
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

A Programming Interface for Creating Data According to the SPAR Ontologies and the OpenCitations Data
Model

Published:
DOI: http://doi.org/10.1007/978-3-031-06981-9_18

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/902310 since: 2022-11-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-06981-9_18
https://hdl.handle.net/11585/902310


A programming interface for creating data
according to the SPAR Ontologies and the

OpenCitations Data Model

Simone Persiani1, Marilena Daquino2,3[0000−0002−1113−7550], and
Silvio Peroni2,3[0000−0003−0530−4305]

1 Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

2 Research Centre for Open Scholarly Metadata, Department of Classical Philology
and Italian Studies, University of Bologna, Bologna, Italy

3 Digital Humanities Advanced Research Centre (/DH.arc), Department of Classical
Philology and Italian Studies, University of Bologna, Bologna, Italy

simone.persiani2@studio.unibo.it, marilena.daquino2@unibo.it,

silvio.peroni@unibo.it

Abstract. The OpenCitations Data Model (OCDM) is a data model
for bibliographic metadata and citations based on the SPAR Ontologies
and developed by OpenCitations to expose all the data of its collections
as sets of RDF statements compliant with an ontology named OpenCi-
tations Ontology. In this paper, we introduce oc ocdm, i.e. a Python
library developed for creating OCDM-compliant RDF data even if the
programmer has no expertise in Semantic Web technologies. After an
introduction of the library and its main characteristics, we show a num-
ber of projects within the OpenCitations infrastructure that adopt it as
their building block unit.

Keywords: OpenCitations · Python · RDF · rdflib · citation data ·
bibliographic metadata · SPAR Ontologies

1 Introduction

Data models are crucial artifacts that datasets suppliers should make available
to document data and to enable users to understand and, thus, use appropriately
suppliers’ data. Sometimes, data models may be created (re)using terms defined
in the same ontologies with different nuances, thereby generating diversity in
data representation [7]. Of course, a data model can employ clearly defined
ontological terms to ensure data consistency and facilitate integration tasks.

However, even if ambiguities are entirely avoided from a terminological per-
spective, creating datasets compliant with a particular data model can still be
a challenge for people who are not experts in the related technologies, such as
OWL and RDF. Further challenges can be due to data dynamics (e.g. extensions
and modifications) [22] which must be performed accordingly to the data model



2 S. Persiani, M. Daquino, S. Peroni

either to correct possible mistakes in an entity or to introduce new data. Addi-
tional complexities in data handling are introduced when the data model asks
for tracking entities’ provenance and changes every time an entity is modified.

To enable users (e.g. domain experts) to programmatically access the data
organised according to a particular data model and to permit their modifica-
tions, applications (visual interfaces, web editors, etc.) must be developed to
facilitate human-data interaction. However, an additional interface layer should
be provided to permit programmers to develop such applications, since such pro-
grammers are experts in coding but not necessarily skilled in the technologies
used by an underlying data model. Such an interface layer would enable creating
and manipulating data transparently from the actual technologies used for their
representation, such as RDF and, particularly, OWL ontologies.

The situation introduced above describes what happened in OpenCitations
in the past few years. OpenCitations (http://opencitations.net) is an inde-
pendent not-for-profit infrastructure organisation for open scholarship dedicated
to the publication of open bibliographic and citation data by the use of Semantic
Web technologies [27]. A few years ago, OpenCitations released the OpenCita-
tions Data Model (OCDM) [7], a data model based on SPAR Ontologies [26],
PROV-O [25], and other existing models, for describing all the entities in its col-
lections, keeping track of their provenance and modifications in time. In addition
of being reused by OpenCitations, the OCDM has also been recently adopted
by other external projects dealing with bibliographic metadata and citations [7].
The more the OCDM is adopted, the more it is necessary to have a library to
simplify the creation of applications dealing with OCDM-compliant data.

In this paper, we introduce a Python library, i.e. oc ocdm [29], for enabling
data owners and publishers to develop applications using OCDM-based data and
provenance information. This library has already been used by OpenCitations
in several components and projects, and it is the building block for all the future
applications dealing with RDF data in OpenCitations’ collections.

The rest of the paper is structured as follows. In Section 2, we introduce
relevant existing libraries for simplifying the creation of RDF data compliant
with data models and ontologies. In Section 3, we summarise the OpenCitations
Data Model and list the requirements for the development of the library. In Sec-
tion 4, we present the main characteristics of the library, including a discussion
of its main modules and classes. In Section 5, we address the potential impact,
adoption and community involved in the library development and reuse. Finally,
in Section 6, we conclude the paper sketching out some future developments.

2 Related works

Serving easy-to-access and effective instructions to reuse an ontology contributes
to the recognition and validation of the quality of the ontology itself [13]. In re-
cent years, several works have expanded on this aspect adapting FAIR (findable,
accessible, interoperable, and reusable) principles to ontologies [14,12,31]. While
ontology engineers have introduced best practices for documenting, versioning,

http://opencitations.net


A programming interface for SPAR Ontologies and the OCDM 3

and publishing Semantic Web artefacts, they rarely focus on the development
of software to enable researchers to programmatically make use of ontologies in
the early stages of their project pipelines (e.g. knowledge extraction and RDF
data creation). To cope with potential data quality issues arisen by misleading
interpretations of the ontologies, the development of SHACL [5] and ShEx [30]
has enabled the validation of data conformance to a schema, which is defined in
terms of the syntax and structure of a “shape”. Nevertheless, human-readable
documentation keeps being the primary way to correctly reuse ontologies, as it
can more effectively convey the semantics and interpretation of ontology terms.

Only a few notable ontology providers provide effective solutions to system-
atically create and organise data according to an ontology. These include Python
libraries, like GOATOOLS [21], which allows to reuse terms from Gene Ontology
and perform data analysis, pronto [23], used to access specifications of the Open
Biomedical Ontologies [33], or motools (https://github.com/motools), includ-
ing a library for consuming terms of the Music Ontology. Alternatively, WYSI-
WYG tools, like quickstatements (https://quickstatements.toolforge.org)
andOntoRefine (https://disc-semantic.uibk.ac.at/ontorefine) allow non-
expert users to create and map data conforming to specific data models. It
is worth noting that such efforts appear to be common in broad communities
where diverse stakeholders, with more or less knowledge of Semantic Web tech-
nologies, must reuse the ontology to create data and conform to community
standards. These solutions significantly prevent time-consuming quality checks,
e.g. on crowdsourced data.

To the best of our knowledge, such aids are lacking in the publishing do-
main. Converters to transform bibliographic records into linked data accord-
ing to RDA vocabularies [19] and other models exist, e.g. [9] and bibtex2rdf
(http://www.l3s.de/~siberski/bibtex2rdf/). However, only records com-
plying with library metadata standards are suitable for conversion and no pro-
gramming interfaces are available for alternative formats, therefore excluding
data produced by academic journals and venues. Similarly, well-known scholarly
linked data providers [11,15,1] do not share interfaces for data creation according
to their schemas [7]. In this work, we fill the gap providing a Python library for
creating RDF data according to OCDM [7]. OCDM expands on several modules
of the SPAR Ontologies [26], therefore allowing stakeholders in the publishing
domain to easily create bibliographic and citation data regardless of their legacy
formats – that could be stored according to other ontological models e.g. BIBO
(https://bibliontology.com).

3 Model and requirements

The OpenCitations Data Model (OCDM) [7] includes terms to describe bib-
liographic and citation data of scholarly publications. Rather than being yet
another ontology, OCDM addresses a broad selection of terms belonging to
the SPAR Ontologies [26], which have been conveniently collected within the
OpenCitations Ontology (OCO, https://w3id.org/oc/ontology). Such guide-

https://github.com/motools
https://quickstatements.toolforge.org
https://disc-semantic.uibk.ac.at/ontorefine
http://www.l3s.de/~siberski/bibtex2rdf/
https://bibliontology.com
https://w3id.org/oc/ontology


4 S. Persiani, M. Daquino, S. Peroni

lines, available as open access human-readable and machine-readable documen-
tation, are adopted by several datasets that are either created and maintained
by OpenCitations or by external ontology reusers.

Fig. 1. The Graffoo diagram [10] of the OpenCitations Ontology. Yellow rectangles
represent classes, green polygons represent datatypes, while blue and green arrows
represent object properties and data properties, respectively.

Specifically, the OCDM provides directives for recording dataset metadata,
bibliographic entities metadata, identifiers, and provenance metadata (includ-
ing versioning and provenance of changes in data). Dataset metadata include
information on the distribution (e.g. a downloadable file) of the dataset. Bibli-
ographic metadata (summarised in Fig. 1) include descriptions of bibliographic
resources such as journals and articles (fabio:Expression), analog and dig-
ital editions of resources (fabio:Manifestation), in-text reference pointers
(c4o:InTextReferencePointer), lists of pointers
(c4o:SingleLocationPointerList), agents (foaf:Agent) and their roles
(pro:Role linked to the agent via pro:RoleInTime), bibliographic references
(biro:BibliographicReference), citations (cito:Citation), identifiers and
their schemes (datacite:Identifier and datacite:IdentifierScheme).

Provenance metadata describe snapshots of data, which document the evolu-
tion of a particular entity as detailed in [28]. The provenance mechanism enforced
by OpenCitations, summarised in Fig. 2, foresees an initial creation snapshot,
potentially followed by operations like modification, merge and deletion, each
corresponding to an additional snapshot.



A programming interface for SPAR Ontologies and the OCDM 5

Fig. 2. The high-level description of the provenance layer of the OCDM to keep track
of an entity’s changes.

Fig. 3. The Graffoo diagram describing snapshots (prov:Entity) of an entity (linked
via prov:specializationOf) and the related provenance information.

Every snapshot is linked to the described entity via prov:specializationOf,
and to the previous snapshot via prov:wasDerivedFrom (see Fig. 3). Creation
time (prov:generatedAtTime) and invalidation time
(prov:invalidatedAtTime) of a snapshot are recorded along with the SPARQL
Update query (oco:hasUpdateQuery) that encodes the changes applied with re-
spect to the previous snapshot. The operation is also described with free text
(dcterms:description), and the snapshot is linked to the source of metadata
(prov:hadPrimarySource) and to the agent responsible for it
(prov:wasAttributedTo).

The development of the oc ocdm library was driven by the need of reengi-
neering the existing OpenCitations’ tools to make them modular. These tools
should reuse basic software components, among which oc ocdm has a central
role. The library was developed considering the following requirements.

The first requirement was to adopt a development methodology that could
make errors easier to spot at development time, thus ensuring better code quality
even if with increased maintenance costs. We chose the Test Driven Development
(TDD) method [2], which imposes a preliminary test design phase followed by
an alternation of software development and testing.

The second requirement was the need to use a programming language com-
pliant with the one that is used in other OpenCitations’ applications, which led
us to choose Python. To make the library easy to install for the final user, it



6 S. Persiani, M. Daquino, S. Peroni

was decided to package it, to manage its external dependencies and to release it
on the PyPI online repository by making use of Poetry4, a tool for dependency
management and packaging in Python. In this way it is possible to manage the
versioning of the library separately from that of the projects depending on it,
making it simpler for users to follow the advancements in its development.

The final requirement was operational and concerned the design of a mech-
anism to consider the existing state of an entity defined somewhere (e.g. in a
file or in a triplestore) in order to understand which modifications are applied
to such an entity through the library.

4 Implementation

The Python library oc ocdm (repository at
https://github.com/opencitations/oc_ocdm, documentation at
https://oc-ocdm.readthedocs.io/) is based on rdflib5 and was developed
to simplify the handling of OCDM-compliant RDF graphs, including tasks of
information extraction, shape validation, editing, provenance tracking and data
serialisation. It’s organised as a hierarchy of subpackages, each consisting of a
set of Python modules. All the main subpackages are shown in Fig. 4 and in
Fig. 5, and describe the main classes they define.

Fig. 4. The UML diagram of the main package and of the counter handler subpackage.

The classes Reader and Storer are used for importing data from external
sources and for either exporting data to a file or synchronising entities’ status
with an external triplestore.

Following OCDM’s guidelines, all the entities are named using a URI that
contains their local identifier, i.e. an incremental integer that uniquely identi-
fies an entity among all entities of the same type. Thus, in order to enforce
the uniqueness of the local identifiers for any given type of entity, the library
provides a mechanism to correctly handle such counters. This functionality is
provided by the abstract class CounterHandler, for which there currently exist
only two implementations. On the one hand, the InMemoryCounterHandler tem-
porarily stores counters via an in-memory data structure, with every progress

4 https://python-poetry.org/
5 https://github.com/RDFLib/rdflib

https://github.com/opencitations/oc_ocdm
https://oc-ocdm.readthedocs.io/
https://python-poetry.org/
https://github.com/RDFLib/rdflib


A programming interface for SPAR Ontologies and the OCDM 7

being immediately lost when the instance of such class is destroyed. On the
other hand, FilesystemCounterHandler makes use of the file system to per-
sistently read and write counters. Both CounterHandler implementations are
in charge of keeping track of the last assigned integer number for each kind of
entity, incrementing it by one unit when a new entity of the corresponding type
is created.

Fig. 5. The UML diagram of the graph, prov and metadata subpackages.

The *Set classes, shown in Fig. 5, are factories defining collections of entities
(*Entity classes). Each *Set class contains a reference to a CounterHandler in-
stance (see Fig. 6) for managing the assignments of unique URIs to the newly
generated entities. The AbstractSet class is extended by three concrete classes:
GraphSet for all kinds of bibliographic entities, ProvSet for entities’ provenance
snapshots, and MetadataSet for metadata about the dataset and its distribu-
tions. Various subclasses of GraphEntity, ProvEntity and MetadataEntity (all
subclasses of the AbstractEntity class) were defined so as to represent all the
possible types of entities described in the OCDM.

In oc ocdm, all the subclasses of GraphEntity and MetadataEntity are able
to internally track edits. It is worth mentioning that the library enables the gen-
eration of provenance information only for non-provenance entities. In addition,
each *Entity internally holds a reference to the *Set in which it is contained,
leading to the bidirectional containment relationships shown in Fig. 6.

Fig. 6. A UML diagram showing the main relationships between classes in oc ocdm.



8 S. Persiani, M. Daquino, S. Peroni

4.1 Importing data from a persistent RDF graph

The Reader class allows one to import entities from a persistent RDF graph
and to parse them to produce their in-memory representations as a collection of
Python objects. Entities with an rdf:type which is recognised by the library (i.e.
the classes used the OCDM) are automatically converted into an instance of the
corresponding *Entity class and collected inside a *Set. Additional statements
about such entities that are not OCDM-compliant are, anyway, imported into
the corresponding in-memory instances, even if they cannot be neither directly
accessed nor modified using the methods provided by oc ocdm. Every other entity
is ignored and no statement about it are imported.

The import entities from graph method processes instances of the
rdflib.Graph class, while import entity from triplestore sends a CON-
STRUCT query to a triplestore to retrieve the statements about a single entity.
Both methods enable importing only bibliographic entities (converting them
into instances of a GraphEntity subclass) and they require an instance of the
GraphSet class as input where to collect the imported entities.

Shape validation When using the methods import entities from graph and
import entity from triplestore, the user can specify to perform shape vali-
dation on the imported graph, in order to filter out all the entities that do not
respect the shape constraints described in the OCDM (constraints on a given
property regarding its range datatype/class, the minimum/maximum amount of
attributes associated to an entity, etc.). This operation is currently handled via
the PyShEx library.

The shapes described in the OCDM were formalised into a proper ShExC
file, that is the required input of PyShEx. Such a resource is included within the
oc ocdm package. ShEx was a design choice that we inherited from the initial
phase of the development, which started a few years ago. We chose the ShExC
format because of its simplicity and compactness, which makes it easy to be
written and read also by non-expert users.

4.2 Data manipulation

Oc ocdm allows one to manipulate the content of OCDM-compliant entities only
through the Python API exposed by their corresponding in-memory representa-
tions, while it does not offer a way to directly act on the persistent RDF graph.
All the changes applied to a graph during a session are not made effective and
persistent until the updated state of the in-memory objects is synchronised with
the original dataset. The way in which the current OpenCitations’ tools deal
with such updates is to work with small chunks of the original dataset to reduce
the impact on memory usage.

Once a *Set instance containing the imported entities has been obtained,
it is possible to access each entity individually to read its content. Several
getter methods are available for each *Entity class. For example, the title of
a BibliographicResource instance can be obtained by calling the method



A programming interface for SPAR Ontologies and the OCDM 9

get title on it. For each getter method, the Python API provides also two cor-
responding setter methods: one for adding/modifying a value (e.g. has title)
and the other for removing predicate-object pairs (e.g. remove title). It is
worth mentioning that, with respect to methods naming, we decided to inherit
the naming conventions used in the OCDM. In particular, setter methods re-
call the name of the ontology predicates to prevent misalignment between the
OCDM and the library implementing it.

The method remove every triple modifies the *Entity by removing every
triple from its in-memory representation, without deleting its persistent coun-
terpart. This method could be used to clear the content of an *Entity instance
to start writing on it from scratch.

In general, all the operations that can be performed on an *Entity allow:

– the creation of a new entity;
– the modification of an entity by adding, changing, or deleting its triples;
– the merging of an entity with another one (not applicable to instances of the

ProvEntity subclasses);
– the deletion of the entity from the graph (not applicable to instances of the

ProvEntity subclasses).

Creation of an entity The creation of a new entity can be done through one of
the add * methods made available by the GraphSet, ProvSet and MetadataSet

classes. For example, a new Citation entity can be added to a GraphSet via
the method add ci. Each new instance is initialised with a triple stating its
rdf:type and, optionally, with a user-provided rdfs:label.

Modification of an entity All the methods that apply changes to an en-
tity (e.g. those that add or delete triples) perform preliminary checks to ensure
compliance with the following constraints defined in the OCDM:

– the type of the object of a triple must comply with the one specified in
the OCDM for the corresponding predicate (e.g. the value supplied to the
method has citing entitymust be of type BibliographicResource), oth-
erwise an exception is thrown;

– predicates defined as functional properties (e.g. the method has name of
ResponsibleAgent) can be associated to at most one object. If called twice,
the second value will override the first one.

Merge of entities The merge operation is motivated by user requirements, as
it allows to manage deduplication and reconciliation of duplicated entities. Only
two or more instances that belong to the same *Entity class can be merged
together. The merge method is used on the *Entity to keep and specifies, as
input, the other *Entity to merge. Hence, to merge n entities together (including
the one to keep), the method must be called n−1 times. Running the instruction
A.merge(B) produces the following effects:



10 S. Persiani, M. Daquino, S. Peroni

– for each predicate which is compliant with the OCDM for the particular type
of the entities A and B, all corresponding objects from B are added to A
(with overwriting in case of functional predicates). Every other statement
from B which is not compliant with the OCDM gets ignored and it is not
added to A;

– regarding the rdf:type predicate, the OCDM allows one to specify at most
two values per entity. The first type value is mandatory and must be the
same for both A and B, being in itself the requirement for enabling the
merging operation. The second type value, if present in B, is added to A (or
overwritten if a second value is already present in A);

– B is marked as to be deleted;
– all the other imported entities are scanned to replace B with A in all

predicate-object pairs in which the object is B, thus redirecting all the ref-
erences which still point to B.

Deletion of an entity An *Entity can be marked as to be definitively removed
from the persistent graph via the method mark as to be deleted. Invoking such
method on an *Entity E produces the following effects:

– E is marked as to be deleted;
– all the other imported entities are scanned to remove all predicate-object

pairs having E as object, thus cleaning up dead links.

Additionally, it is possible to remove dead links also from other persistent
entities that were not imported via the remove dead links from triplestore

method from the GraphSet class. Such method is able to import from a triple-
store all the entities that refer to at least one *Entity which is currently marked
as to be deleted and to remove the dead links from their in-memory graphs.

Marking an *Entity as to be deleted cannot be undone. When we synchronise
the deleted entity with the persistent graph, oc ocdm automatically recognises
that its persistent counterpart has to be completely deleted and it directly re-
moves its persistent triples.

4.3 Change tracking

Each *Entity contains some private fields that are exploited by oc ocdm to in-
ternally keep track of all the operations performed on it and to later reconstruct
what happened. This does not apply to provenance entities, since there is no
need to generate provenance information for them.

In addition to the rdflib.Graph that holds the current triples of the *En-
tity, another rdflib.Graph named preexisting graph is initialised during the
construction of the Python instance. Such graph is intended to be read-only, as
it represents the initial content of the entity at the time of importing it from the
persistent graph. This allows, at any stage, to compute the changes introduced
through oc ocdm by making a comparison between the two in-memory graphs.
There can be situations in which the initial content of an entity is unknown (e.g.



A programming interface for SPAR Ontologies and the OCDM 11

when instantiating an *Entity identified by a URI that is already assigned to an
existing entity, without importing its triples from the persistent graph). In this
case the preexisting graph remains empty, thus the library can only interpret
new triples found inside the graph as to be added to the persistent graph.

For keeping track of merging operations, each *Entity internally sets a
was merged flag while also populating its merge list with all the entities that
were merged into it. Finally, the to be deleted flag is set when the *Entity is
marked as to be deleted.

4.4 Provenance generation

The OCDM envisions a provenance graph composed by trees of snapshot entities
that describe the evolution of bibliographic entities and their external identifiers.
In oc ocdm, such entities are represented with instances of the GraphEntity

subclasses, which are the only classes having a provenance graph associated.
The most recent snapshot of either a bibliographic entity or an external

identifier (e.g. DOI, ISBN, ORCID, . . . ) represents its current persistent content.
The provenance generation algorithm provided by oc ocdm is responsible for
iterating the imported GraphEntity instances and for generating a new snapshot
exclusively for those whose content has been modified through the Python API.
Usually, each new snapshot invalidates the previous one, and in turn becomes
the most recent snapshot for a certain entity. However, in the event that an
entity is removed from the persistent graph, the corresponding snapshot to be
generated must invalidate both the previous one and also itself, and no other
snapshots are linked to it afterwards.

Once the user is satisfied by the changes applied to the imported GraphEntity
instances, it is possible to automatically generate a provenance snapshot (i.e. an
instance of the SnapshotEntity class) for each involved *Entity. Such snapshot
is intended to describe the changes produced on the related GraphEntity with
respect to its preexisting graph.

Multiple operations on the same entity The snapshot entity produced for a
given GraphEntity can be of four different types which reflect the oc ocdm’s op-
erations, namely: creation, modification, merging and deletion. When a compo-
sition of more than one of these operations is applied to an entity, it is necessary
to define a scale of priority to be followed when choosing which of them should
be associated with the new snapshot. By design, the highest priority operation is
deletion, followed by merging, creation and, finally, modification. For instance,
if an entity is modified and later it is deleted, then the particular details of the
modification are lost (i.e. they are of no interest anymore), as the operation that
correctly summarises the entire process is the deletion. In such a case, a new
deletion snapshot would be produced.

The special case of the merging operation When two or more entities are
merged together, a merge snapshot must be generated only for the entity that



12 S. Persiani, M. Daquino, S. Peroni

the user chooses to keep in the persistent graph (i.e. the one to which the triples
of the others are added). The merge snapshot needs to keep a reference to the
latest snapshots of all the entities contained in the merge list (see Section 4.3)
by means of the predicate prov:wasDerivedFrom. It is mandatory that the dele-
tion snapshots for the entities in the merge list are generated only afterwards,
as the merge snapshot must refer to the snapshots that represent the state of
the involved entities prior to their deletion. This requirement imposes a strict
ordering constraint in the production of snapshots.

The provenance generation algorithm The algorithm introduced in List-
ing 1 describes the rationale for handling the task described in this section.
Comments have been inserted in particular branches of the pseudo-code to high-
light all the possible scenarios that the algorithm needs to handle. In oc ocdm,
it is implemented by the generate provenance method of the ProvSet class.

The algorithm iterates (line 2) over the entities A that have been effectively
merged with any number of entities Bi (i.e. A.merge(Bi)), that is, all those
entities that have been involved in a merging while not having been consequently
marked as to be deleted. For these entities, the following scenarios must be
addressed:

– scenario A.1: A does not exist in the persistent graph, hence a creation
snapshot is generated;

– scenario A.2: A already exists in the persistent graph but each Bi in A’s
merge list does not exist. Since it’s not possible for a merge snapshot to
refer to the snapshot of any Bi as they do not exist, such a merge operation
can only be interpreted by oc ocdm as a modification of A;

– scenario A.3: A already exists in the persistent graph and at least one Bi

in A’s merge list exists as well. In this case, a merge snapshot is generated
for A that references all the latest snapshots of such Bi entities.

Then, another iteration of the algorithm is performed (line 12) on all the
remaining entities E. In this case, the following scenarios can occur:

– scenario B.1: E does not exist in the persistent graph and was not deleted,
hence a creation snapshot is generated. Had it been deleted, no snapshot
would have been generated, since the deletion of a non-existing entity does
not produce any change to the persistent graph;

– scenario B.2: E already exists in the persistent graph and it was deleted
(either explicitly or as a consequence of being involved in a merging opera-
tion), hence a deletion snapshot is generated;

– scenario B.3: E already exists in the persistent graph, it was not deleted
but it was modified. In this last case, a modification snapshot is generated.

4.5 Data synchronisation

Generally, the last step of a workflow that involves the manipulation of an
OCDM-compliant dataset consists in the synchronisation of the in-memory con-



A programming interface for SPAR Ontologies and the OCDM 13

Algorithm 1: Pseudocode for provenance generation

1 resultSet← an empty set
2 foreach entity such that (wasMerged(entity) and not

wasDeleted(entity)) do
3 latestSnapshot← retrieveLatestSnapshot(entity)
4 if latestSnapshot is None then

// Scenario A.1 -> Creation

5 resultSet.add(newCreationSnapshot(...))

6 else
7 snapshotsList← getSnapshotsFromMergeList(entity.merge list)
8 if wasModified(entity) and len(snapshotsList) ≤ 0 then

// Scenario A.2 -> Modification

9 resultSet.add(newModificationSnapshot(...))

10 else if len(snapshotsList) > 0 then
// Scenario A.3 -> Merge

11 resultSet.add(newMergeSnapshot(...))

12 foreach remaining entity do
13 latestSnapshot← getLatestSnapshot(entity)
14 if latestSnapshot is None then
15 if not wasDeleted(entity) then

// Scenario B.1 -> Creation

16 resultSet.add(newCreationSnapshot(...))

17 else
18 if wasDeleted(entity) then

// Scenario B.2 -> Deletion

19 resultSet.add(newDeletionSnapshot(...))

20 else if wasModified(entity) then
// Scenario B.3 -> Modification

21 resultSet.add(newModificationSnapshot(...))

22 return resultSet

tent of the *Entity instances with a triplestore or a persistent RDF resource. All
the relevant library operations are collected within the Storer class.

As far as the data serialisation task is concerned, the library supports three
possible RDF file formats, namely: N-Triples for bibliographic entities and
their external identifiers, N-Quads for provenance entities and JSON-LD (the
default option for both kinds of entities).

The methods that the Storer class makes available enable one to work on
the content of either a single *Entity or an entire *Set and permit consider-
ing the related export target (which can be either an RDF file or a SPARQL
endpoint). In particular, store and store all methods are used to export re-
spectively a single entity and an entire set of entities on the file system, while
upload and upload all are capable of generating batches of SPARQL 1.1 Up-



14 S. Persiani, M. Daquino, S. Peroni

date queries that are sequentially sent to a user-specified endpoint. Finally, the
upload and store method combines the effects of store all and upload all.

Once the synchronisation task is executed, further modifications require the
user to first call the commit changes method either on single *Entity instances
or on an entire *Set. Such method takes care of effectively destroying the Python
objects of deleted entities and of resetting the internal state of the other ones
(i.e. resetting their boolean flags and realigning the preexisting graph with
their updated persistent graph).

5 Potential impact, adoption and community

In a previous article [7], we demonstrated the impact of OCDM with respect to
a growing community, which includes a number of datasets and projects main-
tained by the OpenCitations infrastructure [27,18,16], a few OCDM adopters
from diverse disciplines [20,24,4], a growing number of applications and services
that rely on data served by OpenCitations (e.g., VOSViewer6, CitationGecko7,
VisualBib8, and OAHelper9, DBLP10 and Lens.org11), and data providers that
align data to OpenCitations (e.g., OpenAIRE12, MAKG, and WikiCite).

The library oc ocdm has been tested and it is currently integrated into four
applications and collaborative projects, namely: Wikipedia Citations in Wiki-
data13, a project funded by the Wikimedia Foundation to extract citations from
the English Wikipedia towards external bibliographic resources, transform data
to RDF according to OCDM, and upload citations to Wikidata; OpenCitations
Meta14, a software to clean and transform tabular bibliographic metadata to
RDF according to OCDM; GraphEnricher15, a tool for identifiers discovery and
data deduplication used to improve data quality of OpenCitations data; finally,
oc ocdm is used to define testing benchmarks of another Python library16 used
to perform time and provenance-aware queries on RDF datasets compliant with
the OCDM.

Nevertheless, like other software developed by OpenCitations [6,8,17], also
oc ocdm has been developed with the aim of sharing a component that can
be reused in different contexts. In particular, the broader community of SPAR
Ontologies adopters can benefit of this programming interface, including current

6 https://www.vosviewer.com/
7 https://citationgecko.com/
8 https://visualbib.uniud.it/en/project/
9 https://www.otzberg.net/oahelper/

10 https://dblp.org
11 https://lens.org
12 https://www.openaire.eu/
13 https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_

Wikidata
14 https://github.com/opencitations/meta
15 https://github.com/opencitations/oc_graphenricher
16 https://github.com/opencitations/time-agnostic-library

https://www.vosviewer.com/
https://citationgecko.com/
https://visualbib.uniud.it/en/project/
https://www.otzberg.net/oahelper/
https://dblp.org
https://lens.org
https://www.openaire.eu/
https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://github.com/opencitations/meta
https://github.com/opencitations/oc_graphenricher
https://github.com/opencitations/time-agnostic-library


A programming interface for SPAR Ontologies and the OCDM 15

adopters for (1) data creation, (2) data analysis [3], (3) ontology-based data
managements systems [32] and (4) academic journals [34].

Moreover, oc ocdm can be reused by scholars in the Library and Information
Science domain that want to produce bibliographic and citation data accord-
ing to the SPAR Ontologies, which comply with most of the requirements for
bibliographic ontologies (e.g. being based on FRBR conceptual model).

6 Conclusions

In this paper, we have introduced oc ocdm, a Python library for enabling the de-
velopment of applications using OCDM-based data and provenance information.
After showing the main requirements for the development, we have introduced
its organisation in terms of Python modules and classes and we have presented
its current and future uses in the context of several components and projects
related to OpenCitations, being the main building block for all the applications
dealing with creating and modifying RDF data in OpenCitations’ collections.

In the future, we aim at continuing the development of the library adding
new features and reusing other existing components. For instance, since mid-
February 2021 the development of PyShEx, that it is used to validate input data
processed by oc ocdm, has been slowed down. Therefore, we plan to convert the
ShExC file into a compact SHACL file and use the pySHACL17 library, which is
actively maintained and better optimised.

Another aspect that deserves to be properly addressed is related to the par-
allel use of the library. Indeed, the current release of oc ocdm is designed to work
correctly if no more than one instance of oc ocdm needs to access the indexes
used to name new entities. If this condition is not met, episodes of race condi-
tions could easily occur with the risk of assigning the same URI to more entities,
therefore compromising the consistency and validity of all the produced data.

Finally, a last aspect that deserves to be addressed concerns the possibility of
detaching from the library some aspects that can be applied to any RDF dataset,
and not only to OCDM-compliant data. For instance, the way proposed by the
OCDM to handle provenance and, in particular, change tracking is independent
from the kinds of entities to track and could be devised, in the future, as a
possible plugin for rdflib.

Acknowledgements This work has been funded by the project “Open Biomed-
ical Citations in Context Corpus” (Wellcome Trust, Grant n. 214471/Z/18/Z)
and the project “Wikipedia Citations in Wikidata” (Wikimedia Foundation,
https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_

in_Wikidata), and partially funded by the European Union’s Horizon 2020 re-
search and innovation program under grant agreement No 101017452 (OpenAIRE-
Nexus). We would like to thank (in alphabetic order) Fabio Mariani, Arcangelo
Massari, and Gabriele Pisciotta for the constructive feedback.

17 https://github.com/RDFLib/pySHACL

https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://github.com/RDFLib/pySHACL


16 S. Persiani, M. Daquino, S. Peroni

References

1. Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey,
D., Dunkelberger, J., Elgohary, A., Feldman, S., Ha, V., et al.: Construction of
the Literature Graph in Semantic Scholar. In: Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 3 (Industry Papers). pp. 84–91.
Association for Computational Linguistics, New Orleans - Louisiana (Jun 2018).
https://doi.org/10.18653/v1/N18-3011, https://aclanthology.org/N18-3011

2. Beck, K.: Test-driven development: by example. The Addison-Wesley signature
series, Addison-Wesley, Boston (2003)

3. Bertin, M., Atanassova, I., Sugimoto, C.R., Lariviere, V.: The linguistic patterns
and rhetorical structure of citation context: an approach using n-grams. Sciento-
metrics 109(3), 1417–1434 (2016)

4. Colavizza, G., Romanello, M.: Citation Mining of Humanities Journals: The
Progress to Date and the Challenges Ahead. Journal of European Periodical Stud-
ies 4(1), 36–53 (2019)

5. Corman, J., Reutter, J.L., Savković, O.: Semantics and validation of recursive
SHACL. In: International Semantic Web Conference. pp. 318–336. Springer (2018)

6. Daquino, M., Heibi, I., Peroni, S., Shotton, D.: Creating RESTful APIs over
SPARQL endpoints using RAMOSE. arXiv preprint arXiv:2007.16079 (2020)

7. Daquino, M., Peroni, S., Shotton, D., Colavizza, G., Ghavimi, B., Lauscher, A.,
Mayr, P., Romanello, M., Zumstein, P.: The OpenCitations data model. In: Inter-
national Semantic Web Conference. pp. 447–463. Springer (2020)

8. Daquino, M., Tiddi, I., Peroni, S., Shotton, D.: Creating open citation data with
BCite. In: Emerging Topics in Semantic Technologies, pp. 83–93. IOS Press (2018)

9. Dunsire, G., Fritz, D., Fritz, R.: Instructions, Interfaces, and Interoperable Data:
The RIMMF Experience with RDA Revisited. Cataloging & Classification Quar-
terly 58(1), 44–58 (2020)

10. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL Ontolo-
gies with Graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) The Semantic Web: ESWC 2014 Satellite Events. Lecture
Notes in Computer Science, vol. 8798, pp. 320–325. Springer International Pub-
lishing, Cham (2014). https://doi.org/10.1007/978-3-319-11955-7 42

11. Färber, M.: The Microsoft Academic Knowledge Graph: A Linked Data Source
with 8 Billion Triples of Scholarly Data. In: International Semantic Web Confer-
ence. pp. 113–129. Springer (2019)

12. Franc, Y.L., Coen, G., Essen, J.P.v., Bonino, L., Lehväslaiho, H., Staiger, C.: D2.2
FAIR Semantics: First recommendations (2020)

13. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology
evaluation and validation. In: European Semantic Web Conference. pp. 140–154.
Springer (2006)

14. Garijo, D., Poveda-Villalòn, M.: Best Practices for Implementing FAIR vocabular-
ies and Ontologies on the Web. Applications and Practices in Ontology Design,
Extraction, and Reasoning 49, 39 (2020)

15. Hammond, T., Pasin, M., Theodoridis, E.: Data integration and disintegration:
Managing Springer Nature SciGraph with SHACL and OWL. In: International
semantic web conference (Posters, Demos & Industry Tracks) (2017)

16. Heibi, I., Peroni, S., Shotton, D.: Crowdsourcing open citations with CROCI–An
analysis of the current status of open citations, and a proposal. arXiv preprint
arXiv:1902.02534 (2019)

https://doi.org/10.18653/v1/N18-3011
https://aclanthology.org/N18-3011
https://doi.org/10.1007/978-3-319-11955-7_42


A programming interface for SPAR Ontologies and the OCDM 17

17. Heibi, I., Peroni, S., Shotton, D.: Enabling text search on SPARQL endpoints
through OSCAR. Data Science 2(1-2), 205–227 (2019)

18. Heibi, I., Peroni, S., Shotton, D.: Software review: COCI, the OpenCitations Index
of Crossref open DOI-to-DOI citations. Scientometrics 121(2), 1213–1228 (2019)

19. Hillmann, D., Coyle, K., Phipps, J., Dunsire, G.: RDA vocabularies: process, out-
come, use. D-Lib magazine 16(1/2), 6 (2010)

20. Hosseini, A., Ghavimi, B., Boukhers, Z., Mayr, P.: EXCITE–A toolchain to ex-
tract, match and publish open literature references. In: 2019 ACM/IEEE Joint
Conference on Digital Libraries (JCDL). pp. 432–433. IEEE (2019)

21. Klopfenstein, D., Zhang, L., Pedersen, B.S., Ramı́rez, F., Vesztrocy, A.W., Naldi,
A., Mungall, C.J., Yunes, J.M., Botvinnik, O., Weigel, M., et al.: GOATOOLS: A
Python library for Gene Ontology analyses. Scientific reports 8(1), 1–17 (2018)

22. Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing
Linked Data Dynamics. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M.,
Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen,
B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Cimiano, P.,
Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) The Semantic Web: Se-
mantics and Big Data. vol. 7882, pp. 213–227. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8 15, series Title: Lec-
ture Notes in Computer Science

23. Larralde, M., A., P., Henrie, A., Himmelstein, D., Mitchell, S., Sakaguchi, T.:
althonos/pronto: 2.4.3 (Aug 2021). https://doi.org/10.5281/zenodo.5153400

24. Lauscher, A., Eckert, K., Galke, L., Scherp, A., Rizvi, S.T.R., Ahmed, S., Dengel,
A., Zumstein, P., Klein, A.: Linked open citation database: Enabling libraries to
contribute to an open and interconnected citation graph. In: Proceedings of the
18th ACM/IEEE on Joint Conference on Digital Libraries. pp. 109–118 (2018)

25. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology. W3C
Recommendation 30 april 2013 (Apr 2013), http://www.w3.org/TR/2013/

REC-prov-o-20130430/

26. Peroni, S., Shotton, D.: The SPAR ontologies. In: International Semantic Web
Conference. pp. 119–136. Springer (2018)

27. Peroni, S., Shotton, D.: OpenCitations, an infrastructure organization for open
scholarship. Quantitative Science Studies 1(1), 428–444 (2020)

28. Peroni, S., Shotton, D., Vitali, F.: A document-inspired way for tracking changes
of RDF data - The case of the OpenCitations Corpus. In: Hollink, L., Darányi, S.,
Meroño Peñuela, A., Kontopoulos, E. (eds.) Detection, Representation and Man-
agement of Concept Drift in Linked Open Data. CEUR Workshop Proceedings,
vol. 1799, pp. 26–33. CEUR-WS, Aachen, Germany (2016), http://ceur-ws.org/
Vol-1799/Drift-a-LOD2016_paper_4.pdf

29. Persiani, S.: opencitations/oc ocdm (version 6.0.2) (Dec 2021).
https://doi.org/10.5281/zenodo.5770647

30. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape Expressions: An RDF
Validation and Transformation Language. In: Proceedings of the 10th International
Conference on Semantic Systems. p. 32–40. SEM ’14, Association for Computing
Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2660517.2660523

31. Riungu-Kalliosaari, L., Hooft, R., Kuijpers, S., Parland-von Essen, J., Tana, J.:
D2.4 2nd Report on FAIR requirements for persistence and interoperability (2020)

32. Senderov, V., Simov, K., Franz, N., Stoev, P., Catapano, T., Agosti, D., Sautter,
G., Morris, R.A., Penev, L.: OpenBiodiv-O: ontology of the OpenBiodiv knowledge
management system. Journal of biomedical semantics 9(1), 1–15 (2018)

https://doi.org/10.1007/978-3-642-38288-8_15
https://doi.org/10.5281/zenodo.5153400
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_4.pdf
http://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_4.pdf
https://doi.org/10.5281/zenodo.5770647
https://doi.org/10.1145/2660517.2660523


18 S. Persiani, M. Daquino, S. Peroni

33. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg,
L.J., Eilbeck, K., Ireland, A., Mungall, C.J., et al.: The OBO Foundry: coordinated
evolution of ontologies to support biomedical data integration. Nature biotechnol-
ogy 25(11), 1251–1255 (2007)

34. Willighagen, E.: Adoption of the Citation Typing Ontology by the Journal of
Cheminformatics. Journal of Cheminformatics 12 (2020)


	A programming interface for creating data according to the SPAR Ontologies and the OpenCitations Data Model

