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Abstract
Gibbs ringing is a feature of MR images caused by the finite sampling of the acqui-
sition space (k-space). It manifests itself with ringing patterns around sharp edges
which become increasingly significant for low-resolution acquisitions. In this paper,
we model the Gibbs artefact removal as a constrained variational problem where
the data discrepancy, represented in denoising and convolutive form, is balanced to
sparsity-promoting regularization functions such as Total Variation, Total General-
ized Variation and L1 norm of the Wavelet transform. The efficacy of such models is
evaluated by running a set of numerical experiments both on synthetic data and real
acquisitions of brain images. The Total GeneralizedVariation penalty coupledwith the
convolutive data discrepancy term yields, in general, the best results both on synthetic
and real data.
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1 Introduction

AcquiredMR signals lie in a frequency-phase space known as k-space, andMR images
are obtained via the inverse Fourier transform (FT) of a finite k-space acquisition.
Because of scan time and SNR limitations, the outer parts of the k-space, containing
the high-frequency information of the image, are generally not recorded. Therefore,
all MR images are affected by Gibbs ringing, a well-known artefact consisting of spu-
rious oscillations in the proximity of sharp image gradients at tissue boundaries. These
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artifacts often occur at high-contrast interfaces since the partial k-space sampling cuts
off the high-frequency components in these zones. Such artifacts degrade the quality
of the images and make quantitative measurement difficult, hampering clinical diag-
nosis. Although Gibbs ringing is a feature of all MR images, it becomes increasingly
significant for low resolution or quantitative modalities such as diffusion MRI and
when it is necessary to increase the resolution of MR images to facilitate the doctors’
diagnosis. In these cases, the MR images are reconstructed on a finer grid by using
zero-filling (ZF), which sets the missing high-frequency components to zero, causing
severe ringing artifacts.

Moreover, inmanyMRimaging applications, a short scan time is required toobserve
dynamic processes such as the beating heart, the passage of a contrast bolus guidance
of an interventional procedure, or to reduce artifacts from physiological motion [1–4].
In such applications, only a portion of the k-space is acquired, and the missing data
are usually simply replaced by zeros. Despite the intensive research into acquisition
and reconstruction algorithms, the ZF method is still most commonly used by clinical
doctors since, although presenting truncation artifacts, it is stable and fast.

For all these reasons, a significant quantity of MR images containing truncation
artifacts is archived and re-exploited for the purpose of diagnosis, treatment evalua-
tion and disease monitoring. Therefore, the development of effective post-processing
approaches to remove truncation artifacts from these acquired MR images are highly
desirable. In particular, it is desirable to remove as much as possible the ringing arti-
facts without adding excessive blur to the images.

There is a considerable amount of literature on the post-processing of MR images,
which can be summarized as follows. One approach consists in recovering the missing
informationbydata extrapolation, see [5] and reference therein.Variational approaches
have been proposed based on the Total Variation regularization [2–4, 6, 7], the L1 norm
of the shearlet transform [8, 9] and the weighted Total Variation [10, 11]. Finally, [12]
proposes a method based on space domain filters presenting a Matlab software tool
which is often used in clinical practice.

In the present paper, we model the Gibbs artefact removal as a constrained vari-
ational problem balancing data discrepancy and sparsity-promoting regularization
functions such as Total Variation (TV), Total Generalized Variation (TGV) and L1
norm of Wavelet transform (L1W). The data discrepancy can be represented by the
absolute distance between the data and the unknown enhanced image (denoising
model), or it can reproduce the truncation in the k-space as a convolution of the
underlying image with a sinc-function.

Concerning the regularization functions, there are several papers in the literature
about the Total Variation (TV) and second-order Total Variation (Total Generalized
Variation) applied to the denoising model [4, 6]. Moreover, the Wavelet transform
has proven to be effective in noise removal [13] and regularization based on wavelet
transform is investigated in the compressed sensing context (see [14] and references
therein).

To the best of our knowledge, in the context of Gibbs artefact removal, a thorough
investigation of TV, TGV and L1W for the convolution model is not present in the
literature. For this reason, we focus our analysis on the denoising and convolutive
models with such regularization functions. The variational problems are solved by
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adapting the Alternate Directions Method of Multipliers (ADMM) to the specific
objective functions.

This work aims to assess the efficacy of the proposed variational models by running
an extended set of numerical experiments in which the ringing artifacts are introduced
on synthetic and real data on high resolution acquired brain images.

The structure of the paper is the following: Sect. 2 discusses in detail the models
and their numerical implementation; Sect. 3 presents the most significant numerical
results. Finally, Sect. 4 presents some conclusions.

2 Models andmethods

The Gibbs ringing artifacts arise because the Fourier series cannot represent a dis-
continuity within a finite number of terms. The ringing effect is especially visible
for acquisitions at low resolution around sharp edges. Low pass filtering techniques
reduce this artefact at the expense of introducing image blur. For this reason, edge pre-
serving variational filtering techniques are studied. One approach [2, 3] is to compute
the enhanced image xe by solving the following denoising problem:

xe = argmin
x≥0

{
λ

2
‖x − y‖22 + R(x)

}
(1)

where y ∈ R
n , x ∈ R

n , n = nxny , respectively are the data and unknown images of
size nx × ny , and R(x) represents an edge-preserving penalty function.

A sharp cut-off or truncation in the k-space is equivalent to a convolution in the
spatial domain with a sinc function. In the discrete FT reconstruction of MR images,
the cut-off frequency equals the frequency of the sinc function that is convolved with
the image. The oscillating lobes of the sinc function result in the ringing pattern
around sharp edges. Therefore, an enhanced image xc can be obtained by the following
convolutive model:

xc = argmin
x≥0

{
λ

2
‖sinc ∗ x − y‖22 + R(x)

}
. (2)

Concerning the regularization functions, we focus our analysis on models (1) and (2)
with the following regularization functions:

• Total Variation function [15], defined in discrete form as:

R(x) = T V (x) ≡ ‖∇x‖1,

where ∇ ∈ R
2n×n represents the discrete gradient operator.

• Second order Total Generalized Variation (TGV) function [16]:

R(x) = TGV (x) ≡ min
w∈R2n

α0 ‖∇x − w‖1 + α1 ‖Ew‖1, α0, α1 ∈ (0, 1)

where E ∈ R
4n×2n represents the symmetrized derivative operator.
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• L1 norm of the discrete wavelet transform W [17]:

R(x) = ‖Wx‖1.

where W ∈ R
n×n represents an orthogonal wavelet transform.

We solve the optimization problems (1) and (2) by the ADMM method by refor-
mulating them as separable convex optimization problems with two blocks. Firstly,
for the reader’s convenience, let us recall the classical two-blocks ADMMmethod for
the solution of the following problem

min
x,z

f1(x) + f2(z)

s.t. A1x + A2z = b,
x ∈ �1, z ∈ �2

(3)

where Ai ∈ R
p×ni (i = 1, 2) are given linear operators, b ∈ R

p is a given vector and
�i ⊂ R

n1 (i = 1, 2) are closed convex sets. The functions fi : Rni → R (i = 1, 2) are
convex functions on�i , respectively. The augmented Lagrangian function of problem
(3) has the form

Lρ(x, z, μ) = f1(x) + f2(z) + μT (A1x + A2z − b) + ρ

2
‖A1x + A2z − b‖2

where μ ∈ R
p is a vector of Lagrange multipliers and ρ > 0 is a penalty parameter.

Given a chosen initial point (x (0), z(0), μ(0)) ∈ R
n1+n2+p, theADMMmethod consists

of the iteration

x (k+1) = arg min
x∈�1

Lρ(x, z(k), μ(k)),

z(k+1) = arg min
z∈�2

Lρ(x (k+1), z, μ(k)),

μ(k+1) = μ(k) + ρ
(
A1x

(k+1) + A2z
(k+1) − b

)
. (4)

As far as TV and L1W regularization is concerned, we can reformulate problems
(1) and (2) as follows

min
x,z

λ

2
‖Hx − y‖2 + ‖z‖1

s.t. Lx − z = 0,
x ≥ 0

(5)

where H is the identity matrix for model (1) or it derives from the discretization of the
convolution product with the sinc finction for model (2), and L = ∇ or L = W for
TV and L1W regularization, respectively. Clearly, problem (5) is a separable problem
of the form (3) with f1(x) = λ

2‖Hx − y‖2, f2(z) = ‖z‖1, A1 = L , A2 = −I ,
b = 0, �1 = {x : x ≥ 0}; we can now apply the ADMM method to problem (5).
In iterations (4), the subproblem in x is a bound constrained quadratic programming
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problem; we solve it by the variable projection (VP) method introduced in [18], a
gradient projection method using a limited minimization rule as linesearch [19] and
the Barzilai and Borwei rule [20] for steplength selection. The subproblem in z can
be rewritten as

min
z

‖z‖1 + ρ

2
‖A1x

(k+1) + A2z − b + μ(k)

ρ
‖2. (6)

This subproblem is separable and can be solved exactly by computing the proximal
operator of ‖z‖1.

For the solution of problems (1) and (2) with TGV regularization, we use a two-
blocks ADMM method originally proposed in [21] for the restoration of directional
images under Poisson noise. To this end, we reformulate the problems as follows:

min
x,w,z1,z2,z3,z4

λ

2
‖z1 − y‖2 + α0 ‖z2‖1 + α1 ‖z3‖1 + χR

n+(z4)

s.t. z1 = Hx,
z2 = ∇x − w,

z3 = Ew,

z4 = x

(7)

where z1 ∈ R
n , z2 ∈ R

2n , z3 ∈ R
4n , z4 ∈ R

n , and χR
n+(·) is the characteristic function

of the nonnegative orthant in R
n . By introducing the auxiliary variables x̃ = (x, w)

and z = (z1, z2, z3, z4) we can reformulate problem (7) as a problem of the form (3)
where we define the two separable functions as

f1(x̃) = 0, f2(z) = λ

2
‖z1 − y‖2 + α0 ‖z2‖1 + (1 − α) ‖z3‖1 + χR

n+(z4), (8)

and the matrices A1 ∈ R
8n×3n and A2 ∈ R

8n×8n as

A1 =

⎡
⎢⎢⎣
H 0
∇ −I2n
0 E
In 0

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

−In 0 0 0
0 −I2n 0 0
0 0 −I4n 0
0 0 0 −In

⎤
⎥⎥⎦ . (9)

The ADMM iterations can now be applied to problem (7); we underline that both the
x̃ and z subproblems can be solved exactly at a low cost and we refer the reader to
[21] for a deeper discussion on the solution of the ADMM subproblems.

TheADMMmethod for solving two-block convexminimization problems has been
studied extensively in the literature and its global convergence has been proved [22,
23] when the two subproblems are solved exactly. This is the case of our version of
ADMM specialized for TGV regularization. In our implementation of ADMM for
TV and L1W regularization, the x subproblem is solved to a high precision, i.e.,
the iterations of the inner VP method have been stopped when the relative distance
between two successive values of the objective function becomes less than 10−6. We
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have observed practical convergence of the corresponding ADMM scheme. However,
we underline that variants of inexact ADMM have been proposed which are based on
different strategies for the control of the lack of exactness [24–27].

3 Numerical results

To assess the effectiveness of the proposed models and regularization functions, we
developed numerical tests using synthetic and brain images acquired by MRI scanner.
The numerical results have been computed using Matlab R2021a on a Intel Core i5
processor with 2.50GHZ and Windows operating system.

In our experiments, the matrix W of L1W regularization represents an orthogonal
Haar wavelet transformwith four levels. As regards the implementation of the ADMM
method, the initial guess is chosen as the null vector, i.e., x (0) = 0, z(0) = 0 and
μ(0) = 0. Moreover, the ADMM iterations are terminated when

‖x (k+1) − x (k)‖

‖x (k+1)‖ ≤ 10−3

or after a maximum number of 100 iterations. The VP method for the solution of the
inner x subproblems, for TV and L1W regularization, is arrested when the residual
norm becomes less than 10−6 or after 1000 iterations. The values of the TGV weights
are chosen as α0 = β and α1 = (1 − β) with β = 0.5. Indeed we found that, for
smaller values of β, TGV is less effective in removing Gibbs artifacts while, for larger
values, the restoredMR images tend to be too smooth. Finally, the value of the ADMM
penalty parameter is set as ρ = 10. Obviously, the choice of ρ affects the ADMM
convergence rate but it also influences the quality of the restored images which are
too smooth, for large value of ρ. The choice ρ = 10 gives a good tradeoff between
convergence rate and solution quality.

Synthetic data
Simulated 128×128 rawMRI data have been created by using the Matlab function

mriphantom.m [28]. This function analytically generates raw data from k-space
coordinates along a Cartesian trajectory using the continuous Shepp and Logan head
phantom function. Noisy k-space data is also used by adding Gaussian white noise of
level equal to 0.025.

Figure 1 shows the exact phantom image and the image obtained via inverse FT
of the simulated k-data without and with added noise. In order to better visualize the
ringing artifacts in the printed figures, Fig. 1 also shows the negative images whose
colormap limits are set to [-0.5,0]. Since artifacts are more evident in the phantom
negative images, we will always show them in the following.

To compare the models, we heuristically compute the optimal value of the reg-
ularization parameter corresponding to a particular error metric. In preliminary
investigations, we considered the most commonly used error metrics [29]: Root Mean
Square Error (RMSE), Improved Signal to Noise Ratio (ISNR), Structural SIMilar-
ity index (SSIM), Feature SIMilarity index (FSIM). Repeating the same analysis for
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Fig. 1 Top: Exact phantom (left) and negative (right) images. Middle: noiseless data y (left) and negative
−y (right) images. Bottom: noisy data y (left) and negative −y (right) images. The negative images have
scaled colorbar
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Fig. 2 Behavior of the RMSE, ISNR, SSIM and FSIM error measures vs. λ for the TGV-sinc model. The
red circle represents the optimal values

all the models and the regularization functions, we observed that the best RMSE and
ISNRvalues are obtained for too smallλ values, producing excessively blurred images.
Conversely, both optimal SSIM and FSIM values are obtained for larger values of λ

giving results of better visual quality; in most cases λSSIM < λFSIM. As an example,
we report in Fig. 2 the values of RMSE, ISNR, SSIM and FSIM computed by the
TGV-sinc model for different λ and represent the optimal value with a red circle. We
observe that RMSE, ISNR are optimal at the same λwhile SSIM and FSIM are optimal
for larger λ values.

In Fig. 3, we represent the images computed by the TGV-sinc model with the best
regularization parameter for each metric (corresponding to the red circle in Fig. 2). It
is evident that the RMSE and ISNR are not proper metrics to measure the quality of the
computed images, while SSIM and FSIM give visually similar results. For this reason,
in the remaining tests, we use the SSIM as metric to heuristically set the optimal value
of the regularization parameter for each model and regularization functional.

For all the considered models, in Table 1, we report the value of the regularization
parameters (determined as previously explained) and the corresponding RMSE, ISNR
and SSIM values; we also report the number of ADMM iterations (column iter) and
computation time in seconds (columntime), using both noiseless andnoisy data. In all
cases, the best SSIM values (highlighted in bold) are reached by TGV regularization,
while the worst SSIM values are always reached by L1W regularization. Moreover,
L1W regularization has the highest computational cost, as reported in the last two
columns of Table 1.
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Fig. 3 Reconstructed images obtained by the TGV-sinc model with a value of λ optimal with respect to:
(A) RMSE (λ = 1.353); (B) ISNR (λ = 1.353); (C) SSIM (λ = 24.2012); (D) FSIM (λ = 67.342)

Table 1 Numerical results for the synthetic data

Data A R(x) λ RMSE ISNR SSIM iter time

Noiseless TV 7.05e+01 1.4135e-01 1.5094e-01 7.7499e-01 16 0.03

I L1W 1.56e+03 1.4380e-01 1.4997e-03 7.6502e-01 7 0.02

TGV 2.42e+01 1.4184e-01 1.2105e-01 7.7927e-01 51 0.37

TV 1.63e+02 1.4268e-01 6.9440e-02 7.7598e-01 35 0.07

sinc L1W 3.59e+03 1.4390e-01 -4.4640e-03 7.7028e-01 4163 10.63

TGV 2.42e+01 1.4197e-01 1.1291e-01 7.7902e-01 53 0.40

Noisy TV 5.72e+01 1.4095e-01 1.8435e-01 7.7156e-01 18 0.03

I L1W 9.77e+02 1.4388e-01 5.4520e-03 7.3825e-01 11 0.03

TGV 1.83e+01 1.4141e-01 1.5582e-01 7.7792e-01 50 0.32

TV 1.00e+02 1.4215e-01 1.1038e-01 7.7271e-01 33 0.07

sinc L1W 8.90e+02 1.4397e-01 1.3209e-04 7.5123e-01 3156 6.84

TGV 2.01e+01 1.4173e-01 1.3608e-01 7.7747e-01 53 0.38
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Fig. 4 Noiseless synthetic data: reconstructed (top) and difference (bottom) images obtained by model (1)

For the noiseless data, Figs. 4 and 5 show the reconstructions obtained by the
denoise (1) and sinc (2) models, respectively. The error images are also depicted,
i.e., the absolute difference between the exact phantom image and the restored one.
For better visualization of the differences, the negative values of the error images are
displayed with colormap limits set to [-0.1,0]. Finally, for the noisy data, Figs. 6 and
7 display the restored and error images obtained by model (1) and (2), respectively. A
visual inspection of the figures shows that TGV regularization is alwaysmore effective
in removing ringing artifacts than both TV and L1W regularization. Moreover, from
Figs. 4-7, we observe that the TGV-sinc model can remove ringing artifacts more
effectively as compared to the TGV-denoise model, even if the SSIM values reached
by the TGV-denoising model are slightly higher than those of TGV-sinc model (see
Table 1 where the best values are written in bold). Hence, for synthetic data, the TGV-
sinc model appears the more appropriate model for the removal of ringing artifacts.

RealMRIdataWeconsider the problemof obtaining a high-resolutionMR image from
a low-resolution one. This process is often required for clinical purposes, posterior
analysis, or postprocessing, such as registration or segmentation. Figure 8 shows the
exact high resolution image of size 256 × 256 and the acquired low resolution image
of size 128 × 128.

Since the denoising model (1) is generally less effective, we focus our attention on
the sinc model (2) coupled with TV, L1W and TGV regularizations. Figure 9 reports
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Fig. 5 Noiseless synthetic data: reconstructed (top) and difference (bottom) images obtained by model (2)

the high-resolution images obtained by ZF and the sinc model with the considered
regularization functionals. The red arrows highlight ringing artifacts in the ZF image;
by comparing the high-resolution images, we observe that both TV and TGV regular-
ization effectively remove the artifacts, but, as expected, TV tends to produce small
flat regions in the image. On the other hand, L1W performs worse, and some artifacts
are still present in the corresponding high-resolution image. Finally, Table 2 displays
the numerical results confirming the superiority of TGV regularization.

To evaluate the performance of the proposed approach in the presence of noisy data,
we add Gaussian white noise of level 0.1 to the low-resolution k-space data. Figure 10
shows the obtained high resolution images. It is evident that the ZF and L1W images
are degraded by noise, while TV and TGV regularization can remove noise from the
high-resolution image. The numerical results are reported in Table 2; they show TGV
superior accuracy, as measured by the SSIM index.

4 Conclusion

In this paper, we investigate the efficacy of the denoising and sinc convolution model
in removing Gibbs artifacts using TV, TGV and L1W penalties. From observing the
results, we conclude that the sinc convolution model coupled with TGV penalty is,
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Fig. 6 Noisy synthetic data: reconstructed (top) and difference (bottom) images obtained by model (1)

Table 2 Numerical results for the real MRI data

Data R(x) λ RMSE ISNR SSIM iter time

Noiseless TV 1.20e+02 4.5833e-02 6.2470e-02 8.6959e-01 10 1.60

L1-W 2.50e+02 4.5828e-02 6.3361e-02 8.6966e-01 30 10.17

TGV 5.00e+01 4.5957e-02 3.8834e-02 8.7223e-01 19 1.16

Noisy TV 8.00e+01 5.0181e-02 2.6822e-01 5.1912e-01 11 1.89

L1-W 1.80e+02 5.0145e-02 2.7441e-01 5.2118e-01 31 5.99

TGV 2.50e+01 5.0171e-02 2.6986e-01 5.2146e-01 17 1.10

in general, the most effective and that L1W produces the worst results in almost all
cases.

Therefore, future developments will focus on the automatic setting of the TGV
parameters by exploiting the Uniform Penalty principle [30, 31].
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Fig. 7 Noisy synthetic data: reconstructed (top) and difference (bottom) images obtained by model (2)

Fig. 8 Real MR image: exact high resolution (left) and low resolution (right) images of size 256× 256 and
128 × 128, respectively
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Fig. 9 High resolution images obtained from noiseless data by the sinc model with TV, L1W, TGV regu-
larization and by the ZF method (from top to bottom and from left to right)
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Fig. 10 High resolution images obtained from noisy data by the sinc model with TV, L1W, TGV regular-
ization and by the ZF method (from top to bottom and from left to right)
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