

Geophysical Research Letters

Supporting Information for

Revisiting ENSO and IOD contributions to Australian Precipitation

Giovanni Liguori^{1,2}, Shayne McGregor¹, Martin Singh¹, Julie Arblaster^{1,3}, and Emanuele Di Lorenzo⁴

- 1. ARC Centre of Excellence for Climate Extremes, Monash University, Clayton, Australia
 - 2. Department of Physics and Astronomy, University of Bologna, Bologna, Italy
 - 3. National Center for Atmospheric Research, Boulder, CO, USA
 - 4. Georgia Institute of Technology, Atlanta, GA, USA

Contents of this file

Tables S1 Figures S1 to S8

TABLE S1

1923 1923

1945 1945 1946 1946

1961 1961 1963 1963

ENSO					IOD					
Neg.		Pos.			Neg.			Pos.		
M07	1SD	M07	1SD		M07	1SD		M07	1SD	
1916	1916	1911	1911		1915			1913		
1917	1917	1914	1914		1916	1916		1919		
1922	1922	1918	1918		1917	1917		1923	1923	
1924	1924	1925			1930				192	
1928		1930	1930		1933			1926		
1933	1933	1940	1940			1941		1935	193	
1938	1938	1941	1941		1942	1942		1944		
1942	1942		1951		1958	1958		1945	194	
	1946	1957	1957			1960		1946	194	
	1948	1963	1963		1968				1949	
1949		1965	1965		1974			1957		
1950		1972	1972		1975			1961	196	
1954	1954	1982	1982		1980			1963	196	
1955	1955	1986				1981			196	
1956		1987	1987		1985				197	
1964	1964	1991	1991		1989	1989			1970	
1970		1997	1997			1990			1978	
	1971		2002		1992	1992		1982		
1973	1973			•		1996			198	
1975	1975					1998		1991		
1978						2001		1994	1994	
1981						2005		1997	199	
1984								1999		
1988	1988							2004		
1996									200	
1998	1998									
1999	1999									
2000										
	2007									

Table S1. ENSO and IOD years as classified by Meyers et al., 2007 (M07), and by using one standard
deviation(1SD) threshold for JJASO mean values of N34 index and DMI.

Fig. S1. Mask used for the partially-coupled experiments: noENSO-coupled (a) and noIOD-coupled (b). To avoid abrupt changes in the SST field, a buffer zone, in which the climatology combines linearly with model values, is used within 3° of the fully-restored region. The color shading indicates the values of the coefficient used to combine the two fields: 0 for modelled-only SST; and 1 for climatology-only SST. The lowest panel (c) shows the standard deviation (STD) of the monthly mean Niño3.4 and DMI index in the observation (ERSSTv5 from 1950-2018; black cross), the control (CTRL; black dots), and the noIOD-coupled (noIOD; blue dots), and the noENSO-coupled (noENSO; red dots) simulations. To partially assess the role of natural variability in these STD estimates, the 200-year long simulations have been analysed in two chunks of 100-years each, resulting in two points for each simulations.

PRECIP regressed onto DMI during JJASO

Fig. S2. Precipitation patterns associated with variability in DMI. Top raw: DMI index regressed onto mean rainfall anomaly (mm) in June-October for observation (a), the coupled (c) and the uncoupled (f) model simulations. Middle raw: as in the top raw but for rainfall anomalies in which the variability associated with the Niño3.4 index has been linearly removed. Results show differences with respect to the top raw for observation (b), coupled (c) and uncoupled (f) control simulations. Bottom raw: as in the top raw but for the simulations with removed ENSO variability, namely the noENSO-coupled (e) and the noENSO-uncoupled (h) simulations Results show differences with respect to the control simulation (top raw). The stippling over the maps indicates regions significant at 95% according to a two-tailed Student's t-test.

PRECIP regressed onto N34 during JJASO

Fig. S3. Precipitation patterns associated with variability in DMI. Top raw: Niño3.4 index regressed onto mean rainfall anomaly (mm) in June-October for observation (a), the coupled (c) and the uncoupled (f) model simulations. Middle raw: as in the top raw but for rainfall anomalies in which the variability associated with the DMI index has been linearly removed. Results show differences with respect to the top raw for observation (b), coupled (c) and uncoupled (f) control simulations. Bottom raw: as in the top raw but for the simulations with removed IOD variability, namely the noIOD-coupled (e) and the noIOD-uncoupled (h) simulations Results show differences with respect to the control simulation (top raw). The stippling over the maps indicates regions significant at 95% according to a two-tailed Student's t-test.

Fig. S4. (a) 30-year running correlation between N34 index and DMI from 1920 to 2007. (b) as in Figure 4a-d but for the latest 30 year period of available observations (1990-2019). The stippling over the maps indicates regions significant at 95% according to a two-tailed Student's t-test.

FIG. S5

Fig. S5. ENSO/IOD index: datasets comparison. (a) Normalized time series of Niño3.4 index from 1911 to 2019 for vv dataset. The area of above (below) 1 standard deviation (STD) is filled in Red (blue) and the vertical red (blue) bars superimposed indicate years classified as positive (negative) ENSO by Meyers et al., 2007 (M07). (b) As in (a) but for DMI time series and IOD events. (c) and (d) repeat the analysis in (a) and (b) but using HadISSTv1.1 dataset. (e) Running correlation (30-yr window) for indices derived from ERSSTv5 and HadISSTv1.1 datasets.

Fig. S6. (a) DMI index regressed onto sea surface temperature (°C) in June-October in the observation (ERSSTv5). (b) as in (a) but for the IOD index, which is defined as the DMI index minus the contribution associated (see equation 2b).

Fig. S8. Precipitation patterns associated with variability in Niño3.4. Same as Fig. 3 except for the choice of the model years analysed. To explore low-frequency modulation in the teleconnections we divided the simulated period (200 years) in three chunks of 66 years. Top raws: DMI index regressed onto mean rainfall anomaly (mm) in June-October for observation (a), the coupled (c, i, and o) and the uncoupled (f, l, and s) model simulations. Middle raws: as in top raws but for rainfall anomalies in which the variability associated with the DMI index has been linearly removed. Results for observation (b), coupled (d, j, and p) and uncoupled (g, m, and t) control simulations. Bottom raws: as in top raws but for the simulations with removed IOD variability, namely the noIOD-coupled (e, k, and r) and the noIOD-uncoupled (h, n, and u) simulations. All the experiments use pre-industrastrial (PI) condition for external forcing. The stippling over the maps indicates regions significant at 95% according to a two-tailed Student's t-test.