with respect to ρ. The continuity of (t, η) 󳨃→ Ddxu(t, η) in (4.21)
can be justified since the functions

[0, T] × C([−T, 0]) → ℝ, (t, η) 󳨃→ Dδ0u(t, η),
[0, T] × C([−T, 0]) →M([−T, 0]), (t, η) 󳨃→ D⊥u(t, η)

are both continuous. The latter fact follows from the fact thatH ∈ C1(C([−T, 0])),DHwith polynomial growth,
(4.6), (4.5), the fact that, for any given Brownian motion W̄, supx≤T |W̄x| has all moments and finally the
Lebesgue dominated convergence theorem.
Second-order Fréchet derivative. We discuss the second derivative

D2u : [0, T] × C([−T, 0]) → (C([−T, 0]) ⊗̂π C([−T, 0]))∗ ≅ B(C([−T, 0]), C([−T, 0])).

For every fixed (t, η), we get

D2
dx,dyu(t, η) = 𝔼[D

2
dy−T+t,dx−T+tH(Y

t,η
T ) 𝟙[−t,0[(x) ⊗ 𝟙[−t,0[(y)]

+ 𝔼[Ddx−T+t⟨DH(Y t,ηT ), 𝟙[t−T,0]⟩] 𝟙[−t,0[(x) δ0(dy)

+ 𝔼[Ddy−T+t⟨DH(Y t,ηT ), 𝟙[t−T,0]⟩] 𝟙[−t,0[(y) δ0(dx)

+ 𝔼[⟨D2H(Y t,ηT ), 𝟙[t−T,0] ⊗𝟙[t−T,0]⟩] δ0(dx) δ0(dy).

It is possible to show that all the terms in the first and the second derivative are well defined and continuous
using similar techniques used in the first part of the proof. We omit these technicalities for simplicity.
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Remark 4.14. For illustration, if D2H is an absolutely continuous Borel measure on [−T, 0]2 with density
D2
x,yH = DxDyH, we obtain the following:

D2
dx,dyu(t, η) = 𝔼[Dy−T+t Dx−T+tH(Y

t,η
T )] 𝟙[−t,0[(x) 𝟙[−t,0[(y) dx dy

+ 𝔼[
0

∫
t−T

Ds Dx−T+tH(Y t,ηT ) ds]𝟙[−t,0[(x) dx δ0(dy)

+ 𝔼[
0

∫
t−T

Dy−T+tDsH(Y t,ηT ) ds]𝟙[−t,0[(y) dy δ0(dx)

+ 𝔼[ ∫
[t−T,0]2

Ds1Ds2H(Y
t,η
T ) ds1 ds2] δ0(dx) δ0(dy). (4.23)

Proof of (2).

Remark 4.15. Under hypothesis (2), we remark the following.
(1) The right-hand side of (4.22) is absolutely continuous in x. In other words, D⊥dxu(t, η) = D

ac
x u(t, η) dx

and

Dac
x u(t, η) = 𝔼[Dx−T+tH(Y

t,η
T )] 𝟙[−t,0[(x) =

{
{
{

0, x ∈ [−T, −t[,
𝔼[Dx−T+tH(Y t,ηT )], x ∈ [−t, 0[.

(4.24)

(2) In particular, by item (ii), x 󳨃→ DxH(η) belongs to H1, so it has bounded variation. Therefore, the
deterministic forward integral in (1.1) exists because of Proposition 2.3, and it can be expressed through
(2.4). We will denote by D󸀠H(η) the derivative in x of function x 󳨃→ DxH(η), where DxH(η) is the density of
the measure DdxH(η) for every fixed η. Since x 󳨃→ DxH(η) is absolutely continuous then, by (2.2), we have

∫
]−t,0]

Ddx−T+tH(Y t,ηT ) d
−η(x) = ∫

]−t,0]

Dx−T+tH(Y t,ηT ) d
−η(x). (4.25)

Previous deterministic integral exists because x 󳨃→ DxH(η) has bounded variation, and by Proposition 2.3, it
equals

−D−TH(Y t,ηT )η(−t) + Dt−TH(Y
t,η
T )η(0) −

0

∫
−t

D󸀠x−T+tH(Y
t,η
T )η(x) dx.

Derivability with respect to time t. Let t ∈ [0, T], η ∈ C([−T, 0)]. We will show that

∂tu(t, η) = −𝔼[ ∫
]−t,0]

Dx−T+tH(Y t,ηT ) d
−η(x) + σ

2

2 ⟨D
2H(Y t,ηT ), 1]t−T,0]⊗

2⟩].

We need to consider ϵ such that t + ϵ ∈ [0, T] and evaluate the limit when ϵ → 0, if it exists, of
u(t + ϵ, η) − u(t, η)

ϵ
(4.26)

Without restriction of generality, we will suppose here ϵ > 0; the case ϵ < 0 would bring similar calculations.
The flow property (4.11) gives Y t,ηT = Y

t+ϵ,Y t,ηt+ϵ
T , which allows to write

u(t, η) = 𝔼[H(Y t+ϵ,Y
t,η
t+ϵ

T )]. (4.27)

We go on with the evaluation of the limit of (4.26). By (4.27) and by differentiability of H in C([−T, 0]), we
have

H(Y t+ϵ,ηT ) − H(Y
t+ϵ,Y t,ηt+ϵ
T ) = ⟨DH(Y t,ηT ), Y

t+ϵ,η
T − Y

t+ϵ,Y t,ηt+ϵ
T ⟩

+
1

∫
0

⟨DH(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ) − DH(Y t,ηT ), Y

t+ϵ,η
T − Y

t+ϵ,Y t,ηt+ϵ
T ⟩ dα

= ∫
[−T,0]

DdxH(Y t,ηT )(Y
t+ϵ,η
T (x) − Y

t+ϵ,Y t,ηt+ϵ
T (x)) + S(ϵ, t, η), (4.28)
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where

S(ϵ, t, η) =
1

∫
0

⟨DH(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ) − DH(Y t,ηT ), Y

t+ϵ,η
T − Y

t+ϵ,Y t,ηt+ϵ
T ⟩ dα.

Setting γ = Y t,ηt+ϵ, we need to evaluate

Y t+ϵ,ηT (x) − Y
t+ϵ,γ
T (x), x ∈ [−T, 0]. (4.29)

Then (4.29) gives

Y t+ϵ,ηT (x) − Y
t+ϵ,γ
T (x) =

{
{
{

η(x + T − t − ϵ) − γ(x + T − t − ϵ), x ∈ [−T, t − T + ϵ[,
η(0) − γ(0) = −σ(Wt+ϵ(0) +Wt), x ∈ [t − T + ϵ, 0],

(4.30)

because γ(0) = Y t,ηt+ϵ(0) = η(0) + σ(Wt+ϵ(0) −Wt). Moreover, by (4.10), we have

γ(x + T − t − ϵ) = Y t,ηt+ϵ(x + T − t − ϵ) =
{
{
{

η(x + T − t), x ∈ [−T, t − T[,
η(0) + σ(WT(x) −Wt), x ∈ [t − T, t − T + ϵ].

Finally, we obtain an explicit expression for (4.29); indeed, (4.30) gives

Y t+ϵ,ηT (x) − Y
t+ϵ,γ
T (x) =

{{{
{{{
{

η(x + T − t − ϵ) − η(x + T − t), x ∈ [−T, t − T[,
η(x + T − t − ϵ) − η(0) − σ(WT(x) +Wt), x ∈ [t − T, t − T + ϵ[,
σ(Wt −Wt+ϵ), x ∈ [t − T + ϵ, 0].

(4.31)

Consequently, using (4.27), (4.28) and (4.31), the quotient (4.26) appears to be the sum of four terms.

u(t + ϵ, η) − u(t, η)
ϵ

= 𝔼[
H(Y t+ϵ,ηT ) − H(Y

t+ϵ,Y t,ηt+ϵ
T )

ϵ ]

= I1(ϵ, t, η) + I2(ϵ, t, η) + I3(ϵ, t, η) +
1
ϵ
𝔼[S(ϵ, t, η)], (4.32)

where

I1(ϵ, t, η) = 𝔼[
t−T

∫
−T

DxH(Y t,ηT )
η(x + T − t − ϵ) − η(x + T − t)

ϵ
dx]

= −𝔼[
0

∫
−t

Dx−T+tH(Y t,ηT )
η(x) − η(x − ϵ)

ϵ
dx],

I2(ϵ, t, η) = 𝔼[
t−T+ϵ

∫
t−T

DxH(Y t,ηT )
η(x + T − t − ϵ) − η(0) − σ(WT(x) +Wt)

ϵ
dx]

− 𝔼[
t−T+ϵ

∫
t−T

DxH(Y t,ηT )
Wt −Wt+ϵ

ϵ
dx]

= 𝔼[
t−T+ϵ

∫
t−T

DxH(Y t,ηT )
η(x + T − t − ϵ) − η(0) − σ(WT(x) +Wt+ϵ)

ϵ
dx],

I3(ϵ, t, η) = 𝔼[
0

∫
t−T

DxH(Y t,ηT )
σ(Wt −Wt+ϵ)

ϵ
dx],

and 𝔼[S(ϵ, t, η)] is equal to

1

∫
0

𝔼[
0

∫
−T

(DxH(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ) − DxH(Y t,ηT )) ⋅ (Y

t+ϵ,η
T (x) − Y

t+ϵ,Y t,ηt+ϵ
T (x)) dx] dα. (4.33)



52 | C. Di Girolami and F. Russo, About the path-dependent heat equation

We will prove that

I1(ϵ, t, η) 󳨀󳨀󳨀→ϵ→0 I1(t, η) := I11(t, η) + I12(t, η) + I13(t, η), (4.34)

where
I11(t, η) = 𝔼[D−TH(Y t,ηT )η(−t)],

I12(t, η) = 𝔼[
0

∫
−t

D󸀠x−T+tH(Y
t,η
T )η(x) dx],

I13(t, η) = −𝔼[Dt−TH(Y t,ηT )η(0)].

Admitting (4.34), the additivity and using (4.24) in Remark 4.15, we have

I1(t, η) = −𝔼[ ∫
]−t,0]

Dx−T+tH(Y t,ηT ) d
−η(x)].

It remains to show (4.34). In fact, I1(ϵ, t, η) can be rewritten as sum of the three terms

I11(ϵ, t, η) = 𝔼[
−t+ϵ

∫
−t

Dx−T+tH(Y t,ηT )
η(x − ϵ)

ϵ
dx],

I12(ϵ, t, η) = 𝔼[
0

∫
−t

Dx+ϵ−T+tH(Y t,ηT ) − Dx−T+tH(Y
t,η
T )

ϵ
η(x) dx],

I13(ϵ, t, η) = −𝔼[
ϵ

∫
0

Dx−T+tH(Y t,ηT )
η(x − ϵ)

ϵ
dx].

We can apply the dominated convergence theorem. Since W̄, supx≤T |W̄x| has all moments, and taking into
account (4.17) in Remark 4.13, we get that I1i(ϵ, t, η) 󳨀󳨀󳨀→ϵ→0 I1i(t, η) for i = 1, 2, 3 holds.

I2(ϵ, t, η) converges to zero when ϵ → 0. Indeed, the Cauchy–Schwarz inequality yields

|I2(ϵ, t, η)|2 ≤
1
ϵ
𝔼[

t−T+ϵ

∫
t−T

DxH(Y t,ηT )
2 dx]

⋅
1
ϵ
𝔼[

t−T+ϵ

∫
t−T

(η(x + T − t − ϵ) − η(0) − σ(WT(x) +Wt+ϵ))
2 dx].

Again, by usual arguments and again because supx≤T |W̄x| has all moments and taking into account (4.17) in
Remark 4.13, it follows that the first integral converges to 𝔼[Dt−TH(Y t,ηT )2] and the second integral to zero.

As third step, we prove that

I3(ϵ, t, η) 󳨀󳨀󳨀→ϵ→0 −σ
2 𝔼[⟨D2H(Y t,ηT ), 𝟙]t−T,0] ⊗

2⟩] =: I3(t, η). (4.35)

For this, we rewrite I3(ϵ, t, η) using (A.1), i.e.Wt+ϵ −Wt = Wϵ and the Skorohod integral to obtain

I3(ϵ, t, η) = −σ𝔼[
0

∫
t−T

DxH(Y t,ηT )
Wt+ϵ −Wt

ϵ
dx] = −σϵ

𝔼[
0

∫
t−T

DxH(Y t,ηT ) dx ⋅Wϵ]

= −
σ
ϵ
𝔼[

0

∫
t−T

DxH(Y t,ηT ) dx ⋅
ϵ

∫
0

δW r] = −
σ
ϵ
𝔼[Z ⋅

ϵ

∫
0

δW s], (4.36)

whereZ := ⟨DH(Y t,ηT ), 𝟙]t−T,0]⟩. Denoting by the deterministic function Y := 1]t−T,0](x), using Proposition A.4
with n = 1, it follows that Z = ⟨DH(Y t,ηT ), Y⟩ belongs to𝔻1,2 and

Dm
r Z = σ⟨D2H(Y t,ηT ), 𝟙]t−T,0](x) ⊗ 𝟙]r−T+t,0](y)⟩. (4.37)
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By integration by parts on Wiener space, expression (4.37), Fubini’s theorem with respect to r and y, (4.36)
gives

I3(ϵ, t, η) = −
σ
ϵ
𝔼[

ϵ

∫
0

Dm
r Z dr] = −

σ2

ϵ
𝔼[

ϵ

∫
0

⟨D2H(Y t,ηT ), 𝟙]r−T+t,0](x) ⊗ 𝟙]t−T,0](y)⟩ dr]

= −
σ2

ϵ
𝔼[⟨D2H(Y t,ηT ),

ϵ

∫
0

𝟙]r−T+t,0](x) dr ⊗ 𝟙]t−T,0](y)⟩]

= −
σ2

ϵ
𝔼[⟨D2H(Y t,ηT ),

t+ϵ

∫
t

𝟙]z−T,0](x) dz ⊗ 𝟙]t−T,0](y)⟩], (4.38)

where the latter equality comes replacing z := r + t in the integral.
Observing that
t+ϵ

∫
t

𝟙]z−T,0](x) dz =
t+ϵ

∫
t

𝟙[0,x+T[(z) dz

=

{{{{
{{{{
{

∫
t+ϵ
t 0 dz = 0, x ≤ t − T ⇐⇒ x + T ≤ t,

∫
t+ϵ
t 𝟙[0,x+T[(z) dz = x − t, x ∈ ]t − T, t − T + ϵ] ⇐⇒ x + T ∈ ]t, t + ϵ],

∫
t+ϵ
t 1 dz = ϵ, x ∈ ]t − T + ϵ, 0] ⇐⇒ x + T ∈ ]t + ϵ, T],

(4.39)

we get
1
ϵ

t+ϵ

∫
t

𝟙]z−T,0](x) dz = 𝟙]t−T+ϵ,0](x) +
(x − t)
ϵ
𝟙]t−T,t−T+ϵ](x).

The previous expression is bounded by 1. Moreover, it converges pointwise to 𝟙]t−T,0](x) as ϵ ↓ 0. By
Remark 4.13 (1), the fact that D2H has polynomial growth and that, for any given Brownian motion W̄,
supx≤T |W̄x| has all moments and finally the Lebesgue dominated convergence theorem, we conclude that
(4.38) converges to I3(t, η), i.e.

I3(t, η) = −σ2 𝔼[⟨D2H(Y t,ηT ), 𝟙]t−T,0](x) ⊗ 𝟙]t−T,0](y)⟩].

So the convergence (4.35) is established.
We study now the term 1

ϵ 𝔼[S(ϵ, t, η)] in (4.33). By Lemma 4.7, we get the a.s. equality Y t,ηT = Y
t+ϵ,Y t,ηt+ϵ
T .

Using (4.31) and the fact that H ∈ C3(C([−T, 0])), (4.33) can be rewritten as the sum of the terms

A1(ϵ, t, η) =
1

∫
0

𝔼[
t−T

∫
−T

(DxH(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − DxH(Y

t,η
T ))

⋅
η(x + T − t − ϵ) − η(x + T − t)

ϵ
dx] dα,

A2(ϵ, t, η) =
1

∫
0

𝔼[
t−T+ϵ

∫
t−T

(DxH(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − DxH(Y

t,η
T ))

⋅
η(x + T − t − ϵ) − η(0) − σWT(x) + σWt+ϵ

ϵ
dx] dα,

A3(ϵ, t, η) = A31(ϵ, t, η) + A32(ϵ, t, η) + A33(ϵ, t, η) + A34(ϵ, t, η),

where
A31(ϵ, t, η) =

σ2

2 𝔼[⟨D
2H(Y t,ηT ), 𝟙]t−T+ϵ,0] ⊗𝟙]t−T+ϵ,0]⟩ ⋅

(Wt −Wt+ϵ)2

ϵ ],

A32(ϵ, t, η) = σ2
1

∫
0

𝔼[⟨(D2H(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − D

2H(Y t,ηT )), 𝟙]t−T+ϵ,0]2⟩ ⋅
(Wt −Wt+ϵ)2

ϵ ] dα,



54 | C. Di Girolami and F. Russo, About the path-dependent heat equation

A33(ϵ, t, η) = σ
1

∫
0

𝔼[⟨(D2H(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − D

2H(Y t,ηT )),
η(y + T − t + ϵ) − η(y + T − t)

ϵ
𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−T,t−T](y)⟩ ⋅ (Wt −Wt+ϵ)] dα,

A34(ϵ, t, η) = σ
1

∫
0

𝔼[⟨(D2H(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − D

2H(Y t,ηT )),
η(y + T − t − ϵ) − η(0) − σ(WT(y) +Wt+ϵ)

ϵ
𝟙]t−T+ϵ,0](x) ⊗ 𝟙]t−T,t−T+ϵ](y)⟩

⋅ (Wt −Wt+ϵ)] dα.

Similarly to I1(ϵ, t, η), the term A1(ϵ, t, η) can be decomposed into the sum of terms given below.

A11(ϵ, t, η) = 𝔼[
1

∫
0

−t+ϵ

∫
−t

Dx−T+tH(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − Dx−T+tH(Y

t,η
T )

η(x − ϵ)
ϵ

dx dα],

A12(ϵ, t, η) = 𝔼[
1

∫
0

0

∫
−t

Dx+ϵ−T+tH(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − Dx−T+tH(αY

t+ϵ,η
T + (1 − α)Y

t,η
T )

ϵ
⋅ η(x) dx dα]

− 𝔼[
1

∫
0

0

∫
−t

Dx+ϵ−T+tH(Y t,ηT ) − Dx−T+tH(Y
t,η
T )

ϵ
η(x) dx dα],

A13(ϵ, t, η) = −𝔼[
1

∫
0

0

∫
−ϵ

Dx−T+tH(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − Dx−T+tH(Y

t,η
T )

η(x − ϵ)
ϵ

dx dα].

We show now that A11(ϵ, t, η) converges to zero. By the Cauchy–Schwarz inequality, we have

[A11(ϵ, t, η)]2 ≤
−t+ϵ

∫
−t

η2(x − ϵ)
ϵ

dx ⋅ 𝔼[
1

∫
0

−t+ϵ

∫
−t

1
ϵ [
Dx−T+tH(αY t+ϵ,ηT + (1 − α)Y

t,η
T ) − Dx−T+tH(Y

t,η
T )]

2 dx dα].

The integral 1
ϵ ∫
−t+ϵ
−t η2(x − ϵ) dx converges to η2(−t) by the finite increments theorem. By hypotheses (4.16)

and (4.8), we have
󵄩󵄩󵄩󵄩DH(αY

t+ϵ,η
T + (1 − α)Y

t,η
T ) − DH(Y

t,η
T )
󵄩󵄩󵄩󵄩H1([−T,0])

a.s.
󳨀󳨀󳨀→
ϵ→0

0. (4.40)

Because of (4.40), it follows that

sup
x∈[−T,0]

󵄨󵄨󵄨󵄨DxH(αY
t+ϵ,η
T + (1 − α)Y

t,η
T ) − DxH(Y

t,η
T )
󵄨󵄨󵄨󵄨

a.s.
󳨀󳨀󳨀→
ϵ→0

0 for all x ∈ [−T, 0]. (4.41)

Then (4.41) implies that
1

∫
0

−t+ϵ

∫
−t

1
ϵ [
Dx−T+tH(αY t+ϵ,ηT + (1 − α)Y

t,η
T ) − Dx−T+tH(Y

t,η
T )]

2 dx dα a.s.
󳨀󳨀󳨀→
ϵ→0

0.

Using (4.17), (4.7), (4.5) and the fact that, given any Brownian motion W̄, supx≤T |W̄x| has all moments and
the Lebesgue dominated convergence theorem, it follows that A11(ϵ, t, η) converges to zero. Using the same
technique, we also obtain that A13(ϵ, t, η) converges to zero.

We show that A12(ϵ, t, η) converges to zero. For every fixed continuous function ζ , we can write

Dx−T+t+ϵH(ζ) − Dx−T+tH(ζ) =
x+ϵ−T+t

∫
x−T+t

D󸀠uH(ζ) du.

It follows that A12(ϵ, t, η) can be rewritten as

𝔼[
1

∫
0

0

∫
−t

1
ϵ

x−T+t+ϵ

∫
x−T+t

[D󸀠uH(αY
t+ϵ,η
T + (1 − α)Y

t,η
T ) − D

󸀠
uH(Y

t,η
T )]η(x) du dx dα].
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Taking the absolute value and considering the fact that |η(x)| ≤ ‖η‖∞, we obtain

|A12(ϵ, t, η)| ≤ 𝔼[
1

∫
0

0

∫
−t

1
ϵ

x−T+t+ϵ

∫
x−T+t

󵄨󵄨󵄨󵄨D
󸀠
uH(αY

t+ϵ,η
T + (1 − α)Y

t,η
T ) − D

󸀠
uH(Y

t,η
T )
󵄨󵄨󵄨󵄨 du dx dα]‖η‖∞.

By Fubini’s theorem, it follows

|A12(ϵ, t, η)| ≤ 𝔼[
1

∫
0

−T+t

∫
−T

󵄨󵄨󵄨󵄨D
󸀠
uH(αY

t+ϵ,η
T + (1 − α)Y

t,η
T ) − D

󸀠
uH(Y

t,η
T )
󵄨󵄨󵄨󵄨 du dα]‖η‖∞.

Now, using the Cauchy–Schwarz inequality, we have

|A12(ϵ, t, η)|2 ≤ T 𝔼[
1

∫
0

−T+t

∫
−T

(D󸀠uH(αY
t+ϵ,η
T + (1 − α)Y

t,η
T ) − D

󸀠
uH(Y

t,η
T ))

2 du dα]‖η‖2∞

≤ T 𝔼[
1

∫
0

󵄩󵄩󵄩󵄩D
󸀠H(αY t+ϵ,ηT + (1 − α)Y

t,η
T ) − D

󸀠H(Y t,ηT )
󵄩󵄩󵄩󵄩
2
L2([−T,0]) dα]‖η‖

2
∞.

Convergence (4.40) implies in particular

󵄩󵄩󵄩󵄩D
󸀠H(αY t+ϵ,ηT + (1 − α)Y

t,η
T ) − D

󸀠H(Y t,ηT )
󵄩󵄩󵄩󵄩
2
L2([−T,0])

a.s.
󳨀󳨀󳨀→
ϵ→0

0.

Again using (4.17), (4.7), (4.5) and the fact that, given any Brownianmotion W̄, supx≤T |W̄x| has all moments
and the Lebesgue dominated convergence theorem, we have that A12(ϵ, t, η) converges to zero. This con-
cludes the proof that A1(ϵ, t, η) converges to zero.

The term A2(ϵ, t, η) also converges to zero. In fact, Cauchy–Schwarz implies that

|A2(ϵ, t, η)|2 ≤
1

∫
0

1
ϵ
𝔼[

t−T+ϵ

∫
t−T

(DxH(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − DxH(Y

t,η
T ))

2 dx]

⋅
1
ϵ
𝔼[

t−T+ϵ

∫
t−T

(η(x + T − t − ϵ) − η(0) − σWT(x) + σWt+ϵ)
2 dx] dα.

The continuity of DH (see (4.16)), the fact that it has polynomial growth in the sense of Remark 4.13 (1),
(4.7) and the Lebesgue dominated convergence theorem imply that the first expectation converges to zero.
The second expectation converges to zero by the same arguments together with the fact that supx≤T |W̄x| has
all moments.

We show now that A31(ϵ, t, η) converges to

σ2

2 𝔼[⟨D
2H(Y t,ηT ), 𝟙]t−T,0]2⟩] =: A31(t, η). (4.42)

At this level, we need two technical results.

Lemma 4.16. The random variable B(ϵ) := (Wt+ϵ−Wt)2
ϵ weakly converges in L2(Ω) to 1 when ϵ → 0.

Proof. In fact, 𝔼[B(ϵ)2] = 3 so that (B(ϵ)) is bounded in L2(Ω). Therefore, there exists a subsequence (ϵn)
such that (B(ϵn)) converges weakly to some square integrable variable B0. In order to show that B0 = 1 and
to conclude the proof of the lemma, it is enough to prove that 𝔼[B(ϵ) ⋅ Z] → 𝔼[Z] for any r.v. Z of a dense
subsetD of L2(Ω). We chooseD and the r.v. Z such that Z = 𝔼[Z] + ∫T0 ξs dWs, where (ξs)s∈[0,T] is a bounded
previsible process. We have

𝔼[B(ϵ) ⋅ Z] = 𝔼[B(ϵ)] 𝔼[Z] + 𝔼[(Wt+ϵ −Wt)2

ϵ

T

∫
0

ξs dWs].
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Since 𝔼[B(ϵ)] 𝔼[Z] = 𝔼[Z], we only need to show that

𝔼[
(Wt+ϵ −Wt)2

ϵ

T

∫
0

ξs dWs] 󳨀󳨀󳨀→ϵ→0
0. (4.43)

Since ∫T0 ξs dWs is a Skorohod integral, integration by parts on Wiener space (2.1) implies that the left-hand
side of (4.43) equals

𝔼[
2
ϵ

T

∫
0

ξs(Wt+ϵ −Wt) 𝟙[t,t+ϵ](s) ds] = 𝔼[
1
ϵ

t+ϵ

∫
t

ξs ds (Wt+ϵ −Wt)];

this converges to zero since ξ is bounded.

Lemma 4.17. Let H be a Hilbert space equipped with a product ⟨ ⋅ , ⋅ ⟩. Let (Zn)n and (Yn)n be two sequences
in H such that Zn converges strongly to Z and Yn converges weakly to Y. Then ⟨Zn , Yn⟩ converges to ⟨Z, Y⟩.

Proof. By the Cauchy–Schwarz inequality, we obtain

|⟨Zn , Yn⟩ − ⟨Z, Y⟩| = |⟨Zn − Z, Yn⟩ + ⟨Z, Yn − Y⟩| ≤ ‖Zn − Z‖H ‖Yn‖H + |⟨Z, Yn − Y⟩| 󳨀󳨀󳨀→ϵ→0 0

since ‖Zn − Z‖H goes to zero by the strong convergence hypothesis of (Yn), ‖Yn‖H is bounded because weakly
convergent and ⟨Z, Yn − Y⟩goes to zerobydefinitionofweak convergence of (Yn)n and the fact that Z ∈ H.

In order to show the convergence of 2A31(ϵ, t, η) = σ2 𝔼[Z(ϵ) ⋅ (Wt+ϵ−Wt)2
ϵ ] to 2A31(t, η), we use Lemma 4.17

setting the Hilbert space H equal to L2(Ω). We only need to show the strong convergence in H of Z(ϵ) to
Z := ⟨D2H(Y t,ηT ), 𝟙]t−T,0] ⊗𝟙]t−T,0]⟩. Taking into account𝟙]t−T+ϵ,0] ⊗2→𝟙]t−T,0] ⊗2 pointwise and the Lebesgue
dominated convergence theorem, it is not difficult to show now that 𝔼[(Z(ϵ) − Z)2] converges to zero, i.e.
the strong convergence in L2(Ω). Finally, by an immediate application of Lemma 4.16, the term A31(ϵ, t, η)
expressed in (4.42) converges to σ2

2 𝔼[Z] which equals A31(t, η).
The term A32(ϵ, t, η) converges to zero. In fact, using 𝟙]t−T+ϵ,0]2 ≤ 𝟙[t−T,0]2 and then the Cauchy–Schwarz

inequality, we obtain

𝔼[⟨D2H(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ) − D2H(Y t,ηT ), 𝟙]t−T+ϵ,0]2⟩ ⋅

(Wt+ϵ −Wt)2

ϵ ]

≤ 𝔼[⟨D2H(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ) − D2H(Y t,ηT ), 𝟙[t−T,0]2⟩ ⋅

(Wt+ϵ −Wt)2

ϵ ]

≤ √𝔼[󵄨󵄨󵄨󵄨⟨D2H(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ) − D2H(Y t,ηT ), 𝟙[t−T,0]2⟩

󵄨󵄨󵄨󵄨
2] ⋅ √3

≤ √𝔼[󵄩󵄩󵄩󵄩D2H(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ) − D2H(Y t,ηT )

󵄩󵄩󵄩󵄩
2
(C([−T,0])⊗̂2π)∗ ⋅ ‖𝟙[t−T,0]2‖2].

The latter term converges to zero because D2H ∈ C0(C([−T, 0])) and D2H has polynomial growth as we have
seen in Remark 4.13 (1).

We show that A33(ϵ, t, η) converges to zero. We rewrite A33(ϵ, t, η) as σ(A332(ϵ, t, η) − A331(ϵ, t, η)),
where

A331(ϵ, t, η) = 𝔼[⟨D2H(Y t,ηT ),
η(y + T − t + ϵ) − η(y + T − t)

ϵ
𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−T,t−T](y)⟩(Wt+ϵ −Wt)],

A332(ϵ, t, η) =
1

∫
0

𝔼[⟨D2H(αY t+ϵ,ηT + (1 − α)Y
t+ϵ,Y t,ηt+ϵ
T ),

η(y + T − t + ϵ) − η(y + T − t)
ϵ

𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−T,t−T](y)⟩(Wt+ϵ −Wt)] dα.

We will show that both A331(ϵ, t, η) and A332(ϵ, t, η) converge to zero. Denoting

Z := ⟨D2H(Y t,ηT ), Y⟩, (4.44)
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where
Y := 𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−T,t−T](y)[η(y + T − t + ϵ) − η(y + T − t)],

we rewrite
A331(ϵ, t, η) =

1
ϵ
𝔼[Z ⋅ (Wt+ϵ −Wt)].

Using Proposition A.4 and that H ∈ C3(C([−T, 0])), with polynomial growth, we get that Z belongs to 𝔻1,2
and

Dm
r Z = σ⟨D3H(Y t,ηT ), 𝟙]r−T+t,0] ⊗Y⟩ + ⟨D

2H(Y t,ηT ), D
m
r Y⟩

= σ⟨D3H(Y t,ηT ), 𝟙]r−T+t,0](z) ⊗ 𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−T,t−T](y)[η(y + T − t + ϵ) − η(y + T − t)]⟩ (4.45)

because Dm
r Y is zero. Using (4.44), Skorohod integral formulation, integration by parts on Wiener space

(2.1), (4.45) and successively Fubini’s theorem with respect to the variables r and z and then integrating
with respect to r, we obtain

A331(ϵ, t, η)

=
1
ϵ
𝔼[Z ⋅ (Wt+ϵ −Wt)] =

1
ϵ
𝔼[Z ⋅Wϵ] =

1
ϵ
𝔼[Z ⋅

ϵ

∫
0

δWu] =
1
ϵ
𝔼[

ϵ

∫
0

Dm
r Z dr]

=
σ
ϵ
𝔼[

ϵ

∫
0

⟨D3H(Y t,ηT ),
𝟙]r−T+t,0](z) ⊗ 𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−T,t−T](y)[η(y + T − t + ϵ) − η(y + T − t)]⟩ dr]

=
σ
ϵ
𝔼[⟨D3H(Y t,ηT ),

ϵ

∫
0

𝟙]r−T+t,0](z) dr ⊗ 𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−T,t−T](y)[η(y + T − t + ϵ) − η(y + T − t)]⟩]. (4.46)

Analyzing the term ∫ϵ0 𝟙]r−T+t,0](z) dr analogously to (4.38) and (4.39), we can establish the convergence
of A331(ϵ, t, η). In fact, the third-order Fréchet derivative of H, denoted by D3H, is a map from C([−T, 0])
to the dual of the triple projective tensor product of C([−T, 0]), i.e. (C([−T, 0])⊗̂3π)∗. We recall that, given
a general Banach space E equipped with its norm ‖ ⋅ ‖E and x, y, z three elements of E, then the norm of
an elementary element of the tensor product x ⊗ y ⊗ z which belongs to E⊗3 is ‖x‖E ⋅ ‖y‖E ⋅ ‖z‖E. We remark
that the trilinear form (ϕ, φ, ψ) 󳨃→ ⟨D3H(Y t,ηT ), ϕ ⊗ φ ⊗ ψ⟩ extends from C([−T, 0]) × C([−T, 0]) × C([−T, 0])
to ϕ, φ, ψ : [−T, 0] → ℝ as a Borel bounded map. Indeed, the application is a measure in each component.
Consequently,

|⟨D3H(Y t,ηT ), 𝟙]t−T+ϵ,0](x) ⊗ 𝟙[−t,0](y)[η(y + ϵ) − η(y)] ⊗ 𝟙]r−T+t,0](z)⟩|

≤ sup
‖ϕ‖∞≤1, ‖φ‖∞≤1, ‖ψ‖∞≤1|⟨D3H(Y t,ηT ), ϕ ⊗ φ ⊗ ψ⟩| ⋅ ϖη(ϵ)

= ‖D3H(Y t,ηT )‖(C([−T,0])⊗̂3π)∗ ⋅ ϖη(ϵ) a.s.
󳨀󳨀󳨀→
ϵ→0

0

since ϖη(ϵ) is the modulus of continuity of η. By the polynomial growth of D3H, (4.5), the fact that, for any
given Brownian motion W̄, supx≤T |W̄x| has all moments and finally the Lebesgue dominated convergence
theorem, we conclude that (4.46) converges to zero; therefore, A331(ϵ, t, η) converges to zero.

At this point, we should establish the convergence to zero of A332(ϵ, t, η). This can be done using, again
as above, integration by parts on Wiener space (2.1). However, there are several technicalities that we have
to omit.

We show finally that A34(ϵ, t, η) converges to zero. We rewrite the term A34(ϵ, t, η) as

A34(ϵ, t, η)

= σ
1

∫
0

𝔼[⟨(D2H(αY t+ϵ,ηT + (1 − α)Y
t,η
T ) − D

2H(Y t,ηT )),

η(y + T − t − ϵ) − η(0) − σ(WT(y) +Wt+ϵ)
ϵ

𝟙]t−T+ϵ,0](x) ⊗ 𝟙]t−T,t−T+ϵ](y)⟩ ⋅ (Wt −Wt+ϵ)] dα
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as A34(ϵ, t, η) = σ(A341(ϵ, t, η) − A342(ϵ, t, η)), where

A341(ϵ, t, η)

=
1

∫
0

𝔼[⟨D2H(αY t+ϵ,ηT + (1 − α)Y
t,η
T ),

η(y + T − t − ϵ) − η(0) − σ(WT(y) +Wt+ϵ)
ϵ

𝟙]t−T+ϵ,0](x) ⊗ 𝟙]t−T,t−T+ϵ](y)⟩ ⋅ (Wt −Wt+ϵ)] dα,

A342(ϵ, t, η)

=
1

∫
0

𝔼[⟨D2H(Y t,ηT ),

η(y + T − t − ϵ) − η(0) − σ(WT(y) +Wt+ϵ)
ϵ

𝟙]t−T+ϵ,0](x) ⊗ 𝟙]t−T,t−T+ϵ](y)⟩ ⋅ (Wt −Wt+ϵ)] dα

= 𝔼[⟨D2H(Y t,ηT ),

η(y + T − t − ϵ) − η(0) − σ(WT(y) +Wt+ϵ)
ϵ

𝟙]t−T+ϵ,0](x) ⊗ 𝟙]t−T,t−T+ϵ](y)⟩ ⋅ (Wt −Wt+ϵ)].

Firstly, we show that A342 converges to zero. It holds in fact

A342(ϵ, t, η) =
1
ϵ
𝔼[Z ⋅ (Wt −Wt+ϵ)] =

1
ϵ
𝔼[Z ⋅Wϵ] =

1
ϵ
𝔼[Z ⋅

ϵ

∫
0

δW r],

where

Z := ⟨D2H(Y t,ηT ), 𝟙]t−T+ϵ,0](x) ⊗ [η(y + T − t − ϵ) − η(0) − σWT(y) + σWt+ϵ] 𝟙]t−T,t−T+ϵ](y)⟩.

Since D2H has polynomial growth and it is of class C1, by Proposition A.4, Z ∈ 𝔻1,2. Then the integration by
parts on Wiener space gives

A342(ϵ, t, η) =
1
ϵ
𝔼[

ϵ

∫
0

Dm
r Z dr]. (4.47)

According to Proposition A.4, equation (A.4) for n = 2 and setting

Y := 𝟙]t−T+ϵ,0](x) ⊗ [η(y + T − t − ϵ) − η(0) − σWT(y) + σWt+ϵ] 𝟙]t−T,t−T+ϵ](y),

we get the following expression for the Malliavin derivative of Z in the Wiener space associated with (W̄r),
for r ∈ [0, T − t]:

Dm
r Z = ⟨D3H(Y t,ηT ), Y ⊗ 𝟙]r−T+t,0](z)⟩ + ⟨D

2H(Y t,ηT ), D
m
r Y⟩. (4.48)

Replacing (4.48) in (4.47), we get that A342(ϵ, t, η) equals a sum of A3421(ϵ, t, η) and A3422(ϵ, t, η) with

A3421(ϵ, t, η) =
1
ϵ
𝔼[

ϵ

∫
0

⟨D3H(Y t,ηT ), Y ⊗ 𝟙]r−T+t,0](z)⟩ dr],

A3422(ϵ, t, η) =
1
ϵ
𝔼[

ϵ

∫
0

⟨D2H(Y t,ηT ), D
m
r Y⟩ dr].

(4.49)

The term A3421(ϵ, t, η) converges to zero. In fact, similarly to the method developed in detail in (4.39), we
have

A3421(ϵ, t, η) =
1
ϵ
𝔼[

ϵ

∫
0

⟨D3H(Y t,ηT ), Y ⊗ 𝟙]z−T+t,0](r)⟩ dr]

=
1
ϵ
𝔼[⟨D3H(Y t,ηT ), Y ⊗

ϵ

∫
0

𝟙]z−T+t,0](r) dr⟩]
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and
1
ϵ

ϵ

∫
0

𝟙]z−T+t,0](r)⟩ dr ≤
ϵ ∧ (z + T − t)

ϵ
󳨀󳨀󳨀→
ϵ→0

1.

By polynomial growth of D3H, (4.7), the usual property that, given any Brownianmotion W̄, supx≤T |W̄x| has
all moments, the convergence of Y to zero and through the application of the Lebesgue dominated conver-
gence theorem, we conclude that first term in A3421(ϵ, t, η) converges to zero.

Concerning the term A3422(ϵ, t, η), we firstly need to compute the Malliavin derivative of Y,

Dm
r Y = 𝟙]t−T+ϵ,0](x) ⊗ Dm

r [η(y + T − t − ϵ) − η(0) − σWT(y) + σWt+ϵ] 𝟙]t−T,t−T+ϵ](y)
= σ 𝟙]t−T+ϵ,0](x) ⊗ Dm

r [Wt+ϵ −WT+y] 𝟙]t−T,t−T+ϵ](y)
= σ 𝟙]t−T+ϵ,0](x) ⊗ Dm

r [Wϵ −WT+y−t] 𝟙]t−T,t−T+ϵ](y)
= σ 𝟙]t−T+ϵ,0](x) ⊗ 𝟙[T+y−t,ϵ](r) ⋅ 𝟙]t−T,t−T+ϵ](y), (4.50)

since, by the usual property of the Malliavin derivative, Dm
r [Wϵ −WT+y−t] = 𝟙[T+y−t,ϵ](r). Now, replacing

(4.50) in (4.49), we have, similarly to the method developed in detail in (4.39),

A3422(ϵ, t, η) =
1
ϵ
𝔼[⟨D2H(Y t,ηT ),

ϵ

∫
0

Dm
r Y dr⟩] and σ

ϵ

ϵ

∫
0

Dm
r Y dr ≤ σ

ϵ ∧ (T + y − t)
ϵ

󳨀󳨀󳨀→
ϵ→0

0.

We remark that T + y − t ∈ [0, ϵ] since y ∈ [t − T, t − T + ϵ]. Again by polynomial growth of D2H, (4.7), by the
usual property that, for the Brownian motion W̄, supx≤T |W̄x| has all moments and applying the Lebesgue
dominated convergence theorem, we conclude that the first term in A3422(ϵ, t, η) converges to zero. Finally,
A342(ϵ, t, η) converges to zero.

By similar arguments, even though technically a little bit more involved, also A341(ϵ, t, η) converges to
zero. This finally proves that

A34(ϵ, t, η) 󳨀󳨀󳨀→ϵ→0 0.

We are now able to express ∂tu : [0, T] × C([−T, 0]) → ℝ. For t ∈ [0, T], ∂tu(t, η) is given by the conver-
gence of term (4.32) to a sum of three terms different from zero

∂tu(t, η) = I1(t, η) + I3(t, η) + A31(t, η),

i.e.
∂tu(t, η) = −𝔼[ ∫

]−t,0]

Dx−T+tH(Y t,ηT ) d
−η(x) + σ

2

2 ⟨D
2H(Y t,ηT ), 𝟙]t−T,0] ⊗

2⟩]. (4.51)

The path-dependent heat equation. Taking into account (4.25), the second-order Fréchet derivative (4.23)
and the time derivative (4.51), it finally follows that u solves (1.1).

A Appendix: Malliavin and Fréchet derivatives
We need some technical results concerning the link between Fréchet andMalliavin derivatives in a separable
Banach space that, for the moment, we set to be equal to ℝ. We need to apply Malliavin calculus related to
the Brownian motion. Let T > 0 and t ∈ [0, T] be fixed. We recall that

Wx := Wt+x −Wt , x ∈ [0, T − t]. (A.1)

So the Wiener space will be C([0, T − t]) with variable parameter in [0, T − t] and based on W. We consider
the window Brownian elementWT−t( ⋅ ) with values in C([−(T − t), 0]), defined as

WT−t(x) = Wt+T−t(x) −Wt = WT+x −Wt , x ∈ [−(T − t), 0].
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Lemma A.1. Let G : C([−(T − t), 0]) → ℝ of class C1 be such that DG has polynomial growth. Let Y ∈ 𝔻∞. Then
G(σWT−t( ⋅ )) belongs to𝔻1,2 and

Dm
r (G(σWT−t( ⋅ ))Y) = σ ∫

]r−(T−t),0]

(DdyG)(σWT−t( ⋅ ))Y + G(σWT−t( ⋅ ))Dm
r Y, r ∈ [0, T − t] a.e. (A.2)

Proof. The proof of this result needs some boring technicalities involving the approximation of a continuous
function and its polygonal approximation. Formula (A.2) is stated in a particular case for instance in [13,
Example 1.2.1].

A consequence of the previous lemma is the possibility of the differentiating

h = F(Y t,ηT ), F : C([−T, 0]) → ℝ

of class C1 Fréchet. We remark that Y t,ηT = Gη(σWT−t( ⋅ )), where Gη : C[−(T − t), 0] → C([−T, 0]) is given by

Gη(γ) =
{
{
{

η(x + T − t), x ∈ [−T, t − T[,
η(0) + γ(T − t + x), x ∈ [t − T, 0].

By Lemma A.1, if Y ∈ 𝔻∞,

Dm
x (hY) = σ ∫

]x−T+t,0]

Ddy(F ∘ Gη)(σWT−t( ⋅ ))Y + F ∘ Gη(σWT−t( ⋅ ))Dm
x Y, x ∈ [0, T − t]. (A.3)

Remark A.2. We remark that, for all γ ∈ C([−T + t, 0]), D(F ∘ Gη) ∈M([−T + t, 0]).

We have, for ζ ∈ C([−T + t, 0]),

∫Ddy(F ∘ Gη)(γ)ζ(y) = ∫
[t−T,0]

DdyF(Gη(γ))ζ(y).

So (A.3) gives, for x ∈ [0, T − t],

Dm
x (hY) = σ ∫

]x−T+t,0]

(DdyF)(Gη(σWT−t))Y + (F ∘ Gη)(σWT−t( ⋅ ))Dm
x Y

= σ ∫
]x−T+t,0]

(DdyF)(Y
t,η
T )Y + F(Y

t,η
T )D

m
x Y.

At this point, we have proved the following.

Proposition A.3. Let H : C([−T, 0]) → ℝ be of class C1-Fréchet with polynomial growth. Let Y ∈ 𝔻∞. Then
H(Y t,ηT )Y belongs to𝔻1,2 and

Dm
r (H(Y

t,η
T )Y) = σ ∫

]x−T+t,0]

(DdyH)(Y
t,η
T )Y + F(Y

t,η
T )D

m
r Y.

The previous proposition admits a generalization to the case when H : C([−T, 0]) → ℝ is replaced by a func-
tional

C([−T, 0]) → (C([−T, 0]) ⊗̂π ⋅ ⋅ ⋅ ⊗̂π C([−T, 0]))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n times

, n ≥ 1.

Typically, an example will be DnH. We recall that

(C([−T, 0]) ⊗̂π ⋅ ⋅ ⋅ ⊗̂π C([−T, 0])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n times

)∗

can be isomorphically identifiedwith the space of n-multilinear continuous functionals on C([−T, 0]). Propo-
sition A.3 can be generalized as follows.
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Proposition A.4. Let H : C([−T, 0]) → ℝ of class Cn+1-Fréchet be such that Dn+1F has polynomial growth. Let

Y ∈ 𝔻∞(C([0, T − t]) ⊗̂π ⋅ ⋅ ⋅ ⊗̂π C([0, T − t])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n times

).

Then ⟨DnH(Y t,ηT ), Y⟩ belongs to𝔻1,2. Moreover, for a.e. r ∈ [0, T − t], we have

Dm
r (⟨DnH(Y

t,η
T ), Y⟩) = σ⟨D

n+1H(Y t,ηT ), 1]r−T+t,0] ⊗ Y⟩ + ⟨D
nH(Y t,ηT ), D

m
r Y⟩. (A.4)

Remark A.5. The function 1]r−T+t,0] can be considered as a test function ζ0. Indeed,

ζ0 󳨃→ Dn+1H(Y t,ηT )(ζ0 ⊗ ζ1 ⊗ ⋅ ⋅ ⋅ ζn)

for fixed ζ1, . . . , ζn ∈ C([−T, 0]) is a measure.

Proof. Avoiding to state too abstract results, the proof of Proposition A.4 is based on a generalization of
Lemma A.1 replacing the value spaceℝ with the separable Banach space B, setting

B = C([−T, 0]) ⊗̂π ⋅ ⋅ ⋅ ⊗̂π C([−T, 0]).

Lemma A.6. Let B be a separable Banach space. Let G : C([−T + t, 0]) → B∗ be of class C1-Fréchet with poly-
nomial growth. Let Y ∈ 𝔻∞(B). Then G(WT−t( ⋅ ))Y ∈ 𝔻1,2(B) and

Dr(B∗⟨G(WT−t( ⋅ )), Y⟩B) = (C([−T,0])⊗̂πB)∗⟨DG(WT−t( ⋅ )), 1]r−T+t,0] ⊗ Y⟩C([−T,0])⊗̂πB + ⟨G(WT−t( ⋅ )), Dm
r Y⟩

Remark A.7. We remark the following.
(1) DG : C([−T + t, 0]) → (C([−T, 0]) ⊗̂π B)∗.
(2) Proposition A.4 will be used for n = 1, 2, 3.
(3) Dm

r Y ∈ B for almost all r.
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