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A supercritical elliptic equation in the annulus

Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris, and
Tobias Weth

Abstract. By a combination of variational and topological techniques in the presence of invariant
cones, we detect a new type of positive axially symmetric solutions of the Dirichlet problem for the
elliptic equation

��uC u D a.x/jujp�2u

in an annulus A � RN (N � 3). Here p > 2 is allowed to be supercritical and a.x/ is an axially
symmetric but possibly nonradial function with additional symmetry and monotonicity properties,
which are shared by the solution u we construct. In the case where a equals a positive constant, we
detect conditions, only depending on the exponent p and on the inner radius of the annulus, that
ensure that the solution is nonradial.

1. Introduction

In the present paper we are concerned with the nonlinear elliptic equation

��uC u D a.x/jujp�2u (1.1)

in a subset of RN , in the case where N � 3, x 7! a.x/ is a positive weight function, and
the nonlinearity is (possibly) supercritical, i.e., p > 2� WD 2N=.N � 2/. In the supercritical
regime, a major obstruction to the search for solutions of (1.1) is the lack of embeddings
of the Sobolev space H 1.RN / into the integrability space Lp.RN /. As a consequence,
equation (1.1) does not admit a variational framework in H 1.RN /. The same is true for
the Dirichlet and Neumann problems for (1.1) in a bounded domain � � RN , as neither
H 1.�/ norH 1

0 .�/ is embedded in Lp.�/ if p > 2�. Hence standard variational methods
do not apply in these cases and, more generally, compactness issues have to be faced.
Incidentally, let us recall that, due to the Pohozaev identity, the Dirichlet problem for
(1.1) does not admit nontrivial solutions in a bounded star-shaped domain � if p � 2�

and a is a positive constant weight function; see e.g. [30]. On the other hand, while no
obstruction to the solvability of the Dirichlet problem for (1.1) is known in the case of
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topologically nontrivial domains, few results in the literature deal with this problem in the
full supercritical regime.

In the present paper we wish to show that the combination of variational and topolog-
ical methods in the spaces H 1

0 .�/ and C 10 .�/ can yield existence of positive solutions
of the Dirichlet problem for (1.1), in the case where a cone of functions with suitable
invariance properties can be found. The presence of invariant cones, characterized by
monotonicity properties of functions, has already been exploited in [3, 13, 28] to con-
struct solutions of the Neumann problem for the supercritical equation (1.1) in specific
domains; see also [4, 5, 12] for related results. More precisely, in [3–5, 12, 28] the case of
a ball � � RN and a radial and radially increasing function a is considered, while [13] is
devoted to domains given as a product of lower-dimensional balls and a function a with
associated symmetry and monotonicity properties. A key difference between these papers
dealing with the Neumann problem and our present work is that, by construction, the solu-
tions found in the cited articles attain their maximum on the boundary of the underlying
domain, which cannot be realized for the corresponding Dirichlet problem. The fact that
we work with solutions that are not radial introduces substantial additional difficulties to
the problem under consideration. Our strategy to overcome these obstacles is to combine
some of the variational techniques used in [3, 12] with a nonvariational approach inspired
from [2]. We consider this fruitful interaction between different tools of the analysis to
be one of the most relevant achievements of the present work and we expect that it may
lead in the future to different applications. For further existence results for supercritical
Neumann problems we refer to [18, 19].

In this paper we focus on the problem8̂̂<̂
:̂
��uC u D a.x/up�1 in A;

u > 0 in A;

u D 0 on @A;

(1.2)

whereA is a boundedN -dimensional annulusA WD ¹x 2RN WR0 < jxj<R1ºwithN � 3
(here, 0 < R0 < R1 <1). As is well known, the existence of a radial solution to (1.2)
can be easily proved, for any p > 2, assuming a is a radial positive bounded function.
Our aim is to investigate problem (1.2) for a certain class of possibly nonradial but axially
symmetric weight functions a. We point out that the restriction to axially symmetric func-
tions alone does not help to overcome the lack of a variational structure and compactness
properties in the supercritical case, since axially symmetric functions may concentrate on
the symmetry axis which has a nonempty intersection with the annulus A. Existence and
multiplicity results for problems similar to (1.2) have been obtained in [22] by means of
bifurcation techniques, the annulus being fixed and the exponent p being the bifurcation
parameter, and in [8] relying on the Lyapunov–Schmidt reduction argument, in the case
of expanding annuli with fixed width. In the very recent preprint [14], the authors impose
the same monotonicity properties that we have; they take advantage of the invariant cone
by applying a convex analysis approach and by working in the dual space. We also wish to
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mention that relevant existence results for specific related critical and slightly supercritical
Dirichlet problems can be found in [1, 20, 26, 27].

In order to state our result precisely, let us introduce some notation. Assuming without
loss of generality that the axis of symmetry is the xN -axis, we call a function on NA axially
symmetric if it only depends on

r D jxj 2 ŒR0; R1� and � D arcsin
�xN
r

�
2

h
�
�

2
;
�

2

i
:

Hence every axially symmetric function u on NA can be written as

u.x/ D u.jxj; arcsin.xN =r// with a function uW ŒR0; R1� �
h
�
�

2
;
�

2

i
! R:

To describe further related symmetry and monotonicity properties, we introduce the cone

yK WD

8̂<̂
:u 2 C 1. NA/ W

u D u.r; �/; u � 0 in NA;

u.r; �/ D u.r;��/ in ŒR0; R1� � .0; �=2/;

u� .r; �/ � 0 in ŒR0; R1� � .0; �=2/;

9>=>; (1.3)

where u� stands for the partial derivative with respect to the variable � . Notice that a
function u 2 yK also satisfies u� .r; �/ � 0 in ŒR0; R1� � .��=2; 0/. We also set

K WD
®
u 2 yK W u

ˇ̌
@A
� 0

¯
: (1.4)

Hence K is the intersection of yK with the function space

C 10 .A/ WD
®
u 2 C 1. NA/ W u

ˇ̌
@A
� 0

¯
� H 1

0 .A/; (1.5)

which will play a central role in the variational approach we propose in this paper. With
this notation we assume that

a 2 yK; a > 0 in NA; (1.6)

and we will show that (1.2) admits a nontrivial solution belonging to K and enjoying a
suitable minimality property. To describe it precisely, we define the functional

I WC 10 .A/! R; I.u/ WD
1

2

Z
A

.jruj2 C u2/ dx �
1

p

Z
A

a.x/jujp dx; (1.7)

which is well known to be well defined and of class C 2, since p > 2. Within the cone K ,
we also consider the Nehari-type set

NK WD
®
u 2K W u 6� 0; I 0.u/u D 0

¯
and the Nehari value

cI WD inf
u2NK

I.u/: (1.8)

With this notation, our first main result now reads as follows.
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Theorem 1.1. Let N � 3, p > 2, and suppose that the function a satisfies (1.6). Then we
have cI > 0, and cI is attained in NK . Moreover, every minimizer u 2 NK of I jNK

is a
nontrivial solution of (1.2) belonging to K .

Hereafter we will call every minimizer u 2 NK of I jNK
a K-ground state solution

of (1.2).
In the case where a is a nonradial function, every solution of (1.2) is nonradial, and

Theorem 1.1 yields a new existence result for such solutions in the case of critical or
supercritical exponents p > 2.

Let us say a few words about the proof of Theorem 1.1. The starting point of our
method is inspired by [3,28], which concern radial solutions to the Neumann problem for
equation (1.1) in a ball (see also [4, 5, 12, 13]). As shown in [3, 28], in the case of Neu-
mann boundary conditions, restricting attention to radial and radially increasing functions
provides a priori bounds that are sufficient to overcome the lack of a global variational
structure and the lack of compactness. As a consequence, in the cited papers, one can
prove the existence of solutions by restricting variational arguments to the cone of pos-
itive radial and radially increasing functions. In a similar spirit, we will exploit here the
fact that the functions in the cone K enjoy some a priori bounds. We stress that the present
nonradial framework requires major modifications of the approach: not only are the a pri-
ori bounds more difficult to obtain, but also, being weaker, we are not allowed to proceed
by restricting variational arguments to the cone. At this point, what we consider the most
interesting part of the paper comes into play: we combine the mountain pass theorem
restricted to the cone with a nonvariational approach inspired by [2].

Let us explain our argument in more detail. We first notice that the minimum value cI
can be reinterpreted as a minimax value of mountain pass type; cf. Lemma 2.5. Hence, we
develop a mountain-pass-type argument for the functional I in the cone K , by replacing
the usual gradient flow with

d

dt
�.t; u/ D �.Id � T /.�.t; u//;

where T WC 10 .A/! C 10 .A/ is the operator defined by

T .u/ WD .��C Id/�1.a.x/jujp�2u/:

Notice that, with this approach, solutions will be provided as fixed points of the opera-
tor T . A major difficulty lies in the fact that the functional I is of class C 2 in the space
C 10 .A/, whereas the compactness properties are available with respect to theH 1.A/-norm
(see the Palais–Smale-type condition proved in Lemma 3.1). In order to overcome this
obstacle, we adopt a dynamical system point of view, partially inspired by [2]. More pre-
cisely, via the descent flow, we manage to construct a sequence belonging to the boundary
of a certain domain of attraction, which converges to a fixed point of T , that is a solution
of the problem.
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In the following we wish to discuss the important special case where a is a constant
function. In this case we may, by renormalization, assume that a � 1. Then (1.2) reduces
to the problem 8̂̂<̂

:̂
��uC u D jujp�2u in A;

u > 0 in A;

u D 0 on @A;

(1.9)

which has received widespread attention with regard to the existence and shape of radial
and nonradial solutions. As already observed, a radial solution exists for any p > 2 and,
by [29], it is unique. We recall that, when the domain is a ball, the celebrated symmetry
result by Gidas–Ni–Nirenberg [21] ensures that every positive regular solution is radial.
This symmetry preservation still holds when the domain A is an annulus with a small hole
and the nonlinearity is subcritical; see [23]. On the other hand, for expanding annuli with
fixed difference of radii, the existence of multiple nonradial solutions has been proved
in [11] in the two-dimensional case, in [7, 9] for N � 3 in the subcritical regime and
in [8] by means of Lyapunov–Schmidt reduction. For some supercritical nonlinearities,
yet subject to certain growth conditions at infinity, the existence of nonradial solutions
has been obtained in [24]. Other existence results for nonradial solutions of (1.9) in the
supercritical case are obtained in [22] via bifurcation techniques.

When applying Theorem 1.1 to equation (1.9), a priori it is not clear whether the
solution found is radial or not. We detect a condition sufficient to ensure that the K-
ground state solution of (1.2) is not radial, namely

p � 2C
2N�

N�2
2

�2
CR20

; (1.10)

R0 being the inner radius of the annulus. More precisely, we prove the following result
concerning problem (1.9).

Theorem 1.2. Let N � 3 and relation (1.10) hold. Then every K-ground state solution
of (1.9) is nonradial.

Remarkably, condition (1.10) only involves p and R0, meaning that our existence
result holds for any outer radius R1 > R0. In particular, if 0 < R0 < R1 are given, we
obtain a nonradial solution of (1.9) if (1.10) holds. As a consequence, we also deduce the
following.

Corollary 1.3. LetN � 3 and suppose that p > 2C 8N
.N�2/2

. Then, for any annulus A WD
¹x 2 RN W R0 < jxj < R1º with arbitrary 0 < R0 < R1, every K-ground state solution
of (1.9) is nonradial. Hence (1.9) admits a nonradial solution on any annulus in this case.

If p > 2 is given, then (1.10) amounts to the explicit condition

R20 �
2N

p � 2
�

�N � 2
2

�2
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on the inner radius which guarantees the existence of a nonradial solution of (1.9). In this
regard, we improve the existence results in [8,22] both by providing a quantitative relation
between p and R0 sufficient for the existence of nonradial solutions, and by proving the
existence of nonradial solutions regardless of R1.

Theorem 1.2 also complements a result in [22] on local bifurcation of nonradial solu-
tions for problem (1.9). More precisely, it is shown in [22, Theorem 1.7] that there exists
an ordered sequence ¹pkºk with limk!1 pk D 1 of bifurcation points in the sense that,
for every fixed k 2 N, there exists a sequence ¹uk;`º` of nonradial solutions of (1.9) for a
corresponding sequence of exponents ¹pk;`º` with lim`!1 pk;` D pk and with the prop-
erty that uk;` converges to the unique radial positive solution of (1.9) with p D pk as
`!1. Theorem 1.2 suggests that one of these bifurcation points corresponds to a global
branch covering the unbounded interval�

2C
2N�

N�2
2

�2
CR20

;1

�
of exponents p. In the same way, Theorem 1.2 complements similar bifurcation results
given in [22, Theorems 1.3 and 1.4] on the bifurcation of nonradial solutions with respect
to the bifurcation parameterR in problem (1.9) onADAR WD ¹x 2RN WR< jxj<RC 1º
with p > 2 being fixed.

Our Nehari-type variational approach allows us to characterize our solution as being
a K-ground state of problem (1.2). We are not aware of any analogous characterization
for solutions of this problem in the literature. This allows us to estimate the energy of the
solution and may be useful in some frameworks (for example, to detect the asymptotic
behavior of solutions as p goes to infinity).

We also remark that the solutions obtained in Theorem 1.2 have Morse index greater
than N . This follows from [25, Theorem 1.1] and the fact that nonradial functions in K

are axially symmetric but not foliated Schwarz symmetric.
We briefly comment on the proof of Theorem 1.2. As a consequence of Theorem 1.1,

it suffices to show that the unique radial solution of (1.9) cannot be a K-ground state
solution under the given assumptions. For this we show that, under assumption (1.10), a
specific instability property of the unique radial solution of (1.9) with respect to the cone
K holds; see Proposition 4.2 below.

The paper is organized as follows. In Section 2 we collect some preliminary results
and a priori estimates in the cone K (see in particular Lemma 2.3): it is interesting
to observe that its proof uses trace inequalities and embedding theorems for fractional
Sobolev spaces. In Section 3 we prove the main result of the paper, Theorem 1.1. Finally,
in Section 4 we deal with the case a � const: and prove Theorem 1.2.
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2. Preliminary results

2.1. The linear problem in the cone

Let us consider the set K defined in (1.4). It is easy to verify that it is a closed convex
cone in C 10 .A/, that is,

(i) if u 2K and � > 0 then �u 2K;

(ii) if u; v 2K then uC v 2K;

(iii) if u;�u 2K then u � 0;

(iv) K is closed in the C 10 -topology.

We begin with the following auxiliary result; it deals with the linear problem with
right-hand side belonging to K .

Lemma 2.1. For any h 2K , the unique solution u to the linear problem´
��uC u D h in A;

u D 0 on @A
(2.1)

belongs to K .

Proof. Let us first notice that, since h 2 C 10 .A/ � C
0;˛. NA/, by elliptic regularity we have

u 2 C 2;˛. NA/ and thus u 2 C 10 .A/, as well. By uniqueness and thanks to the fact that
the problem (i.e., the operator, the right-hand side, and the domain) is invariant under
the action of the group O.N � 1/ � O.1/, the solution u is such that u D u.r; �/ and
u.r; �/ D u.r;��/ for � 2 .��=2; �=2/. Furthermore, by the maximum principle, since
h � 0, also u � 0 in A.

In order to prove the monotonicity with respect to � , we recall the expression of the
Laplacian of an axially symmetric function:

�u D urr C
N � 1

r
ur C

1

r2
�SN�1u; (2.2)

where �SN�1 is the Laplace–Beltrami operator on the .N � 1/-sphere with its canonical
metric, which for axially symmetric functions has the form

�SN�1u D
1

cosN�2 �
@� .cosN�2 �u� /:

Therefore, if we perform a partial derivative in � for the equation in (2.1), we get the
pointwise equation

�u�rr �
N � 1

r
u�r C

N � 2

r2
1

cos2 �
u� C

N � 2

r2
tan � u�� C

1

r2
u�� C u� D h� ;

for .r; �/ 2 .R0; R1/ � .��=2; �=2/. Defining u� .x/, h� .x/ by the relations

u� .x/ D u�

�
jxj; arcsin

�xN
r

��
; h� .x/ D h�

�
jxj; arcsin

�xN
r

��
;
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and noticing that r2 cos2 � D x21 C � � � C x
2
N�1, we can rewrite the previous expression as

��u� C
� N � 2

x21 C � � � C x
2
N�1

C 1
�
u� D h� in QA WD

®
x 2 A W x21 C � � � C x

2
N�1 6D 0

¯
:

We now wish to show that

u� � 0 in QAC WD QA \ ¹xN > 0º: (2.3)

For this we first note that u� D 0 on @ QAC. Indeed, u being regular and axially symmetric
with respect to the xN -axis, we deduce that u� .r; �=2/D 0 for every r 2 ŒR0;R1�, so that
u� vanishes along the xN -axis. Moreover, since uD 0 on @A, and u� .r; �/ is the derivative
of u in the tangential direction to @A, we have u� .r; �/ D 0 on ¹R0; R1º � .0; �=2/, so
that u� D 0 on @A. Finally, since u is axially symmetric and even with respect to � , again
by regularity we have u� .r; 0

C/ D �u� .r; 0
�/ D u� .r; 0/ for every r 2 ŒR0; R1�, and so

u� .r; 0/ D 0 for every r 2 ŒR0; R1�. Hence u� D 0 on @.A \ ¹xN > 0º/.
In summary, u� satisfies the problem8̂<̂

:��u� C
� N � 2

x21 C � � � C x
2
N�1

C 1
�
u� D h� � 0 pointwise in QAC;

u� D 0 on @ QAC:
(2.4)

Due to the singularity of the equation on the xN -axis, we cannot apply the weak maximum
principle directly to deduce that u� � 0. Instead, we let " > 0 and consider the function
v WD .u� � "/

C on QAC. By (2.4) and since u� 2 C 1. QAC/, the function v 2 H 1
0 .
QAC/

has compact support in QAC. Hence we may multiply (2.4) by v and integrate by parts,
obtaining the inequalityZ

QAC

�
jrvj2 C

� N � 2

x21 C � � � C x
2
N�1

C 1
�
v2
�
dx

�

Z
QAC

�
ru� � rv C

� N � 2

x21 C � � � C x
2
N�1

C 1
�
u�v

�
dx

D

Z
QAC

�
��u� C

� N � 2

x21 C � � � C x
2
N�1

C 1
�
u�

�
v dx

D

Z
QAC

h�v dx � 0: (2.5)

Here, the integration by parts in the second step is justified by approximating v in the
H 1-norm by a sequence of functions .vn/n � C1c .�/, where � � QAC is a compactly
contained subdomain containing the support of v. Now (2.5) implies that vD .u� � "/C�
0 in QAC. Since " > 0 was chosen arbitrarily, we deduce (2.3), as claimed. Since u is even
with respect to � , then u� � 0 for � 2 .��=2; 0/ and the proof is concluded.
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2.2. A priori estimates in the cone

In this section we deal with the larger cone

zK WD

8̂<̂
:u 2 H 1

0 .A/ W

u D u.r; �/; u � 0 a.e. in A;

u.r; �/ D u.r;��/ a.e. in .R0; R1/ � .0; �=2/;

u� .r; �/ � 0 a.e. in .R0; R1/ � .0; �=2/;

9>=>;
where u� denotes the weak derivative of u with respect to � . Notice that, since u2H 1.A/,
we have u 2 H 1

loc..R0; R1/ � .��=2; �=2// (see for example [6, Proposition 9.6]), so
that u� 2 L

2
loc..R0;R1/� .��=2;�=2// and the almost everywhere sign condition on u�

appearing in (1.3) makes sense.
Of course, K D zK \ C 10 .A/. The fact that zK is a cone is easily verified (cf. (i)–(iii)

at the beginning of the previous section). Below, we explicitly prove that zK is closed with
respect to the H 1-topology.

Lemma 2.2. zK is closed with respect to theH 1.A/-norm; as a consequence, it is weakly
closed.

Proof. Let ¹unºn � zK and u 2 H 1
0 .A/ be such that un ! u in H 1.A/ as n ! 1.

Clearly, u is axially symmetric, nonnegative, and even with respect to � by pointwise
almost everywhere convergence up to a subsequence. Let us check that u� � 0. Again by
[6, Proposition 9.6] we can write

0 �
@un

@�
D run �

@x

@�
! ru �

@x

@�
D u�

almost everywhere, as n!1. Then u 2 zK , proving that zK is closed in the strong H 1-
topology. Since a cone is a convex set, we conclude that zK is weakly closed as well.

In the following we denoteD WD A\ ¹xN D 0º and we use the notation x D .x0; xN /
for every x 2 RN so that x D .x0; 0/ for every x 2 D. The main result of this section is
the following a priori bound for functions in the cone zK .

Lemma 2.3. zK �Lq.A/ for every q � 1. Moreover, for every q � 1 there exists a positive
constant C.q/ such that

kukLq.A/ � C.q/kukH1.A/ for every u 2 zK: (2.6)

Proof. Let Qu be the trivial extension to zero of u outside A. On the one hand, by the trace
inequality we have

Œ Qu.x0; 0/�H1=2.RN�1/ � Ck QukH1.RN
C /
� Ck QukH1.RN / D CkukH1.A/: (2.7)

On the other hand, by [16, Lemma 5.1] with nDN � 1, s D 1=2, since Qu.x0; 0/ is a radial
function in RN�1, we obtain for every c > �1,�Z

RN�1

jx0jc j Qu.x0; 0/j2
�
c dx0

�1=2�c
� C Œ Qu.x0; 0/�H1=2.RN�1/; (2.8)
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where 2�c WD
2.N�1Cc/
N�2

. Notice that [16, Lemma 5.1] is stated for C1c .R
N�1/ radial func-

tions, but it can be extended, by a density argument, to H 1=2.RN�1/ radial functions.
Moreover, since R0 > 0,Z

RN�1

jx0jc j Qu.x0; 0/j2
�
c dx0 D

Z
D

jx0jc ju.x0; 0/j2
�
c dx0 � Rc0ku.�; 0/k

2�c

L2
�
c .D/

: (2.9)

Since 2�c ! 1 as c ! 1, combining (2.7), (2.8), and (2.9), we get the existence of a
constant C1.q/ such that

ku.�; 0/kLq.D/ � C1.q/kukH1.A/ for every u 2 zK: (2.10)

By the axial symmetry and the monotonicity properties of u 2 zK , we deduceZ
A

jujq dx D !N�2

Z R1

R0

Z �
2

� �2

ju.r; �/jqrN�1 cos � dr d�

� !N�2

Z R1

R0

Z �
2

� �2

ju.r; 0/jqR1r
N�2 dr d�

D R1�!N�2

Z R1

R0

ju.r; 0/jqrN�2 dr

D R1�

Z
D

ju.�; 0/jq dx0;

where !N�2 denotes the measure of the sphere SN�2 � RN�1. Combining the last
inequality with (2.10) we have the desired estimate.

2.3. The fixed point operator T

Hereafter, let p > 2 be fixed. We define the following operator:

T W zK [ C 10 .A/! H 1
0 .A/; T .u/ WD .��C Id/�1.a.x/jujp�2u/;

namely T .u/ D v is the unique H 1
0 .A/ function satisfyingZ

A

.rv � r' C v'/ dx D

Z
A

a.x/jujp�2u' dx for every ' 2 C1c .A/: (2.11)

This definition is clearly well posed when u 2 C 10 .A/ since a.x/jujp�2u 2 C 10 .A/. On
the other hand, when u 2 zK , by Lemma 2.3 we have

up�1 2 Lq.A/ for every q � 1:

This, in particular, implies that

a.x/jujp�2u D a.x/up�1 2 L2.A/; (2.12)

so that T .u/ is well defined, again, with T .u/ 2 H 1
0 .A/.
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We also observe that
T .K/ �K: (2.13)

Indeed, thanks to (1.6), we have that a.x/up�1 2 K for every u 2 K and so, by Lemma
2.1, T .u/ 2K .

We now prove that T , when restricted to K , has suitable continuity and compactness
properties.

Proposition 2.4. Let ¹unºn �K be such that un*u weakly inH 1.A/ for some u 2 zK .
Then T .u/ 2K and T .un/! T .u/ in C 10 .A/.

Proof. Let us first prove that T .un/! T .u/ in H 1.A/. By the definition (2.11) of T , we
have

kT .un/ � T .u/k
2
H1.A/

D

Z
A

a.x/.up�1n � up�1/.T .un/ � T .u// dx

� .p � 1/kakL1.A/

Z
A

.un C u/
p�2
jun � uj jT .un/ � T .u/j dx;

where we used the inequality (see [15])

j�p�1 � �p�1j � .p � 1/.� C �/p�2j� � �j for every �; � 2 RC; p � 2:

Let ˛ > 1 and ˇ > max¹N; 1
p�2
º be such that

1

˛
C
1

ˇ
C
1

2
D 1:

Then we also have ˛ < 2� and ˇ.p � 2/ > 1, and so Lemma 2.3 and the Hölder inequality
applied to the previous expression provide

kT .un/ � T .u/k
2
H1.A/

� C
�
kunkLˇ.p�2/.A/ C kukLˇ.p�2/.A/

�p�2
� kun � ukL˛.A/kT .un/ � T .u/kH1.A/;

with C D .p � 1/kakL1.A/. Since ¹unºn is weakly convergent, it is bounded in the
H 1.A/-norm. Hence, by combining relation (2.6) with the previous estimate we deduce

kT .un/ � T .u/kH1.A/ � C
0
kun � ukL˛.A/;

for a constant C 0 not depending on n. Hence, the weak convergence un * u in H 1.A/

and ˛ < 2� imply
lim

n!C1
kT .un/ � T .u/kH1.A/ D 0;

as desired. Since zK is closed, T .u/ 2 zK and, by elliptic regularity, T .u/ 2K .
Now let vn WD T .un/ for n 2N and v WD T .u/. By the first part of the proof, we know

that vn ! v in H 1.A/. Hence it suffices to show that the sequence ¹vnºn is relatively
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compact in C 10 .A/. Let q 2 .1;1/. By (1.6), Lemma 2.3, and the boundedness of ¹unºn
in H 1.A/, we see that

kfnkLq.A/ � Cq for n 2 N with fn WD a.x/up�1n (2.14)

and some constant Cq > 0. Since the functions vn 2H 1
0 .A/ solve ��vn C vn D fn in A,

elliptic regularity estimates show that

kvnkW 2;q.A/ � C
0
q for n 2 N

with some constant C 0q > 0. Since, as @A is smooth, we have a compact embedding
W 2;q.A/ \ H 1

0 .A/ ,! C 10 .A/ for q > N , we conclude that the sequence ¹vnºn is rel-
atively compact in C 10 .A/.

2.4. An equivalent minimax characterization

We define the minimax value

dI WD inf
u2K
u 6�0

sup
t>0

I.tu/; (2.15)

where the functional I is defined by (1.7). By elementary properties of I , it is easy to see
that for every function u 2 C 10 .A/ n ¹0º there exists precisely one critical point tu > 0 of
the function t 7! I.tu/ which is the global maximum of this function on .0;1/ (see for
example [30, Chapter 4]). More precisely,

tu D

�
kuk2

H1.A/R
A
a.x/jujp dx

�1=.p�2/
(2.16)

and it is straightforward to verify that tuu 2 NK .

Lemma 2.5. The value cI introduced in (1.8) coincides with dI .

Proof. For every u 2K n ¹0º, tuu 2 NK , with tu as in (2.16), thus implying that

dI D inf
u2Kn¹0º

I.tuu/ � cI :

In order to prove the opposite inequality, notice that the map H W u 2 K \ �1 7! tuu 2

NK , with �1 D ¹u 2 H 1
0 .A/ W kukH1.A/ D 1º, is bijective. Indeed, the map v 2 NK 7!

v=kvkH1.A/ 2 K \ �1 is the inverse of H by the uniqueness of tu and by the fact that
tu D 1 if and only if u 2 NK . Therefore

dI � inf
u2K\�1

sup
t>0

I.tu/ D inf
u2K\�1

I.H.u// D cI :
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3. Proof of the main result

In this section we give the proof of Theorem 1.1 via a critical point theory approach in
the space C 10 .A/ and more precisely in the cone K introduced in (1.4). Although K is a
subset of C 10 .A/, we emphasize that our argument requires the use of both the C 10 and the
H 1 topology. As already mentioned in the introduction, the solution is found as a fixed
point of the operator T given in (2.11), by means of a dynamical system point of view
applied to a suitable descent flow. For the reader’s convenience, we divide the section into
several subsections.

3.1. Compactness and geometry of the functional I

Let us consider the functional I defined in (1.7). Recalling the definition of the operator
T given in (2.11), we observe that

I 0.u/v D

Z
A

.ru � rv C uv � a.x/jujp�2uv/ dx D hu � T .u/; viH1.A/

for every u; v 2 C 10 .A/. We first show that I satisfies a Palais–Smale-type condition in
K , with respect to the H 1-norm.

Lemma 3.1. Let ¹unºn �K be such that

(i) ¹I.un/ºn is bounded;

(ii) limn!C1 kun � T .un/kH1.A/ D 0.

Then there exist a subsequence ¹unk ºk and u 2K such that

lim
k!C1

kunk � ukH1.A/ D 0 and u D T .u/:

Proof. By assumption (i) there exists a constant C > 0 such that

C � I.un/ D
�1
2
�
1

p

�
kunk

2
H1.A/

C
1

p

�
kunk

2
H1.A/

�

Z
A

a.x/upn dx

�
D

�1
2
�
1

p

�
kunk

2
H1.A/

�
1

p
hT .un/ � un; uniH1.A/

�

�1
2
�
1

p

�
kunk

2
H1.A/

�
1

p
kT .un/ � unkH1.A/kunkH1.A/; (3.1)

for every n � 1, where we also used the definition of T (see (2.11)) and the Cauchy–
Schwarz inequality. Now, the last inequality combined with assumption (ii) implies that
the sequence ¹unº is bounded in the H 1.A/-norm. We deduce the existence of a subse-
quence ¹unk ºk and u 2 H 1

0 .A/ such that unk * u weakly in H 1.A/ as k ! C1. By
Lemma 2.2, u 2 zK . Then Proposition 2.4 provides T .u/ 2K and

lim
k!C1

kT .unk / � T .u/kH1.A/ D 0:
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In turn, using assumption (ii) again, we obtain

o.1/ D kT .unk / � unkkH1.A/ D kT .u/ � unkkH1.A/ C o.1/

as k !C1, from which we deduce both that unk converges to u strongly in H 1.A/ and
that u D T .u/. In particular, u 2K .

In the next lemma we prove that I has a mountain-pass-type geometry.

Lemma 3.2. There exists ˛ > 0 with the property that for

B˛.K/ WD
®
u 2K W kukH1.A/ < ˛

¯
; S˛.K/ WD

®
u 2K W kukH1.A/ D ˛

¯
we have

(i) I is nonnegative on B˛.K/;

(ii) �˛ WD infu2S˛.K/ I.u/ > 0.

Proof. Let u 2K . By Lemma 2.3 with q D p, we get

I.u/ �
1

2
kuk2

H1.A/
�
1

p
kakL1.A/kuk

p

Lp.A/
�
1

2
kuk2

H1.A/
�
C.p/p

p
kakL1.A/kuk

p

H1.A/
;

whence (i) and (ii) follow immediately, since p > 2.

3.2. A descent flow in the cone

In the following we develop a descent flow argument inside the cone K . For every v 2
C 10 .A/, let

ˆ.v/ WD v � T .v/I

then ˆW C 10 .A/ ! C 10 .A/ is locally Lipschitz. For every u 2 C 10 .A/, let �.t; u/ be the
unique solution of the initial value problem8<:

d

dt
�.t; u/ D �ˆ.�.t; u//;

�.0; u/ D u;

(3.2)

defined on its maximal interval Œ0; Tmax.u//.
We observe that Tmax.u/ may be finite for some u, due to the fact that the right-hand

side of (3.2) is not normalized. We made this choice because a C 1 normalization, which
would have ensured the existence of �.t; u/ for all times t for every u 2 C 10 .A/, would
have invalidated estimate (3.3) below.

Remark 3.3. Since ˆ is locally Lipschitz, the solution of (3.2) depends continuously on
the initial data (see for example [17]). That is, for every u 2 C 10 .A/, for every Nt < Tmax.u/,
and for every ¹vnº � C 10 .A/ such that kvn � ukC 1.A/ ! 0, there exists Nn � 1 such that,
for every n � Nn, the solution �.t; vn/ is defined for every t 2 Œ0; Nt � and

sup
t2Œ0;Nt �

k�.t; vn/ � �.t; u/kC 1.A/ ! 0 as n!C1:
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Let us show that the cone K is invariant under the action of the flow �.

Lemma 3.4. For every u 2K and for every t < Tmax.u/, �.t; u/ 2K .

Proof. The proof is analogous to the one in [3, Lemma 4.5] (see also [10, 12]). We
briefly sketch it below for the sake of completeness. For every n 2 N, we consider the
approximation of the flow line t 2 Œ0; Tmax.u// 7! �.t; u/ given by the Euler polygonal
t 2 Œ0; Tmax.u// 7! �n.t; u/. The vertices of such a polygonal �n are defined by the fol-
lowing recurrence formula:´

�n.0; u/ D 0

�n.tiC1; u/ WD �n.ti ; u/ �
Tmax.u/
n

ˆ.�n.ti ; u// for all i D 0; : : : ; n � 1;

where ti WD i
n
Tmax.u/ for every i D 0; : : : ; k. Recalling the definition of ˆ, since T pre-

serves the cone K , it is easy to prove that the vertices of the polygonal �n belong to K by
convexity. Hence, again by convexity, �n.Œ0; Tmax.u//; u/ � K for every n. Finally, with
ˆ being locally Lipschitz, the following convergence holds for every t 2 Œ0; Tmax.u//:

lim
n!C1

k�n.t; u/ � �.t; u/kC 1.A/ D 0:

The statement then follows immediately, since K is closed in the C 1-topology.

In the next lemma we prove that the energy functional I decreases along the trajecto-
ries �.�;u/. Moreover, we give a condition on u sufficient to guarantee the global existence
of �.�; u/ and to construct a related Palais–Smale sequence.

Lemma 3.5. Let u 2 C 10 .A/. Then we have

d

dt
I.�.t; u// D �kˆ.�.t; u//k2

H1.A/
for every t 2 .0; Tmax.u//: (3.3)

Consequently, the functional I is nonincreasing along the trajectories of �. Moreover, if

u 2K and cu WD lim
t!Tmax.u/

I.�.t; u// > �1; (3.4)

then Tmax.u/D1, and there exists a sequence ¹snºn � .0;C1/ such that limn!C1 snD

C1 and
lim

n!C1
kˆ.wn/kH1.A/ D 0 (3.5)

with
wn WD �.sn; u/ for n � 1: (3.6)

Proof. Let T� WD Tmax.u/. For t 2 .0; T�/ we have

d

dt
I.�.t; u// D

Z
A

h�
r�.t; u/ � r

�
T .�.t; u// � �.t; u/

�
C �.t; u/

�
T .�.t; u// � �.t; u/

��
�

Z
A

a.x/j�.t; u/jp�2�.t; u/
�
T .�.t; u// � �.t; u/

�i
dx
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D h�.t; u/; T .�.t; u// � �.t; u/iH1.A/

� hT .�.t; u//; T .�.t; u// � �.t; u/iH1.A/

D �kT .�.t; u// � �.t; u/k2
H1.A/

;

as claimed in (3.3).
Next we assume that (3.4) holds. In order to prove that T� D 1 we proceed by con-

tradiction, thus assuming T� <1. For 0 � s < t < T�, we then have, using (3.3),

k�.t; u/ � �.s; u/kH1.A/ �

Z t

s

 d
d�
�.�; u/


H1.A/

d� D

Z t

s

r
�
d

d�
I.�.�; u// d�

�
p
t � s

s
�

Z t

s

d

d�
I.�.�; u// d�

D
p
t � s ŒI.�.s; u// � I.�.t; u//�

1
2 �
p
t � s ŒI.u/ � cu�

1
2 :

Since, by our contradiction assumption, T� < 1, we deduce that for every sequence
¹tnºn � .0; T�/ such that tn ! T �� as n!1, ¹�.tn; u/ºn is a Cauchy sequence. This
implies that there exists w 2 H 1

0 .A/ such that

lim
t!T�

k�.t; u/ � wkH1.A/ D 0:

Consequently, by Proposition 2.4,

T .w/ 2 C 10 .A/ and lim
t!T�

kT .�.t; u// � T .w/kC 1.A/ D 0:

From this, by differentiating et�.t; u/, we deduce that

�.t; u/ D e�t
�
uC

Z t

0

esT .�.s; u// ds

�
! e�T�

�
uC

Z T�

0

esT .�.s; u// ds

�
in C 10 .A/ as t ! T�:

By uniqueness of the limit we have that the right-hand side above coincides with w and a
posteriori it follows that �.t;u/!w in C 10 .A/ as t! T�. This contradicts the maximality
of T�, hence it follows that T� D1.

To show the existence of a sequence ¹wnºn with the asserted properties, we argue by
contradiction again and assume that there exists t0; ı0 > 0 with the property that

kˆ.�.t; u//kH1.A/ � ı0 for t � t0:

By (3.3) we then deduce that

I.�.t0; u// � I.�.t; u// � .t � t0/ı
2
0 !1 as t ! T� D1;

which contradicts assumption (3.4). Hence there exists a sequence ¹snºn � .0;C1/ with
the required properties.
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Given Lemmas 3.1 and 3.5, it only remains to exhibit u 2 K satisfying (3.4) and the
additional condition that the related Palais–Smale sequence does not converge to zero.
This is the content of the next subsection.

3.3. A dynamical systems point of view

Partially inspired by [2], we show that the mountain pass geometry of the functional I
allows us to construct a subset of K that is invariant for the flow and with the property
that I is strictly positive over this set; see Lemma 3.9 below. This set is defined as the
boundary of a certain domain of attraction for the flow �.

Let ˛ be given as in Lemma 3.2. We define

L˛ WD
®
u 2 B˛.K/ W I.u/ < �˛

¯
:

It is not difficult to check that L˛ is relatively open in K with respect to the C 1-norm,
that is to say, for every u 2 L˛ there exists " > 0 such that®

v 2 C 10 .A/ W kv � ukC 1.A/ < "
¯
\K � L˛: (3.7)

Moreover, L˛ has the following positive invariance property.

Lemma 3.6. For u 2 L˛ , we have Tmax.u/ D1 and �.t; u/ 2 L˛ for all t � 0.

Proof. By Lemma 3.4 we know that �.t; u/ 2K for all t 2 .0; Tmax.u//. Suppose by con-
tradiction that there exists t1 2 .0; Tmax.u// such that �.t1; u/ 62 L˛ . Since, by Lemma 3.5,
I.�.t1; u// � I.u/ < �˛ , necessarily k�.t1; u/kH1.A/ � ˛. We observe that the map t 2
Œ0; Tmax.u// 7! k�.t; u/kH1.A/ is continuous, by virtue of the continuous embedding
C 1.A/ ,! H 1.A/; therefore there exists t0 2 .0; t1� such that �.t0; u/ 2 S˛.K/. This
contradicts Lemma 3.2(ii), since I.�.t0; u// < �˛ . Consequently, �.t; u/ 2 L˛ for all t 2
.0;Tmax.u//, and therefore limt!Tmax.u/ I.�.t;u//� 0 by Lemma 3.2(i). Hence Tmax.u/D

1 by Lemma 3.5.

Next we consider the domain of attraction of L˛ in K; more precisely,

D.L˛/ WD
®
u 2K W �.t; u/ 2 L˛ for some t 2 .0; Tmax.u//

¯
:

We notice that Lemma 3.6 implies that

if u 2 D.L˛/ then Tmax.u/ D1 and �.t; u/ 2 D.L˛/ for all t � 0: (3.8)

Moreover, Lemmas 3.2(i), 3.5, and 3.6 provide

inf
u2D.L˛/

I.u/ � 0: (3.9)

Lemma 3.7. D.L˛/ is relatively open in K with respect to the C 1-norm, that is to say,
for every u 2 D.L˛/ there exists ı > 0 such that®

v 2 C 10 .A/ W kv � ukC 1.A/ < ı
¯
\K � D.L˛/:
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Proof. Let u 2D.L˛/. By definition there exists t0 2 Œ0;Tmax.u// such that �.t0; u/ 2L˛ .
On the one hand, with L˛ being relatively open in K with respect to the C 1-norm (see
(3.7)), there exists " > 0 such that®

w 2 C 10 .A/ W kw � �.t0; u/kC 1.A/ < "
¯
\K � L˛: (3.10)

On the other hand, given such an " > 0, by Remark 3.3 there exists ı > 0 such that

v 2 C 10 .A/; kv � ukC 1.A/ < ı implies k�.t0; v/ � �.t0; u/kC 1.A/ < ": (3.11)

By combining (3.10) and (3.11), we deduce that such ı > 0 satisfies the requested prop-
erties.

We denote by Z˛ the relative boundary of D.L˛/ in K with respect to the C 1-norm.
In view of Lemma 3.7 and of the fact that K is closed with respect to the C 1-topology,
we have more explicitly

Z˛ WD D.L˛/ nD.L˛/; (3.12)

where D.L˛/ denotes the standard closure of D.L˛/ in C 10 .A/ with respect to the C 1-
norm.

Lemma 3.8. The set Z˛ defined in (3.12) is not empty. More precisely, for every  2
K n ¹0º there exists t� > 0 such that t� 2 Z˛ .

Proof. For  2K n ¹0º, let

J WD
®
t � 0 W t 2 D.L˛/

¯
:

On the one hand, there exists " > 0 such that Œ0; "/ � J because 0 2 L˛ � D.L˛/ and
D.L˛/ is relatively open in K by virtue of Lemma 3.7. On the other hand, J is bounded,
as there exists Nt > 0 such that I.t /��1 for every t � Nt , which implies that t 62D.L˛/
for every t � Nt by virtue of (3.9). As a consequence, we have

t� WD supJ 2 .0;1/:

Then t� 2 Z˛ , by definition of Z˛ .

By the continuity of the flow � with respect to the C 1-norm (see Remark 3.3), the
following property is a consequence of Lemmas 3.5 and 3.6.

Lemma 3.9. For u 2 Z˛ , we have Tmax.u/ D1 and

�.t; u/ 2 Z˛; I.�.t; u// � �˛ for all t � 0:

Proof. First we notice that, for u 2 Z˛ , Tmax.u/ D 1 by virtue of Lemma 3.5 (see in
particular condition (3.4)) and of property (3.9).

Next we prove that, if u 2 Z˛ , �.t; u/ 2 Z˛ for every t > 0. To this aim, suppose
by contradiction that there exists t0 > 0 such that �.t0; u/ 2 D.L˛/ [ .K n D.L˛//.
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If �.t0; u/ 2 D.L˛/, by definition of D.L˛/, there exists t1 2 .t0; Tmax.u// such that
�.t1; u/ 2 L˛ . This means that u 2 D.L˛/, which is impossible by definition of Z˛ .
It remains to rule out the possibility that �.t0; u/ 2 K n D.L˛/. Since K n D.L˛/ is
relatively open in K , there exists " D ".t0/ > 0 such that

v 2K; kv � �.t0; u/kC 1.A/ < " implies v 2K nD.L˛/: (3.13)

Now, since u 2 Z˛ , there exists a sequence ¹vnºn with the property that

vn 2 D.L˛/ for every n 2 N; lim
n!C1

kvn � ukC 1.A/ D 0: (3.14)

Therefore, by Remark 3.3, given " as in (3.13), there exists n0 2 N such that

k�.t0; vn/ � �.t0; u/kC 1.A/ < " for every n � n0: (3.15)

By combining (3.13) and (3.15) we infer that

�.t0; vn/ 2K nD.L˛/ for every n � n0: (3.16)

On the other hand, since ¹vnº � D.L˛/, �.t0; vn/ 2 D.L˛/ for every n (see (3.8)). This
contradicts (3.16) and concludes this part of the proof.

Let us prove the third property, that is to say, if u 2 Z˛ then I.�.t; u// � �˛ for all
t � 0. We proceed again by contradiction. Let Nt � 0 be such that

I.�.Nt ; u// < �˛: (3.17)

Since u 62 D.L˛/, we deduce that k�.Nt ; u/kH1.A/ � ˛. From the definition of �˛ we infer
that indeed

k�.Nt ; u/kH1.A/ > ˛: (3.18)

Now let ¹vnº be as in (3.14). On the one hand, (3.18) and the continuous dependence of �
on the initial data (see Remark 3.3) imply the existence of Nn 2 N such that

k�.Nt ; vn/kH1.A/ > ˛ for every n � Nn: (3.19)

On the other hand, since ¹vnº � D.L˛/ for every n 2 N, there exists a sequence ¹tnº �
Œ0;C1/ such that

k�.tn; vn/kH1.A/ < ˛ and I.�.tn; vn// < �˛; for every n 2 N:

Then Lemma 3.6 provides

k�.t; vn/kH1.A/ < ˛ and I.�.t; vn// < �˛; for every t � tn, n 2 N: (3.20)

From (3.19) and (3.20) we deduce that Nt < tn for every n 2 N, and that, for every n � Nn,
there exists sn 2 .Nt ; tn/ such that k�.sn; vn/kH1.A/ D ˛ for every n � Nn. By definition
of �˛ we have I.�.sn; vn// � �˛ for every n � Nn. Since sn � Nt , Lemma 3.5 provides
I.�.Nt ; vn// � �˛ for every n � Nn. Passing to the limit (see Remark 3.3) we infer that
I.�.Nt ; u// � �˛ , which contradicts (3.17).
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3.4. Proof of Theorem 1.1

Proof of Theorem 1.1. Let  2 K n ¹0º and let u WD t� 2 Z˛ , with t� as in Lemma
3.8. By Lemmas 3.5 and 3.9 we have that Tmax.u/ D 1 and that there exists a sequence
¹snºn � .0;C1/ such that limn!C1 sn D C1 and

lim
n!C1

kˆ.wn/kH1.A/ D 0; (3.21)

for the sequence ¹wnºn defined in (3.6). By Lemma 3.1 we may pass to a subsequence
such that wn ! w in H 1.A/ for some w 2K and T .w/ D w. Lemma 3.9 provides

kwk2
H1.A/

D lim
n!C1

kwnk
2
H1.A/

� 2 lim inf
n!C1

I.wn/ � 2�˛; (3.22)

thus implying thatw is nontrivial. Consequently,w is a nontrivial solution of (1.2) belong-
ing to NK �K .

Next we assume in addition that the function  above satisfies

 2 NK and I. / D cI :

Here cI is defined in (1.8), so  is a minimizer of I on NK . In this case the function
w 2 NK found above satisfies

cI � I.w/ � I.t� / � I. / D cI ; (3.23)

where in the first inequality we used that w 2 NK and in the third we used that
supt>0 I.t / D I.1 /, since  2 NK ; cf. (2.16). As for the second inequality, since
w D limnwn in H 1.A/, kwnkLp.A/ ! kwkLp.A/ by Lemma 2.3. By the properties of a,
the norm .

R
A
a.x/j � jp dx/1=p is equivalent to k � kLp.A/, hence I.w/D limn I.wn/. Thus,

the second inequality in (3.23) is obtained, recalling that I.wn/D I.�.sn; t� //� I.t� /
for every n and passing to the limit in n. So, equality holds in all of the inequalities
in (3.23). In particular, since I.t� / D I. / and  2 NK , we obtain t� D 1. Hence,
I.wn/D I.�.sn; //� I. /D cI for every n. On the other hand, by (3.3), I.�.sn; //&
cI . Therefore, I.�.sn; //D cI for every n, and so, by the monotonicity of I.�.�; // and
since limn sn D C1, it follows that I.�.t;  // D cI for all t 2 .0;1/. Therefore, by
(3.3),

ˆ.�.t;  // D 0 for all t 2 .0;1/.

Consequently, T .�.t;  // D �.t;  / for all t 2 .0;1/. Passing to the limit t 7! 0C and
using the continuity of T , we deduce that T . / D  , hence  is a nontrivial solution of
(1.2) belonging to K .

To finish the proof of Theorem 1.1, we still have to show that the minimal value cI of
the functional I is positive and attained on the set NK . For this we let ¹ `º` be a sequence
in NK with the property that

I. `/! cI as `!1.
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We let t`� be given as in Lemma 3.8 corresponding to  `. Repeating the argument above
for every ` yields corresponding nontrivial solutions w` 2 NK of (1.2) satisfying

cI � I.w
`/ � I.t`� `/ � I. `/ D cI C o.1/ as `!1.

Notice that, by (3.22) with w D w`, we know

kw`k2
H1.A/

� 2�˛ for every `: (3.24)

Since

cI C o.1/ D I.w
`/ D I.w`/ �

1

p
I 0.w`/w` D

�1
2
�
1

p

�
kw`k2

H1.A/
as `!1;

the sequence ¹w`º` is bounded in H 1
0 .A/. Passing to a subsequence, we may assume

that w` * xw in H 1
0 .A/. Since zK is weakly closed (see Lemma 2.2), we have xw 2 zK .

Moreover, by Proposition 2.4, we have

kw` � T . xw/kH1.A/ D kT .w
`/ � T . xw/kH1.A/ ! 0 as `!1,

sow`! T . xw/ strongly inH 1
0 .A/ as `!1. By uniqueness of the weak limit, xwD T . xw/,

and therefore w` ! xw strongly in H 1
0 .A/. From this we deduce, by Proposition 2.4 that

xw 2K and that
w` ! xw in C 10 .A/ as `!1.

Consequently, xw is a critical point of I with I. xw/ D lim`!1 I.w
`/ D cI > 0, the last

inequality coming from (3.24). In particular, xw 6� 0, so xw 2NK . Hence the minimal value
cI is attained by the functional I in NK .

Remark 3.10. Notice that the existence of a nontrivial solution of (1.2) already follows
from (3.22). The remaining part of the proof of Theorem 1.1 gives a variational charac-
terization that will be useful in the next section to prove the nonradiality of the solution
when a is constant and some additional assumptions on p or A hold.

4. The case of constant a

In this section we treat problem (1.9) where the weight function a in (1.2) satisfies a � 1.
We recall that, for every fixed p > 2, (1.9) admits a unique positive radial solution urad 2

C 10 .A/ by [29]. We continue using the notation introduced in the previous sections in the
special case a � 1. In the next proposition we collect some properties satisfied by urad

which will be useful in the sequel.

Proposition 4.1. Let P WD ¹u 2 C 10 .A/ W u � 0º. The radial solution urad belongs to the
interior of P with respect to the C 1-norm. Moreover, the following inequalities hold:

I.urad/ � I.turad/ for every t � 0 (4.1)
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and

I 0.turad/urad > 0 > I
0.t 0urad/urad for every t 2 .0; 1/ and t 0 2 .1;1/: (4.2)

Proof. Clearly urad 2 P . Moreover, by the Hopf lemma, urad is contained in the interior
of P with respect to the C 1-norm. Now, since urad is a solution of (1.9), urad 2NK and so
turad D 1; cf. (2.16). Thus, the function t 2 Œ0;1/ 7! I.turad/ admits a unique maximum in
t D 1, and so (4.1) follows. Moreover, the same function t 7! I.turad/ is strictly increasing
in .0; 1/ and strictly decreasing in .1;1/. This implies (4.2) and concludes the proof.

Our main tool to prove the existence of nonradial solutions of (1.9) will be the follow-
ing criterion related to instability with respect to specific directions.

Proposition 4.2. Suppose that there exists an axially symmetric function v 2C 10 .A/, writ-
ten in polar coordinates as v D v.r; �/, satisfying the following properties:

I 00.urad/.v; v/ < 0; (4.3)

@�v.r; �/ � 0 for .r; �/ 2 .R0; R1/ � .0; �=2/; (4.4)

v.r; �/ D v.r;��/ for .r; �/ 2 .R0; R1/ � .0; �=2/; (4.5)Z
SN�1

v.r; �/ d� D 0 for every r 2 .R0; R1/; (4.6)

where, in the last relation, the two-variable function v.r; �/ is meant as an N -variable
function v.r; �; �1; : : : ; �N�2/ which is constant with respect to the other angular vari-
ables �1; : : : ; �N�2. Then we have

cI < I.urad/; (4.7)

so every minimizer u 2 NK of I jNK
is nonradial.

Proof. By assumption (4.3) and the continuity of I 00, there exist ı 2 .0; 1/ and � > 0 with
the property that

I 00.t.urad C �v//.v; v/ < 0 for t 2 Œ1 � ı; 1C ı�, � 2 Œ��; ��. (4.8)

Since, by Proposition 4.1, urad is contained in the interior of P with respect to the C 1-
norm, we may also assume, by adjusting ı and � if necessary, that

t .urad C �v/ � 0 in A for t 2 Œ1 � ı; 1C ı�, � 2 Œ��; ��.

Combining this information with assumptions (4.4) and (4.5), we deduce that

t .urad C �v/ 2 zK for t 2 Œ1 � ı; 1C ı�, � 2 Œ��; ��.

Moreover, since, by (4.2), I 0..1 � ı/urad/urad > 0 > I
0..1C ı/urad/urad, there exists s 2

.0; �/ with

I 0..1 � ı/.urad C sv//.urad C sv/ > 0 > I
0..1C ı/.urad C sv//.urad C sv/:
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By the intermediate value theorem, there exists t 2 Œ1 � ı; 1C ı� with

I 0.t.urad C sv//.urad C sv/ D 0 and therefore u� WD t .urad C sv/ 2 NK :

Moreover, since urad 2 NK , by a Taylor expansion, (4.1), and (4.8) we have

I.u�/ � I.urad/ � I.u�/ � I.turad/

D stI 0.t urad/v C t
2

Z s

0

I 00.t.urad C �v//.v; v/.s � �/ d�

< stI 0.t urad/v D st

�
thurad; viH1.A/ � t

p�1

Z
A

u
p�1
rad v dx

�
D st2.1 � tp�2/

Z R1

R0

rN�1u
p�1
rad .r/

Z
SN�1

v.r; �/ d� dr D 0;

where we used assumption (4.6) in the last step. Consequently, cI � I.u�/ < I.urad/, as
claimed in (4.7).

To find a function v 2 C 10 .A/ satisfying the assumptions of Proposition 4.2, we take
inspiration from [22].

Lemma 4.3. Let ˛1 be the first eigenvalue of the one-dimensional weighted eigenvalue
problem 8<:�wrr �

N � 1

r
wr C .1 � .p � 1/u

p�2
rad /w D

˛

r2
w in .R0; R1/;

w.R0/ D w.R1/ D 0;

(4.9)

and let w be the (up to normalization) unique positive corresponding eigenfunction. Then
let Y.�/ WD 1 �N sin2 � , � 2 .��=2; �=2/ be the (up to sign and normalization) unique
axially symmetric spherical harmonic of degree 2. If

˛1 < �2N (4.10)

then v D v.r; �/ D w.r/Y.�/ satisfies assumptions (4.3)–(4.6) in Proposition 4.2.

Proof. By construction, v 2 C 10 .A/ and satisfies assumptions (4.4) and (4.5) of Proposi-
tion 4.2. Moreover,Z

SN�1
v.r; �/ d� D w.r/

Z
SN�1

.1 �Nx2N / d�.x/ D w.r/

Z
SN�1

.1 � jxj2/ d�.x/ D 0

for every r 2 .R0; R1/, so assumption (4.6) is also satisfied. It remains to prove (4.3).
To this aim we recall that the function Y is an eigenfunction of the Laplace–Beltrami
operator ��SN�1 on the unit sphere SN�1 corresponding to the eigenvalue �2 D 2N . By
using (2.2), it is straightforward to verify that

��v C v � .p � 1/u
p�2
rad v D

˛1 C 2N

jxj2
v in A:
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By testing this equation by v and integrating by parts, we obtainZ
A

�
jrvj2 C v2 � .p � 1/u

p�2
rad v2

�
dx D .˛1 C 2N/

Z
A

v2

jxj2
dx < 0;

by assumption. Since the left-hand side is I 00.urad/.v; v/, the proof is concluded.

Proof of Theorem 1.2. By combining Proposition 4.2 and Lemma 4.3, it remains to prove
the validity of relation (4.10) under assumption (1.10).

To this aim, notice that the eigenvalue ˛1 admits the variational characterization

˛1 D min
'2H1

0;rad.A/n¹0º

R
A
.jr'j2 C '2/ dx � .p � 1/

R
A
u
p�2
rad '2 dxR

A
'2

jxj2
dx

;

where H 1
0;rad.A/ denotes the subspace of radially symmetric functions in H 1

0 .A/. Using
in particular ' D urad as a test function, we obtain

˛1 �

R
A
.jruradj

2 C u2rad/ dx � .p � 1/
R
A
u
p
rad dxR

A

u2rad
jxj2

dx

D �.p � 2/

R
A
.jruradj

2 C u2rad/ dxR
A

u2rad
jxj2

dx
:

Since Z
A

jruradj
2 dx �

�N � 2
2

�2 Z
A

u2rad

jxj2
dx

by Hardy’s inequality and Z
A

u2rad dx > R
2
0

Z
A

u2rad

jxj2
dx;

it follows that ˛1 < �.p � 2/..N�22 /2 C R20/ and therefore ˛1 < �2N by assumption
(1.10). Thus (4.10) holds.

Remark 4.4. It is proved in [22, Proposition 4.5] that the first eigenvalue ˛1 of the
eigenvalue problem (4.9) satisfies, as a function of the exponent p > 2, the asymptotic
expansion

˛1 D ˛1.p/ D �cp
2
C o.p2/ as p !1 with a constant c > 0:

This allows us to conclude the weaker result that there exists p� > 2 such that ˛1 < �2N
for every p > p�.

Similarly, as by [22, Proposition 3.2] it holds that

˛1 D ˛1.R/ D �cR
2
C o.R2/ as R!1 with a constant c > 0;

with AR WD ¹x 2RN W R < jxj < RC 1º being an annulus of fixed width, one obtains the
existence of a nonradial solution on annuli of fixed width and sufficiently large radius R.
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