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In human rRNA, at least 104 specific uridine residues are modified to pseudouridine. Many
of these pseudouridylation sites are located within functionally important ribosomal
domains and can influence ribosomal functional features. Until recently, available
methods failed to reliably quantify the level of modification at each specific rRNA site.
Therefore, information obtained so far only partially explained the degree of regulation of
pseudouridylation in different physiological and pathological conditions. In this focused
review, we provide a summary of the methods that are now available for the study of rRNA
pseudouridylation, discussing the perspectives that newly developed approaches are
offering.
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INTRODUCTION

Ribosome biogenesis is a highly complex process that requires the accomplishment of different steps.
One of these fundamental steps is represented by the modification of ribosomal RNA (rRNA) at
specific sites. These modifications are required for the proper maturation and folding of rRNA and
impact its stability (Liang et al., 2009; Abou Assi et al., 2020). It is also known that the modifications
can play a relevant role in the catalytic activity of the ribosome (King et al., 2003). The two most
abundant modifications in rRNA are represented by ribose 2′-O-methylation and the isomerization
of uridines to pseudouridines (often abbreviated with the letter Ψ). In particular, more than 100
rRNA uridines are known to be targets of pseudouridylation. Most of these modification sites are
clustered close to functionally important regions of the ribosome (Decatur and Fournier, 2002;
Natchiar et al., 2017). Some of these sites are universally conserved, while others are eukaryotic- or
human-specific (Natchiar et al., 2017). The presence of pseudouridine confers greater
conformational stability to the rRNA, a feature necessary for proper rRNA folding and
interaction with ribosomal proteins (Sumita et al., 2005). Changes in the level of rRNA uridine
modification can alter ribosome structure and ultimately its activity (King et al., 2003; Liang et al.,
2007), affecting translational fidelity and sensitivity to ribosome-based antibiotics (Baxter-Roshek
et al., 2007; Liang et al., 2007; Piekna-Przybylska et al., 2008). Moreover, accumulating evidence
suggests pseudouridylation plays a major role in modulating the interactions between tRNA, rRNA
and mRNA thereby affecting translation (Jack et al., 2011; Bastide and David, 2018). In particular, it
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was recently demonstrated that the presence of pseudouridine in
mRNA hampers translation elongation and increases the
occurrence of amino acid substitutions, supporting the idea
that these mRNA modifications can modulate mRNA
translatability and providing evidence that pseudouridine can
alter tRNA selection by the ribosome (Eyler et al., 2019). It is
increasingly more evident that RNA interactions with its several
heterogenous modifications are at the heart of ribosome function
and acquiring the molecular details of these interactions is a
challenge in order to comprehend how the ribosome fine-tunes
gene expression control in physiological and pathological
conditions.

Alterations of pseudouridylation in rRNA are also known to
play an active role in the development of human disorders such as
cancer (Ruggero et al., 2003; Montanaro et al., 2006) and a rare
inherited multisystemic syndrome termed X-linked dyskeratosis
congenita, due to mutations of the gene encoding for dyskerin
(Heiss et al., 1998), the pseudouridine synthase acting on rRNA.
Specifically, there is evidence that alterations in ribosome
functions caused by changes in pseudouridylation levels of
rRNA may contribute to tumor development by modifying the
translation of key cancer genes (Montanaro, 2010).

Despite its clear role in enabling proper ribosome function and
its involvement in human pathology, the mechanism underlying
the contribution of rRNA pseudouridylation in the development
of human disorders remained underexplored for a long time. This
relatively limited knowledge may be considered the consequence
of the lack of proper reliable technical approaches. In fact, site-
specific quantification of pseudouridine on a wide scale
represented a major technical issue for a long time, but recent
developments in high throughput sequencing approaches
enabled us to obtain increasingly precise and reliable
quantifications on a transcriptomic scale.

This review aims to give an updated perspective of the
available technical approaches that can be employed to fully
characterize the role of altered rRNA pseudouridylation in the
development of different human pathologies.

PSEUDOURIDYLATION DETECTION
METHODS

Until recently, the study of pseudouridylation was hampered
by biological and technical issues, because the isomeric form of
pseudouridine possesses no distinguishable features nor mass
changes. This limited the availability of methods for site-
specific detection of pseudouridine, required a previous
knowledge of the specific position of the pseudouridine in
the sequence analyzed, and was suitable only for highly
represented transcripts.

Over the last few years, different approaches were developed
for the quantitative and site-specific identification of the
pseudouridine landscape in cellular models and tissue samples.
They may be low throughput, for the identification or validation
of specific pseudouridine sites, and high throughput for an
overview of all sites of modification in a specific class of RNA
or the whole transcriptome.

Themajor features of the techniques reported for the detection
of pseudouridines are summarized in Supplementary Table S1.
For each technique, it provides the concept on which the method
relies on, the main advantages and disadvantages, the scale and
the RNA class of application with the relevant references.

Low Throughput Methods for
Pseudouridine Detection in RNA
Direct chemical analysis of RNA post-transcriptional
modifications has been performed extensively by liquid
chromatography followed by mass spectrometry (LC-MS)
(Durairaj and Limbach, 2008; Thüring et al., 2016). Since
pseudouridylation is a mass-silent modification, conventional
MS-based analysis relies on direct chemical labeling of
pseudouridine (Ψ) on RNA (with cyanoethylation or
acrylonitrile) or the metabolic pre-labeling of RNA with 5,6-
D2-uracil. However, protocols for chemical labeling of
pseudouridine are generally laborious and can suffer from
limited selectivity (Kellersberger et al., 2004). Only recently,
with the use of CRISPR-Cas9 technology and direct nanoflow
LC-MS, the in vivo deuterium labeling was successfully applied
for direct determination of Ψs in cellular non coding RNA as
rRNA and small nuclear RNA (and in such case at subpicomole
amounts) (Yamaki et al., 2020). This method allowed also the
stoichiometric quantification of the modifications at each
pseudouridylation site without the need of synthetic reference
RNA (as by the SILNA method, described below). However, this
approach, although particularly sensitive and specific, requires a
complex cellular system and instrumentations, thus limiting this
application. Pseudouridine was hence distinguished from uridine
by a characteristic fragmentation pattern produced by collision-
induced dissociation (CID)-MS (Taucher et al., 2011). Using the
same strategy, direct MS-based sequencing of Ψ-containing RNA
was used to determine all Ψs in the canonical human
spliceosomal snRNAs from 293T cells (Yamauchi et al., 2016).
One of the most challenging issues of the LC-MS technique is the
identification of RNA modification comparing mass spectra with
a sequence database. Implementation of specific programs for
database-matching or decoding the complicated patterns of
oligonucleotide fragmentation will offer solutions to analyze
data from large-scale experiments, allowing the categorization
of longer oligonucleotides (Wein et al., 2020).

More recently, using a mass spectrometry-based technology
termed SILNAS (stable isotope-labeled ribonucleic acid as an
internal standard), all ribosomal modifications of the 80S
ribosome from yeast and subsequently from human were
mapped (Taoka et al., 2018). This method allowed for a
complete site-specific quantitative identification of all RNA
modifications exceeding ~5% in stoichiometry. Unlike other
MS-based methods, this approach has the advantage to avoid
any molecule modification, however, it requires sophisticated
laboratory equipment together with particular expertise.
Furthermore, as it necessitates a relatively large amount of
RNA (i.e., approximately 5 μg per sample), this MS-based
method is not suitable for all RNA classes and is generally not
indicated for most scarcely represented transcripts.
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The first discovered and most widely exploited method for the
study of pseudouridylation was introduced by the use of the
chemical reaction of N-cyclohexyl-N′-β-(4-
methylmorpholinium) ethylcarbodiimide p-tosylate (CMC) to
pseudouridine, which forms a stable adduct blocking reverse
transcriptase and hence producing truncated complementary
DNA (cDNA) (Bakin and Ofengand, 1998). This method is
still used to detect the level of pseudouridine semi-
quantitatively at a precise site using fluorescent primer
extension and fragment analysis on capillary columns of
sequencing apparatus (Deryusheva et al., 2012). An adaptation
of the CMC-RT based approach, termed CMC-RT and Ligation
Assisted PCR analysis of Ψ modification (CLAP) was recently
developed to validate Ψ identification and at the same time
quantification of the Ψ modification level at a target site both
in ncRNA and mRNA (Zhang et al., 2019). Anyway, this
approach can be considered to be at most semiquantitative
like other methods exploiting CMC-derivatization, due to
either incomplete CMC-Ψ adduct formation and/or a small
amount of CMC-Ψ reversion in the CMC procedure.

High Throughput Methods for
Pseudouridine Detection in RNA
High throughput methods are founded on NGS technologies and
have been developed in the last decade to achieve a
comprehensive view of the pseudouridine landscape in the
transcriptome, including de novo identification of
pseudouridine sites. These approaches combine RNA deep
sequencing technologies together with selective chemical
derivatization of pseudouridine by CMC. These CMC-based
methods, namely Pseudo-Seq (Carlile et al., 2014), Ψ-Seq
(Schwartz et al., 2014), PSI-Seq (Lovejoy et al., 2014) and
CeU-Seq (Li et al., 2015) adapted the production of truncated
cDNA due to the stable adduct formed by CMC to pseudouridine
to Illumina massive sequencing. While only slight technical
differences reside among library preparation procedures, they
differ in the bioinformatic approaches to pseudouridine detection
extensively reviewed in (Zaringhalam and Papavasiliou, 2016). By
inclusion of synthetic spike-ins and calibrations (Schwartz et al.,
2014), deep sequencing CMC-based protocols were made semi-
quantitative. These methods were the first to be employed in the
transcriptome-wide investigation of pseudouridylation, mainly
on mRNA. Nevertheless, they experienced a great variability in
the pseudouridylation profile which could be due to chemical
limitations in CMC ability to uniformly derivatize pseudouridine
and to possible interferences of surrounding modified nucleotides
with the Ψ identification. Indeed, CMC-based methods lack
sensitivity in Ψ detection on rRNA (for instance, about 50%
by Pseudo-seq) (Carlile et al., 2014). Furthermore, as with other
indirect NGS-based RNA sequencing techniques, these methods
suffer from possible inconsistency between the original RNA
molecule and the sequencing products due to the need for cDNA
synthesis and PCR amplification. For instance, modifications at
the 3′ end of RNA are less frequent due to shorter and less
represented fragments after the primer binding sites for reverse
transcriptase.

To try to mitigate the tendency of the CMC-based methods to
give rise to a significant level of both false positives and false
negatives, an alternative technique based on antibody recognition
of Ψ residues and UV-crosslinking followed by deep sequencing
(photoactivated-Ψ-seq or PA-Ψ-seq) was applied for the study of
cellular ncRNAs and mRNAs (Martinez Campos et al., 2021). The
PA-Ψ-seq technique showed to efficiently identify pseudouridine
modifications present on cellular RNAs but with a sensitivity that
in the end is not different from CMC-based methods.

Other sequencing methods have been developed to
overcome the many limitations of the CMC-RT approach.
The first is based on bisulfite RNA treatment, termed RBS-Seq,
which can detect transcriptome-wide at single-base resolution
pseudouridine, in addition to m1A and m5C (Khoddami et al.,
2019). Regarding Ψ, in presence of heat and magnesium, the
bisulfite treatment forms a stable adduct on pseudouridine
leading to ribose ring-opening and reorientation. This forces
the reverse transcriptase to skip the base, leaving a deletion
signature at the exact modified sites. With this technique,
quantitative and simultaneous detection of three important
modifications was achieved in the same sample, in coding and
non-coding RNAs, even at low abundance. RBS-Seq has the
advantage of providing a high throughput validation protocol forΨ
sites easily adapted to mRNA without the need for large quantities
of pure target RNA. Furthermore, as this method does not stop
reverse transcriptase, it can distinctly recognize two contiguous Ψ
sites on the same RNA. Despite the harsh conditions of bisulfite
treatment, the use of this technique made it possible to detect
modifications also in the short 5.8S rRNA. Nevertheless, the target
application of this approach is not represented by rRNA due to its
characteristic abundance of different modifications in close
proximity which could interfere with Ψ detection. As a matter
of fact, by RBS-Seq, not all the 104 pseudouridine modifications
harbored on the 80S ribosome were identified (for instance only 74
in HeLa cell lines).

The second CMC-alternative high throughput method relies
on RNA cleavage at uridine residues by hydrazine, followed by
aniline treatment, and resistance of pseudouridine to chemical
treatment (Marchand et al., 2020). This method termed
HydraPsiSeq was applied for precise mapping and
quantification of pseudouridine residues in yeast and human
rRNAs and tRNAs and was revealed to provide highly sensitive,
reliable and precise quantification of Ψ in any particular position
in RNA. Analysis of scarce transcripts, such as mRNAs is also
feasible but only by highly increasing the sequencing depth (for
instance to 100 million for yeast mRNA) and therefore the
expected cost. So, for this purpose, an enrichment step with a
Ψ-specific antibody is suggested (Slama et al., 2019).

All the described techniques have the great drawback of
modifying RNA molecules and using customized protocols to
map each specific modification individually. Furthermore,
cluster sequencing involves an amplification step,
experiencing potential bias and providing only an average
picture of modifications in a population of RNA molecules
(for a detailed update in Second- and Third-Generation Deep
Sequencing of RNA modifications see Motorin and Marchand,
2021).
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Promising results would be expected from single-molecule
sequencing approaches, also called third-generation sequencing.
They are based on two independent principles: single-molecule
real-time (SMRT) technology using nano wells (called zero-mode
waveguides, ZMWs, Pacific BioSciences) and nanopore
sequencing (Min-ION, Oxford Nanopore Technologies)
(Schwartz and Motorin, 2017). The main advantage of both
technologies is their very long read length >10,000 nt on
average and therefore the possibility to sequence full-length
native RNA molecules in principle providing the possibility to
map the individual modification pattern along the same RNA
molecule without the need of aligning short reads. Nanopore
sequencer use flow cells containing an array of nanopores
embedded in an electro-resistant membrane. Each nanopore
corresponds to its own electrode connected to a channel and
sensor chip, which measures the electric current that flows
through the nanopore. The passage of the nucleic acid
through a nanopore disrupts the current producing a
characteristic ‘squiggle’. The squiggle is then decoded using
base-calling algorithms to determine the DNA or RNA
sequence in real time. Nanopore sequencing can detect
modified bases according to differences in squiggles between
modified and unmodified base. Recent advances have been
made in the detection of base modifications using the
Nanopore sequencer (Xu and Seki, 2020), including direct
sequencing of RNA (Garalde et al., 2018; Stephenson et al.,
2022). By the new application methods and more accurate
bioinformatic tools, nucleotide modifications in E. coli 16S
rRNA (Smith et al., 2019) and tRNA (Thomas et al., 2021)
were detected. Great efforts are made to implement tools for
the detection of RNA modifications, including machine learning
classifiers (neural network, random forest, logistic regression, and
naive Bayes classifiers) or statistical test-based tools which can
detect de novomodifications without training using modified and
unmodified samples (Xu and Seki, 2020). Among the latest
bioinformatic tools, promising appear to be ELIGOS
(epitranscriptional landscape inferring from glitches of ONT
signals) (Jenjaroenpun et al., 2021) NanoPsu (Huang et al.,
2021) and Penguin (Hassan et al., 2022). However, at the
moment the overall precision of pseudouridine detection with
this sequencing method remains low and not quantitative (Begik
et al., 2021) for native full-length molecules extensively modified
such as human rRNA.

Finally, single-particle cryo-electron microscopy (cryo-EM) is
a rapidly developing technique, which already depicted the
structure of the 80S ribosome, together with rRNA
modifications at an average of 3Å resolution (Natchiar et al.,
2017; Natchiar et al., 2018). By this approach, it was possible to
show that the majority of modifications reside in domains crucial
for translational activity which are conserved from bacteria to
superior eukaryotes, where ribosomes acquired an extended
“shell of modification” which fine-tune protein synthesis
(Natchiar et al., 2017). However, numerous base
inconsistencies have been recognized so far between different
approaches (Taoka et al., 2018). The use of even more advanced
algorithms and software (Kimanius et al., 2021), together with the
refinement of the technique itself to achieve higher resolution

(Pellegrino et al., 2022), will provide fundamental information on
all the ribosomal modifications and detailed interactions in the
three-dimensional structure of the native human ribosome.
Although some limitations still exist due to the low
throughput and time-consuming techniques, cryo-EM will be
extremely useful to recognize how particular molecules can bind
to specific modified sites in ribosomes and inhibit their activity,
offering new insights for structure-based drug design (Gilles et al.,
2020; Poitevin et al., 2020).

DISCUSSION AND PERSPECTIVES

Given these recent developments, identifying the modifications in
the chemical pattern of rRNA may well represent a new path
towards formulating a true picture of the functional specialization
of ribosomes. As described above, ribosome function and activity
can be impacted by the composition in ribosomal proteins and
the plasticity in rRNA which encompasses diversity in
modifications and interaction with certain factors. Any
changes in ribosomal function or activity may affect the
regulation of gene expression in both normal and abnormal
conditions. Although the exact mechanism through which an
altered or oncogenic ribosome may affect tumor progression is
not yet fully defined, a correlation between anomalies in ribosome
biogenesis or function and cancer has been reported. This has
helped in defining the link between alterations in translation
apparatus and cancer etiology.

As previously stated pseudouridylation is one of the most
abundant chemical modifications affecting ribosome function. In
general, these modifications can be driven by either stand-alone
pseudouridine synthases or snoRNA H/ACA box guided
pseudouridylation complexes. Pseudouridine synthases are
classified into six families and are known to recognize the
substrate and catalyze the conversion of uridine to
pseudouridine without using any cofactors.

On the other hand, RNA dependent pseudouridylation is
carried out by H/ACA box snoRNA. H/ACA box snoRNAs,
also known as SNORAs (present in all eukaryotes and in archaea
as sno-likeRNA as well (Czekay and Kothe, 2021)), possess a two
hairpin structures connected by a hinge region bearing a
conserved (ANANNA) motif (also known as the H motif,
BOX H) and an ACA box motif at their 3′end (Balakin et al.,
1996). Pseudouridylation in rRNA is induced by SNORA
molecules after forming a complex with a set of proteins. The
core proteins involved are dyskerin (orthologues Cbf5 in yeast,
Nap57 in rat and NOP60B in Drosophila), non-histone protein 2
(NHP2), nucleolar protein 10 (NOP10) and glycine-arginine-rich
protein 1 (GAR1). As mentioned above, dyskerin is known to
exhibit enzymatic activity in this complex. Moreover, it has been
proved that epitranscriptome activity of rRNA is affected by
dysregulation of dyskerin (Janin et al., 2020).

In numerous studies snoRNAs have also been directly related
to cancer initiation and progression. Schulten and others
explored the snoRNA expression in patients with breast cancer
brain metastasis in comparison to non-metastatic breast cancers.
The study revealed that 13 SNORAs were differentially expressed
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and possibly involved in supporting metastatic progression
(Schulten et al., 2017). Similarly, another research group
identified 21 snoRNA to be correlated with metastasis in
prostate cancer. The study highlighted SNORA55 to be a
possible driver gene in prostate cancer (Crea et al., 2016).
Moreover, in an independent study on non-small cell lung
cancers (NSCLC) researchers developed a prediction model
based on SNORA78, SNORA68 and SNORA47 for early
detection and prognostication of NSCLC (Gao et al., 2015). In
another study, SNORA42 was found to be associated with
invasiveness and metastasis of non-small lung carcinoma by
regulating the stemness of lung CSC. The decreased expression
of SNORA42 was linked to a decrease in self-renewal ability and
suppression of tumor initiation in xenografted mice (Mannoor
et al., 2014). Therefore, it is safe to say that the growing evidence
leaves no doubt regarding the role of SNORA in cancer
development and their potential use as biomarkers for
diagnosis, prognosis and potential treatment.

However, despite the growing link of snoRNA with disease
prognosis and progression very little is known about the method
of action and the pathways adopted by these molecules to carry out
the effect. Increased levels of DKC1 and H/ACA snoRNA together
with elevated levels of pseudouridine were reported in vitro studies
conducted on prostate cancer cells (Uddin et al., 2020). Another

study reported a similar connection between the elevated expression
of DKC1 with upregulated expression of SNORA67 and increased
U1445 modification on 18S ribosomal RNA in a breast cancer cell
line. They also reported high levels of DKC1 associated with certain
tumoral features (Guerrieri et al., 2020). This depicts a possible link
between pseudouridine levels and snoRNA with cancer initiation,
progression and metastasis. Accordingly, in a recent study,
McMahon and others characterized the role of SNORA24 in
hepatocellular carcinoma and its cooperation with oncogenic RAS
mutations. The modification of uridine into pseudouridine is driven
by SNORA24 at positions 609 and 863 on 18S rRNA. Ribosomes
missing these modifications fail to exhibit the correct selection of
aminoacyl-transfer RNA and ribosome complex formation pre-
translocation (McMahon et al., 2019).

It would be worth mentioning here that the ribosomes can
be targeted using drugs with different active molecules (Gilles
et al., 2020). Consequently, knowing the elements that take
part in causing the unusual level of modifications resulting in
the development of an abnormality i.e. oncoribosomes can be
exploited in devising the treatment.

To sum up, we can expect that the recent advancement in the
techniques that could identify the chemical modifications in
rRNA molecules reported here could in perspective take us
one step forward in better understanding the role played at

FIGURE 1 | The levels of site-specific pseudouridylation can be affected by alterations in the components of the pseudouridylation complex (e.g., re-modulation on
snoRNA expression or pseudouridine core proteins impairment). snoRNA-based targeted therapies (e.g., snoRNA targeting drugs or exogenous snoRNA sequences)
can in principle restore proper rRNA modification. Site-specific pseudouridine detection can allow the identification of particular ribosomal populations. These features
can be exploited to develop drugs targeting specific ribosomal positions containing dysregulated pseudouridine sites. It could be then possible to take advantage of
this peculiarity in cancer to target only the cells with modified ribosomes, the so called “oncoribosomes”. Prospectively, the characterization of ribosomemodifications (or
snoRNA expression as a surrogate) can be used to specifically target cancer cells.
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the molecular level by altered rRNA pseudouridylation in disease
development and sequentially in the development of strategies for
better disease management and the development of targeted
therapies snoRNA- or ribosome-centered (Figure 1).
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