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Density Estimation in Randomly Distributed
Wireless Networks

Lorenzo Valentini, Student Member, IEEE, Andrea Giorgetti, Senior Member, IEEE,
and Marco Chiani, Fellow, IEEE

Abstract—Networks of randomly distributed nodes appear in
various fields, including forestry and wireless communications,
and can often be modeled, using stochastic geometry theory, as
Poisson point processes (PPPs). In these contexts, estimation of
nodes density is important for monitoring and optimizing the
network. Originally, this problem has been addressed in forestry
where the trees are the nodes and, assuming these are distributed
according to an infinite two-dimensional homogeneous PPP, the
spatial density can be estimated by measuring the distances from
one reference tree to its neighbors. However, in many other
scenarios, nodes could result invisible with some probability, for
example depending on distance. In this paper, we derive the
Cramér-Rao bounds and new estimators for the node spatial
density, taking into account a limited capability in sensing
neighbors. As an example, we provide estimators of the spatial
density of transmitting devices in wireless networks with links
affected by thermal noise, path loss, and shadowing.

Index Terms—Spatial density estimation, Poisson point pro-
cesses, Cramér-Rao bounds, maximum likelihood estimation,
stochastic geometry, wireless networks.

I. INTRODUCTION

THE estimation of the spatial density of entities is a well-
known problem that appears in different disciplines. In

forestry, for example, it is crucial to estimate the density of
the trees, both for census purposes and for evaluating the
dynamic changes in the environment [1]–[3]. In geographical
epidemiology, the density of individuals afflicted by a specified
disease can be used to produce mapped information on disease
incidence [4], [5]. In zoology, density estimators have been
used to examine different foraging strategies and density
of group-living animals [6], [7]. In wireless communication
networks, the knowledge of the spatial density of the nodes
allows to evaluate and optimize the performance in terms of
throughput and delay [8]–[16]. Moreover, the applicability of
novel spectrum reuse concepts, enabling the coexistence of
heterogeneous networks, is based on the capability of accu-
rately controlling the interference that each network generates
to the others [17]–[20]. In scenarios where the use of the radio
channel is uncoordinated, network interference is determined
by the number of active nodes transmitting on the same radio
channel in a finite region. More specifically, density estimation
for wireless networks will find application in:
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• 6G mobile radio systems and internet of things, where the
ultradense network scenario imposes new energy-efficient
and spectrum-efficient protocols [21]–[29];

• wireless ad hoc and sensor networks, where access proto-
cols can be optimized based on the expected traffic [30]–
[40];

• cognitive radio, where the presence of transmitting nodes
must be estimated to understand if a given frequency band
is congested [41]–[44].

Spatial density estimators have been developed originally in
the context of forestry, assuming trees distributed according
to an infinite two-dimensional Poisson point process (PPP)
[45], [46]. When the trees spatial location follows a homo-
geneous PPP, a straightforward procedure to compute the
density is to count the total number of trees in a given
region and divide by the area. Pollard proposed an estimator
based on the distances to neighbors, which are easier to
measure than the absolute positions of trees and thus simplifies
the measurement procedure [46]. The same methods can be
adopted in other stochastic geometry scenarios described by
homogeneous PPPs. However, in some situations, the available
measurements could make the observed PPP inhomogeneous.
For example, in wireless networks with measurements based
on radio signals, propagation impairments may obscure some
nodes or limit the maximum sensed distance, leading to a
modified statistical description of the PPP observed by a
receiver, which impacts on the aggregate interference. In fact,
the PPP model has been extensively used to study wireless
networks [8]–[15], [17]–[20], [27], [41], [47], [48], always
assuming the knowledge of the nodes density.

We here consider the spatial density estimation of a wireless
network where detection of nodes may occasionally fail due to
path-loss and shadowing. With reference to the PPP observed
by a node, thinned by detection failures, the key contributions
of the paper can be summarized as follows:

• we derive the distribution of the number of sensed nodes
and sensed distances, taking into account the statistical
characterization of the thinned spatial process;

• we derive the Cramér-Rao bounds (CRBs) for the spatial
density estimation, considering different sensing capabil-
ities;

• we derive maximum likelihood (ML) density estimators
for different sensing capabilities;

• we apply the methodology to wireless networks in the
presence of thermal noise, path-loss, and shadowing, pro-
viding some easy-to-implement spatial density estimators.
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The results, specified with reference to two-dimensional PPPs,
have been generalized to the n-dimensional case in Ap-
pendix A.

The remainder of the paper is organized as follows. In
Section II we review the estimators for the homogeneous
PPP networks. Section III presents the model for thinned PPP
and the novel estimators, assuming both a single agent and
cooperative agents estimation. In Section IV we specialize the
analysis to a wireless scenario where propagation impairments
are considered. In Section V we report a numerical comparison
among different estimators, followed by concluding remarks
in Section VI.

Throughout the paper, we distinguish between the random
variable (r.v.) X or x with its realization x, boldface letters
denote vectors, E{·} stands for expectation, V{·} stands for
variance, and P{·} denotes the probability of an event.

II. DENSITY ESTIMATION WITH PERFECT VISIBILITY

We consider the problem of estimating the spatial density,
defined as entities per unit area, in two-dimensional stochastic
geometry. More precisely, we assume a network with nodes
distributed according to a homogeneous 2D Poisson point
process having an unknown density λ [nodes/m2]. To avoid
edge effects, which are negligible for large networks, it is
assumed that the process is extended infinitely in all directions.
For a homogeneous PPP with density λ, the number of nodes
n in a region A of area |A| follows a Poisson distribution,
with [49]

P{n = n} =
(λ|A|)n
n!

e−λ|A| . (1)

In the following we use “agent” to denote special nodes which
have the role of estimating the network density. We start by
describing the two approaches that are commonly adopted
to estimate the density of a PPP network. The first assumes
the knowledge of node locations, and the second is based on
ranging measurements [46]. More precisely, we consider the
case where the agents can measure locations or distances with
all neighboring nodes (so, all nodes are visible). In Section III
the possibility that some nodes are not visible to the agents,
for example, due to poor propagation conditions, will be taken
into account.

Through the paper, we use R
(k)
j to describe the r.v. distance

between the agent j and its k-th neighbor node. When it is
clear what neighbor we are referring, the notation is simplified
as Rj .

A. Estimation based on nodes spatial position

Let us consider M agents used to collect nodes information
over disjoint regions Aj ⊂ R2, Ai ∩ Aj = ∅ for i 6= j,
with i, j = 1, . . . ,M . In the following |Aj | is denoted as
capture area. Also, assume that all nodes in the generic Aj
are aware of their spatial position. Then, if they share this
information with the associated agent j, it can compute the
number nj of nodes in its area. From (1) the cooperative
maximum likelihood estimator (MLE) of λ is given by

λ̂ =

∑M
j=1 nj∑M
j=1 |Aj |

. (2)

The estimator (2) is unbiased with variance

V
{
λ̂
}

=
λ

∑M
j=1 |Aj |

. (3)

Moreover, (2) is an efficient estimator, since its variance
coincides with the CRB for all λ.1

B. Estimation based on ranging: Pollard’s estimator

The estimation of λ assuming the distances can be measured
with no error (perfect ranging) has been studied extensively
with application to biometrics, ecology, randomly distributed
forests, and ad-hoc wireless networks [34], [35], [45], [46].
Let us consider M agents, where each one measures exactly
one distance from its own position to the k-th nearest agent.
In particular, the j-th agent records the distance to its kj-th
neighbor, where kj takes some predetermined positive integer
value. We assume that the agents have unlimited ranging
capabilities, so there are no restrictions on the maximum
value of kj . When the agents of the network are distributed
according to a homogeneous PPP, the distance Rj from an
agent j to its kj-th closest neighbor is a r.v. with probability
density function (PDF) [46], [50], [51]

fRj (r;λ) =
2(πλ)kj

(kj − 1)!
r2kj−1e−πλr

2

r > 0 (4)

and its square Wj = R2
j follows an Erlang distribution with

PDF

fWj
(w;λ) =

(πλ)kjwkj−1e−πλw

(kj − 1)!
w > 0. (5)

The distribution (5) describes also the sum of kj independent,
identically distributed (i.i.d.) exponential r.v.s with mean µ =

1/(πλ), so that we can write R2
j = Z

(j)
1 + · · · + Z

(j)
kj

, where

Z
(j)
i are i.i.d. exponentials. In order to derive the ML density

estimator based on all measurements, we hence consider the
joint distribution of K ,

∑M
j=1 kj exponential r.v.s, Zi, i =

1, . . . ,K, all with mean µ = 1/(πλ)

fZ(z;µ) =

K∏

i=1

1

µ
e−

1
µ zi . (6)

The ML estimate of µ is µ̂ =
∑K
i=1 zi/K which shows that∑K

i=1 zi is a sufficient statistic. Since
∑K
i=1 Zi =

∑M
j=1 R

2
j

we have

µ̂ =

∑M
j=1 r

2
j

K
(7)

and, due to the invariance property of the MLE [52], the ML
density estimator is [46]

λ̂ =
K

π
∑M
j=1 r

2
j

. (8)

1Any unbiased estimator λ̂ of a deterministic scalar parameter λ, based
on measurements distributed according to the PDF fx(x;λ), has a variance
which satisfies

V
{
λ̂
}

> CRB(λ) , −1
/
E
{
∂2 ln fx(x;λ)

∂λ2

}
.
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Fig. 1. Density estimation carried out by agents with impaired node visibility.

Using the joint distribution of R = (R1,R2, . . . ,RM ) this
estimator has been proved to be biased [46]. An alternative,
easier way, to derive the bias is given by the fact that

E
{
λ̂
}

=

∫ ∞

0

· · ·
∫ ∞

0

K

π
∑M
j=1 r

2
j

fR(r;λ)dr

=

∫ ∞

0

· · ·
∫ ∞

0

K

π
∑K
i=1 zi

fZ(z;λ)dz . (9)

After the substitution u` =
∑`
i=1 zi it is simple to check

that the expectation is E
{
λ̂
}

= λK/(K − 1). To have finite
expectation, it must be K > 1. An unbiased estimator is then
given by [46]

λ̂ =
K − 1

π
∑M
j=1 r

2
j

. (10)

Similarly, we can derive the variance of (10) as

V
{
λ̂
}

=
λ2

K − 2
(11)

which to be finite requires K > 2 and, for large K, approaches
the corresponding CRB

CRB(λ) =
λ2

K
. (12)

From (11) it appears that using the distances of distant
neighbors instead of the nearest ones results in a reduced
variance [46].

Remark 1: It is interesting to note that the estimator (10),
based on distance measurements, has a smaller variance than
the estimator (2), based on the number of nodes in a given
area, |A| =

∑M
j=1 |Aj |, whenever the following condition is

satisfied
λ <

K − 2

|A| . (13)

Remark 2: It is not always true that the best estimator in
terms of mean-square error (MSE) is an unbiased estimator.
However, using the information inequality [53], the MSE of
any estimator with E

{
λ̂
}

= λK/(K − 1) can be bounded as

MSE = E
{(

λ̂− λ
)2
}
≥ K + 1

(K − 1)2
λ2 . (14)

When K ≥ 3, the right side of (14) is always larger than (11).
Hence, the unbiased estimator (10) is better than any estimator
with expectation equal to λK/(K − 1).

III. DENSITY ESTIMATION WITH IMPAIRED VISIBILITY

In this section, we consider a scenario where, with some
probability, nodes could not be visible by the agents. We
assume an isotropic case, where the probability that a node
is visible, p(r), depends only on the radial distance r from
the agent to the node. After the general treatment for arbitrary
p(r), we will specialize the analysis to wireless networks,
where this probability is related to path-loss and shadowing.

A. Isotropically thinned PPPs

Let us consider the spatial process constituted by the nodes
seen by a generic agent. If each node is visible with some
probability p(r), this observed spatial process is still a Poisson
process, but it is no longer homogeneous. More precisely, the
observed is a thinned PPP whose density is [49]

λt(r) = λ p(r) . (15)

The probability that in a region A there are k visible nodes is
given by

P{n(A) = k} =
[Λ(A)]k

k!
e−Λ(A) (16)

where
Λ(A) = λ

∫

A
r p(r) drdθ (17)

is the average number of nodes sensed in A. For the whole
plane, equation (17) becomes

Λ = Λ(R2) = 2πλ

∫ ∞

0

r p(r)dr . (18)

For the thinned process, we distinguish two scenarios depend-
ing on the convergence of (18). To this aim, we define the
function

ψ(r) ,
∫ r

0

ξ p(ξ)dξ . (19)

In appendix A we show the generalization to the n-
dimensional case. Without losing generality, through the paper
we assume a 2-dimensional scenario which is the most signif-
icant in wireless networks.

Adopting the notation ψ(∞) = limr→∞ ψ(r), we have the
two cases below.
• Infinite number of visible nodes: ψ(∞) =∞.

Here, Λ = ∞ as for the homogeneous PPP, and the
average number of nodes sensed from an agent is infinite.
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The PDF of the distance Rj between the agent j and its
k-th closest neighbor is derived in Appendix B-A as

f
R
(k)
j

(r;λ) =
(2πλ)k

(k − 1)!
r p(r) [ψ(r)]

k−1
e−2πλψ(r) (20)

where r > 0. This can be seen as a generalization of the
previously known distance distribution in (4), which is
the particular case p(r) = 1. Similarly, we can derive the
joint ordered distances distribution for the first k closest
neighbors of the agent j as (see Appendix B-B)

f
R
(1)
j ,R

(2)
j ,··· ,R(k)

j
(r1, r2, · · · , rk;λ) = (21)

(2πλ)ke−2πλψ(rk)
k∏

`=1

r` p(r`) .

Applying the factorization theorem to (20) or (21), the
sufficient statistic for the estimation of λ, assuming the
distances to the closest k nodes are known, is reduced to
rk [52, Theorem 6.2.6].

• Finite number of visible nodes: ψ(∞) <∞.
In this scenario, typical of wireless networks, the average
number of nodes sensed over the whole plane is finite. We
can derive the distance distribution of the farthest visible
node, jointly to the event that k nodes are sensed, as (see
Appendix B-C)

f
R
(k)
j ,K

(r, k;λ) =
(2πλ)k

(k − 1)!
r p(r) [ψ(r)]

k−1
e−2πλψ(∞) .

(22)

Similarly, it is possible to write the joint ordered distances
distribution for all the k neighbors of the agent j as (see
Appendix B-D)

f
R
(1)
j ,R

(2)
j ,...,R

(k)
j ,K

(r1, r2, . . . , rk, k;λ) = (23)

(2πλ)ke−2πλψ(∞)
k∏

`=1

r` p(r`) .

In this case, applying the factorization theorem to (23),
the sufficient statistic for the estimation of λ, assuming
to sense a random number of nodes and corresponding
distances, is just their number k.

B. Density estimation with a single agent

Consider the scenario where a single agent is used to
estimate the density λ. Its area of interest is A = R2, and the
sensing capability is therefore limited only by p(r). Below we
derive the ML estimators for both infinite and finite number
of visible nodes.

1) Infinite visible nodes, distance-based estimator: Let us
assume the agent knows the distances to the closest k nodes.
Starting from the expression of the PDF in (20), or equiva-
lently from (21), it can be checked that the CRB for estimators
of the density is given by

CRB(λ) =
λ2

k
. (24)

Then, from (20) or (21) we derive the ML estimator in closed
form as

λ̂ =
k

2πψ(rk)
. (25)

As noted before, for a given number k of ordered distances, a
sufficient statistic is just that of the farthest node, rk. So, while
the information about the first k−1 neighbors could seem not
used, actually k takes into account that there are k−1 nearest
nodes before that at rk.

For the ML estimator (25), using (20) we have

E
{
λ̂
}

=

∫ ∞

0

k

2πψ(r)
f
R
(k)
j

(r;λ) dr

=
kλ

k − 1

∫ ∞

0

(2πλ)k−1

(k − 2)!
rp(r) [ψ(r)]

k−2
e−2πλψ(r) dr

=
k

k − 1
λ . (26)

An unbiased estimator is therefore given by

λ̂ =
k − 1

2πψ(rk)
. (27)

The performance of this unbiased estimator in terms of vari-
ance are given by

V
{
λ̂
}

=
λ2

k − 2
(28)

which, for large k, tends to the CRB in (24). To have finite
expected value and variance, we thus consider k > 2.

2) Finite visible nodes, counting estimator: As observed,
from (23) the sufficient statistic is the total number k of sensed
neighbors, while the extra knowledge of the distances does not
add information to the estimation. Therefore, from (16) we can
derive the CRB as

CRB(λ) =
−1

E
{
∂2 ln P{n(R2)=k;λ}

∂λ2

} =
λ

2πψ(∞)
(29)

and the ML estimator as

λ̂ =
k

2πψ(∞)
. (30)

We will refer to this as the counting estimator, since the agent
needs just to count all its visible neighbors. This estimator is
unbiased, as can be checked by computing

E
{
λ̂
}

=

∞∑

k=0

k

2πψ(∞)

Λk

k!
e−Λ = λ . (31)

The variance is

V
{
λ̂
}

=

∞∑

k=0

(
k

2πψ(∞)

)2
Λk

k!
e−Λ − λ2

=
λ

2πψ(∞)
(32)

which, compared to (29), prove that (30) is an efficient
estimator.
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C. Density estimation with cooperating agents

Now we examine the scenario where M ≥ 2 agents cooper-
ate to estimate the density of the PPP. Assuming independent
measurements from the agents, we derive estimators for all
possible types of information the agents could gather from
the environment. Again, the sensing capability is limited only
by p(r), with two different scenarios characterized by the
asymptotic value of ψ(r).

1) Infinite visible nodes, distance-based estimator: In this
case, we assume each agent measures one distance. Precisely,
the agent j measures the distance rj to its kj-th neighbor.
Since each distance is a r.v. distributed as (20), the joint PDF
for all agent measurements can be expressed as

fR1,R2,··· ,RM (r1, r2, · · · , rM ;λ) =

(2πλ)K
∏M
j=1(kj − 1)!

M∏

j=1

rj p(rj) [ψ(rj)]
kj−1

e−2πλψ(rj) .

(33)

Comparing (33) with (20) it is simple to derive, similarly to
the single agent scenario, the CRB as

CRB(λ) =
λ2

K
(34)

and the MLE as

λ̂ =
K

2π
∑M
j=1 ψ(rj)

(35)

whose expectation is (see Appendix C)

E
{
λ̂
}

= λ
K

K − 1
. (36)

From (35) and (36), an unbiased estimator is

λ̂ =
K − 1

2π
∑M
j=1 ψ(rj)

. (37)

Its variance, that can be derived with steps similar to those
used to demonstrate (36), is

V
{
λ̂
}

=
λ2

K − 2
(38)

which, for large K, approaches the CRB.
2) Finite visible nodes, counting estimator: Suppose that

each agent can count and estimate the distances from each
neighbor so that the joint distribution of distances and number
of sensed nodes is given by products of (22). Similarly to
the single agent scenario, it can be checked that the sufficient
statistic for the estimation of λ is given by the number of
neighbors sensed by each agent. Let us indicate by kj the
number of nodes sensed by the j-th agent. Then, from the
joint distribution

P{k1, . . . , kM ;λ} =
ΛK

∏M
j=1 kj !

e−MΛ (39)

the MLE can be derived as

λ̂ =
K

2πMψ(∞)
(40)

which will be indicated as counting estimator. We note that the
MLE can be interpreted as the arithmetic mean of the single
agent estimations (30). Hence, it is unbiased and efficient, with
variance given by

V
{
λ̂
}

= CRB(λ) =
λ

2πMψ(∞)
. (41)

3) Finite visible nodes, detection-based estimator: Let us
now consider the particular case of simple, low-complexity
nodes, capable of detecting the presence of neighbors but not
able to estimate their number or distances. So, an agent can
only sense the absence/presence of neighbors, and we can
write the probability of n0 agents sensing no one as

P{n0 = n0;λ} =

(
M

n0

)
e−n0Λ

(
1− e−Λ

)M−n0
. (42)

From this distribution it can be shown that the CRB is

CRB(λ) =
eΛ − 1

M (2πψ(∞))2
(43)

and that the MLE is

λ̂ =
1

2πψ(∞)
ln

(
M

n0

)
(44)

which will be indicated as detection-based estimator. Since
this estimator diverges for n0 = 0, it is applicable only for
not too dense networks. Note that, in wireless scenarios, the
detection-based estimator can be implemented using a simple
energy detector [43].

Remark 3: For small λ, the CRB in (43) tends to the value
λ
/

(2πMψ(∞)), which is equal to (41).

IV. APPLICATION: DENSITY ESTIMATION IN WIRELESS
NETWORKS

In wireless networks, both the agents and the generic entities
constituting our PPP are radio-equipped devices. Adopting the
models used for wireless links, we will assume that an agent
can hear a node if the received power is above a threshold Pth,
which depends on the thermal noise level. Besides thermal
noise, we assume wireless links affected by path-loss and log-
normal shadowing [41], [54]. Then, a node at distance r can
be detected if

P
e2σG

rα
> Pth (45)

where P is the received power at a reference distance d0 =
1 m, σ is the shadowing parameter, α > 0 is the path-loss
exponent, G ∼ N (0, 1) is a Gaussian r.v. accounting for
shadowing effects.2 Due to the condition (45) only a fraction
of nodes will be detected. Precisely, a node at a distance r
can be sensed with probability p(r), which in this specific
propagation environment is given by

p(r) = P
{
P
e2σG

rα
> Pth

}
= Q

(
ln P̄th + α ln r

2σ

)
(46)

where Q(x) is the Q-function of the standard normal distri-
bution, and P̄th = Pth/P is the normalized threshold. This

2The path-loss exponent can also be estimated in large wireless networks
[55], [56].
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E
{ λ̂
}

True λ

True λ σdB = 0

σdB = 2

Counting Estimator σdB = 4

Detection-based Est. σdB = 6

Pollard Estimator σdB = 8

Fig. 2. Expected value of density estimators as a function of the actual density
for different shadowing parameter σdB.

selection based on the received power is independent for each
point and gives rise to the thinning of the PPP. Note that, in
the absence of shadowing (σ = 0) the propagation model can
be seen as a disk model, i.e., p(r) = 1 for r < P̄

−1/α
th and

p(r) = 0 otherwise.
In order to perform density estimation, we first compute

ψ(r) according to (19) as

ψ(r) =

∫ r

0

ξQ
(

ln P̄th + α ln ξ

2σ

)
dξ =

=
r2

2
Q
(
η (r)

)
+
e8σ2/α2

2 P̄
2/α
th

Q
(

4σ

α
− η (r)

)
(47)

where

η (r) , ln P̄th + α ln r

2σ
.

Its asymptotic behaviour is

ψ(∞) =
1

2
exp

(
8σ2

α2
− 2 ln P̄th

α

)
(48)

which is finite since the threshold Pth cannot be set to zero
due to thermal noise. So, as expected, in the wireless network
scenario the nodes visibility is limited, and the average number
of nodes detected by an agent is finite.

V. NUMERICAL RESULTS

In this section, we report some numerical results for the
scenario introduced in section IV, to verify the effectiveness
of the proposed density estimators. The parameters used in
the simulations are: normalized threshold P̄th = 10−6, path-
loss exponent α ∈ [1.5, 4], and log-normal shadowing standard
deviation σdB = 10 log10(exp(2σ)) ∈ [0, 8], according to
typical wireless scenarios [54]. When not specified, we assume
α = 3 and σdB = 6. From (48) we can then compute ψ(∞)
and hence the average number of sensed nodes 2πλψ(∞). For
example, with the parameters above, each agent is expected
to sense on the average 4.8 nodes when λ = 10−4 [nodes/m2].
Since in this scenario ψ(∞) is finite, the density estimators

10−6 10−5 10−4 10−3 10−2

10−6

10−5

10−4

10−3

λ [nodes/m2]

R
M

SE
( λ̂
)

Counting Estimator M = 1
Counting Estimator M = 10
Detection-based Est. M = 10
CRB Counting M = 1
CRB Counting M = 10
CRB Detection-based M = 10
Saturation Lower Bound M = 10

Fig. 3. RMSE of density estimators as a function of the actual density for a
different number of agents, M , and σdB = 6.

of interest are that based on counting in (40), and the simple
one based on detection given in (44). For comparison, we
will also report the performance of Pollard’s estimator (10),
where we chose kj according to the farthest visible neighbor.
In particular, we impose the estimate to be equal to zero when
the total number of visible nodes, considering all cooperating
agents, is K < 3.

Regarding the detection-based estimator, in order to avoid
divergence, we modify the estimator in (44) as

λ̂ =





1

2πψ(∞)
ln

(
M

n0

)
n0 > 0

ln (M)

2πψ(∞)
n0 = 0 .

(49)

Since the estimator is a constant when n0 = 0, for λ >
ln (M)

/
(2πψ(∞)), the MSE is lower-bounded by

E
{

(λ̂− λ)2
}
>

(
λ− ln (M)

2πψ(∞)

)2

(50)

and the CRB in (43) is useful for small λ. We will refer to
the bound in (50) as saturation lower bound.

To investigate the bias of the various estimators, in Fig. 2
we report the estimate averages obtained through Monte Carlo
simulations, assuming M = 10 agents. Let us first discuss
Pollard’s estimator. This has been designed in the hypothesis
of an infinite PPP without thinning, and therefore it is not
expected to perform optimally in the investigated wireless
scenario. In fact, we can see that the Pollard estimator has
a bias that increases with σdB. Moreover, it is interesting to
note that, for large λ and small σdB, the estimator tends to be
unbiased. This is due to the fact that, without shadowing, the
model in (45) degenerates to the disk model and, for large λ,
the farthest neighbor distance is close to the disk radius. In this
case, the Pollard estimator tends to (2), which is the ratio of the
number of sensed nodes and the disk area. Let us now discuss
the other estimators. We start by noting that, as expected,
the counting estimator is unbiased. On the other hand, the
detection-based estimator has a slight bias for small λ, while
it is not suitable for large λ where, with high probability, all
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1.5 2 2.5 3 3.5 4
10−7

10−6

10−5

10−4

10−3

α

R
M

SE
(
λ̂
)

M = 1, P̄th = 10−6, σdB = 2

M = 1, P̄th = 10−7, σdB = 2

M = 1, P̄th = 10−6, σdB = 6

M = 1, P̄th = 10−7, σdB = 6

M = 10, P̄th = 10−6, σdB = 2

M = 10, P̄th = 10−7, σdB = 2

M = 10, P̄th = 10−6, σdB = 6

M = 10, P̄th = 10−7, σdB = 6

Fig. 4. Counting estimator RMSE as a function of the path-loss exponent for
λ = 10−3 [nodes/m2].

agents will sense at least one node, saturating the estimate to
lnM

/
2πψ(∞).

In Fig. 3 we report the root-mean-square errors (RMSEs) of
the two proposed estimators. For the counting estimator, we
also show the results when a single agent is in charge of the
estimation, M = 1. For comparison, we report also the CRB
of the analyzed estimators. The counting estimator is efficient
and thus, as shown in the figure, its RMSE is equal to the CRB
for all λ. Regarding the detection-based estimator, we observe
that for small λ the error is comparable with the counting one,
and the RMSE is close to (43), since the estimator is almost
unbiased (see Fig. 2). As anticipated, for large λ the estimator
saturates and its lower bound becomes (50).

In Fig. 4, we focus our attention on the counting estimator.
In particular, we show how the performance in terms of RMSE
deteriorates when the path-loss exponent α increases, for two
different values of the normalized threshold, P̄th = 10−6 and
P̄th = 10−7, and λ = 10−3 [nodes/m2]. The behavior is due
to the fact that increasing α reduces the sensing capability of
agents. For example, in a scenario without shadowing, the disk
area for each agent decreases.

Finally, in Fig. 5 we report an example of the cumulative
distribution of the estimates. As expected from Fig. 3, the
counting estimator shows the steepest behavior around the true
value of λ. In addition, it is possible to observe the quantized
nature of the counting and detection-based estimators. On the
other hand, the Pollard’s estimator is continuous for all λ > 0.

VI. CONCLUSION

This paper addresses the problem of nodes spatial density
estimation in wireless networks where the nodes distribution
is a two-dimensional PPP. The framework developed accounts
for realistic channel models where some nodes could be
invisible because of propagation impairments, leveraging on
the properties of thinned PPPs. In this scenario, we derived
the distribution of the number of sensed nodes and sensed
distances from which we found new density estimators that
exploit different types of measurements, namely distance-
based, counting-based and detection-based estimators. The

0 0.5 1 1.5 2 2.5 3 3.5 4

·10−5

0

0.2

0.4

0.6

0.8

1

λ [nodes/m2]

P{
λ̂
⩽
λ
}

True λ
Counting Estimator
Detection-based Est.
Pollard Estimator

Fig. 5. Cumulative distribution functions of density estimates for M = 10,
σdB = 6, and λ = 10−5 [nodes/m2].

findings of this paper demonstrate that: i) Pollard’s estimator
does not provide accurate results in wireless scenarios where
channel impairments play a significant role; ii) the counting-
based estimator performs the best and is efficient; iii) the very
simple detection-based estimator works well when the nodes
spatial density is low, where it approaches the CRB.
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APPENDIX A
GENERALIZATION TO N-DIMENSIONAL CASE

The results obtained in this paper are easily generalized to
the case where the point process is a n-dimensional homo-
geneous PPP. The probability that in the n-dimensional space
there are k visible nodes considering the radial thinned process
described in section III-A is given by

P{n(Rn) = k} =
[Λ(Rn)]k

k!
e−Λ(Rn) . (51)

To express Λ(Rn) we use n-dimensional spherical coordi-
nates, i.e., a radial coordinate r, and n − 1 angular coor-
dinates, where the angles θ1, θ2, . . . , θn−2 range over [0, π]
and θn−1 ranges over [0, 2π). Recalling the expression for
the volume element in n-dimensional spherical coordinates
dnV = rn−1

(∏n−1
i=1 sinn−i−1(θi) dθi

)
dr, we have

Λ(Rn) = λ

∫

Rn
rn−1 p(r)

(
n−1∏

i=1

sinn−i−1(θi) dθi

)
dr

= λ
nπn/2

Γ
(
n
2 + 1

)
∫ ∞

0

rn−1 p(r) dr . (52)

By defining the function

Ψ(r;n) , nπn/2

Γ
(
n
2 + 1

)
∫ r

0

ξn−1 p(ξ) dξ (53)
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the considerations and all the estimators derived through the
paper are easily generalized to the n-dimensional case. In
particular, from (19) we observe that ψ(r) = Ψ(r; 2)

/
2π.

Since Ψ(r;n) is not a function of λ, the maximum likeli-
hood estimator derivations and Cramér-Rao bounds are not
affected by this generalization. For example, the counting
estimator in (30) easily becomes

λ̂ =
k

Ψ(∞;n)
. (54)

APPENDIX B
DISTANCE DISTRIBUTION IN AN INHOMOGENEOUS PPP

Let us consider an inhomogeneous 2D PPP with density
that depends only on the distance r to the origin, i.e., λt(r) =
λ p(r). Then, the probability that k nodes can be found in a
region A is given by

P{n(A) = k} =
[Λ(A)]k

k!
e−Λ(A) (55)

where

Λ(A) = λ

∫

A
r p(r) drdθ . (56)

A. Distance distribution of the k-th neighbour

In the following is derived the distance distribution of the
k-th neighbor from an agent j, in the case of an inhomoge-
neous 2D PPP, applying the same ideas previously used in
the homogeneous case [50], [51]. In fact, we can write the
probability of finding the k-th neighbor at distance rk as

f
R
(k)
j

(rk)drk = P{n(R) = 1}P{n(D) = k − 1} (57)

with

R = {annulus within radii (rk, rk + drk)}
D = {disk with radius (0, rk)}

where we applied the independent increment property of PPP
along with the fact that D ∩ R = ∅ [49]. Now, considering
that for a PPP

P{n(R) = 1} = Λ(R)e−Λ(R) (58)

P{n(D) = k − 1} =
[Λ(D)]k−1

(k − 1)!
e−Λ(D) (59)

where

Λ(R) =

∫

R
rλ p(r) drdθ = 2πλ p(rk)rkdrk (60)

Λ(D) =

∫

D
rλ p(r) drdθ = 2πλ

∫ rk

0

r p(r)dr (61)

the desired distance distribution becomes

f
R
(k)
j

(rk) =
(2πλ)k

(k − 1)!
rk p(rk) [ψ(rk)]

k−1
e−2πλψ(rk) (62)

with
ψ(r) ,

∫ r

0

ξ p(ξ) dξ . (63)

B. Joint ordered distances distribution for the first k neigh-
bours

The joint ordered distances distribution for the first k

neighbors R
(1)
j 6 R

(2)
j 6 . . . 6 R

(k)
j from the agent j can

be obtained as

f
R
(1)
j ,R

(2)
j ,...,R

(k)
j

(r1, r2, . . . , rk)dr1dr2 . . . drk =

=

k∏

`=1

P{n(R` = 1}P{n(V`) = 0} (64)

with

R` = {annulus within radii (r`, r` + dr`)}
V` = {annulus within radii (r`−1, r`) and r0 = 0}

where we applied the independent increment property of PPP
along with the fact that V` ∩ R` = ∅ for ` = 1, . . . , k. Now,
considering that for a PPP

P{n(R`) = 1} = Λ(R`)e−Λ(R`) (65)

P{n(V`) = 0} = e−Λ(V`) (66)

where

Λ(R`) = λ

∫

R`
r p(r) drdθ = 2πλ r` p(r`) dr` (67)

Λ(V`) = λ

∫

V`
r p(r) drdθ = 2πλ

∫ r`

r`−1

r p(r) dr (68)

the joint distribution becomes

f
R
(1)
j ,R

(2)
j ,...,R

(k)
j

(r1, r2, · · · , rk) = (69)

= (2πλ)k
k∏

`=1

r` p(r`) exp

(
−2πλ

∫ r`

r`−1

r p(r) dr

)

= (2πλ)k exp

(
−2πλ

k∑

`=1

∫ r`

r`−1

r p(r) dr

)
k∏

`=1

r` p(r`)

= (2πλ)ke−2πψ(rk)
k∏

`=1

r` p(r`)

with ψ(r) defined in (63).

C. Distance distribution of the last neighbor

When the thinning process on the PPP limits the number of
sensed nodes to a finite number, we can write the probability
to detect exactly k neighbors and that the last one is at a
distance r from the agent j as

f
R
(k)
j ,K

(r, k)dr = P{n(E) = 0}P{n(R) = 1}
× P{n(D) = k − 1} (70)

with

E = {annulus with radius (r,∞)}
R = {annulus within radii (r, r + dr)}
D = {disk with radius (0, r)}



VALENTINI et al.: DENSITY ESTIMATION IN RANDOMLY DISTRIBUTED WIRELESS NETWORKS 9

where we applied the independent increment property of PPP
along with the fact that D∩R = ∅, D∩E = ∅ and E ∩R = ∅.
Now, recalling (58) and (59) and that, for a PPP

P{n(E) = 0} = e−Λ(E) (71)

with

Λ(E) = λ

∫

E
r p(r) drdθ = 2πλ

∫ ∞

r

ξ p(ξ) dξ (72)

the desired distance distribution assumes the form

f
R
(k)
j ,K

(r, k) =
(2πλ)k

(k − 1)!
r p(r) [ψ(r)]

k−1
e−2πλψ(∞) (73)

with ψ(r) defined in (63) and

ψ(∞) ,
∫ ∞

0

ξ p(ξ) dξ . (74)

D. Joint ordered distances distribution for all the k neigh-
bours

The joint ordered distances distribution for all the k neigh-
bors R

(1)
j 6 R

(2)
j 6 . . . 6 R

(k)
j of the agent j can be obtained

as

f
R
(1)
j ,R

(2)
j ,...,R

(k)
j ,K

(r1, r2, · · · , rk, k)dr1dr2 . . . drk =

= P{n(E) = 0}
k∏

`=1

P{n(R`) = 1}P{n(V`) = 0} (75)

with

E = {annulus with radius (rk,∞)}
R` = {annulus within radii (r`, r` + dr`)}
V` = {annulus within radii (r`−1, r`) and r0 = 0}

where we applied the independent increment property of PPP
along with the fact that V` ∩ R` = ∅, E ∩ R` = ∅, and
V` ∩ E = ∅ for ` = 1, . . . , k. Therefore, considering (65),
(66), and (71), the joint distribution becomes

f
R
(1)
j ,R

(2)
j ,...,R

(k)
j ,K

(r1, r2, · · · , rk, k) =

= (2πλ)ke−Λ(E)
k∏

`=1

r` p(r`) exp

(
−2πλ

∫ r`

r`−1

r p(r) dr

)

= (2πλ)ke−Λ(E) exp

(
−2πλ

k∑

`=1

∫ r`

r`−1

r p(r) dr

)
k∏

`=1

r` p(r`)

= (2πλ)ke−2πλψ(∞)
k∏

`=1

r` p(r`) (76)

with ψ(∞) defined in (74).

APPENDIX C
PROOF OF (36)

Starting from

fR(r;λ) = (2πλ)K
M∏

j=1

ψ′(rj) [ψ(rj)]
kj−1

e−2πλψ(rj)

(kj − 1)!

E
{
λ̂
}

=

∫ ∞

0

· · ·
∫ ∞

0

K

2π
∑M
j=1 ψ(rj)

fR(r;λ)dr

(77)

and substituting ξj = ψ(rj) we obtain
∫ ∞

0

· · ·
∫ ∞

0

K (2πλ)K

2π
∑M
j=1 ξj

M∏

j=1

ξj
kj−1e−2πλξj

(kj − 1)!
dξ . (78)

Then, using u` =
∑`
j=1 ξj , we get

Kc

∞∫

0

e−2πλuM

uM

uM∫

0

· · ·
u2∫

0

uk1−1
1

M∏

j=2

(uj − uj−1)kj−1du (79)

where

Kc , K (2πλ)K

2π
∏M
j=1(kj − 1)!

. (80)

The expression in (79) can be simplified using the Beta
function B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt and its properties. In

addition, we define the constant η` ,
∑`
j=1 kj (in particular

ηM = K), obtaining

E
{
λ̂
}

= Kc

M−1∏

j=1

B(ηj , kj−1)

∫ ∞

0

uK−2
M e−2πλuMduM

=
K (2πλ)K

2π(K − 1)!

∫ ∞

0

uK−2
M e−2πλuMduM

= λ
K

K − 1
. (81)
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