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a b s t r a c t 

Learning from past mistakes is crucial to prevent the reoccurrence of accidents involving dangerous sub- 

stances. Nevertheless, historical accident data are rarely used by the industry, and their full potential is 

largely unexpressed. In this setting, this study set out to take advantage of improvements in data sci- 

ence and Machine Learning to exploit accident data and build a predictive model for severity prediction. 

The proposed method makes use of classification algorithms to map the features of an accident to the 

corresponding severity category (i.e., the number of people that are killed and injured). Data extracted 

from existing databases is used to train the model. The method has been applied to a case study, where 

three classification models – i.e., Wide, Deep Neural Network, and Wide&Deep – have been trained and 

evaluated on the Major Hazard Incident Data Service database (MHIDAS). The results indicate that the 

Wide&Deep model offers the best performance. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Background 

Learning from the past has always played a significant role 

n driving innovation and promoting advancements. Undoubtedly, 

istakes are a part of human nature, but we all have inherent abil- 

ties to learn from them. Though, deriving a lesson and applying 

he acquired knowledge to avoid recurring errors is not as trivial 

s it may appear. History tends to repeat itself, and lessons may 

e ignored or forgotten ( Paltrinieri et al., 2013 ). 

Different human activities have different tolerance for errors. 

ithin the chemical industry, significant effort s have been put 

n avoiding mistakes and ensuring safe operations. However, be- 

ore the second half of the sixties, the words “process safety”

nd “loss prevention” did not exist ( Kletz, 2012 ; Pasman et al., 

992 ); handling and storing dangerous substances were regulated 

y traditional occupational safety and good engineering practice 

 Hanida and Azmi, 2017 ). Later, a series of terrible accidents –

ncluding Woodbine (1971), Seveso (1976), Bhopal (1984), and 

asadena (1989) – highlighted the need to go beyond the exist- 

ng standard and develop a different approach to prevent ma- 

or accidents and their consequences ( Hanida and Azmi, 2017 ; 

asman et al., 1992 ). Those unfortunate events were the driving 
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orce for the formulation and development of modern safety man- 

gement programs ( Hanida and Azmi, 2017 ). 

In the ever-changing field of process safety, it has always been 

lear that lessons derived from past accidents would have been 

rucial to ensure safer design and operations ( Pasman, 2009 ). Af- 

er the investigations on the Piper Alpha disaster in 1988, Lord 

ullen (1990) stated the following: “I am convinced that learn- 

ng from accidents and incidents is an important way of improv- 

ng safety performance”. Also, the European Parliament and Coun- 

il Directive 2012/18/EU ( European Union, 2012 ) stresses the need 

o learn from past accidents or near misses. Still, learning, ap- 

lying, and retaining the acquired knowledge is not an easy task 

 Jefferson et al., 1997 ; Pasman, 2009 ). 

Chung and Jefferson (1998) stated that “it is widely recog- 

ized that the chemical industry as a whole does not learn from 

ast accidents”. More than ten years later, the situation has not 

hanged much ( Mannan and Waldram, 2014 ). Process safety has 

ertainly improved over the last 40 years, but progress has been 

low ( Pasman and Fabiano, 2020 ). Automation, production tech- 

ologies, IT, and computer simulations have witnessed extraordi- 

ary growth over the last decade. The tide of digitalization and 

he advent of Industry 4.0 are re-shaping the manufacturing pro- 

ess. Likewise, process safety is moving toward the so-called Safety 

.0 ( Pasman and Fabiano, 2020 ). However, loss prevention and risk 

anagement struggle to keep pace, especially when it comes to 

earn and apply the lesson from past accidents. Accidents still hap- 

en, as evidenced by the explosion and fires that occurred at the 

ing Dih Chemical factory on the 7th of July 2021 in Bangkok, 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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here one person was killed, more than 60 were injured, and 

housands evacuated ( Al Jazeera, 2021 ). 

Undoubtedly, digitalization has brought new and effective 

eans of information storage and transfer. The creation of digi- 

al accident databases, such as MHIDAS ( AEA Technology, 1999 ), 

MARS ( European Commission, 2022 ), and NRC ( United States En- 

ironmental Protection Agency, 2020 ), has made information re- 

rieval quick and easy. However, these are hardly used by the 

ndustry ( Pasman, 2009 ) because they are often not detailed 

nough or because effort s must be invested into translating case- 

pecific information into a lesson. So, even if information has 

een made largely available, its potential remains unexploited. 

asman (2009) argued that the problem with learning from past 

ccidents is not knowledge availability. Instead, the problem is that 

nowledge is not absorbed by individuals, nor is retained by com- 

anies. Humans do not absorb information as machines do. If a 

erson is not interested in learning, he/she will ignore the mes- 

age ( Pasman, 2009 ). Furthermore, even if the lesson is learned, it 

ay be forgotten in few years because “organizations do not learn 

rom the past or, rather, individuals learn but they leave the orga- 

ization, taking their knowledge with them, and the organization 

s a whole forgets” ( Kletz, 1993 ). 

The abundance of accident data offers a great opportunity to 

earn from past errors. However, the current learning process has 

ignificant limitations and appears incapable of seizing this oppor- 

unity. Therefore, there is a strong need for new tools and tech- 

iques to extract and retain knowledge from accident data. In 

his context, advancements in computer science and artificial in- 

elligence have led to the construction of algorithms capable of 

xtracting knowledge from data ( Brink et al., 2016 ). On top of 

hat, research has been focused on Machine Learning (ML) tech- 

iques. Currently, in the field of safety and risk assessment, Ma- 

hine Learning algorithms have been proposed for fault detec- 

ion and diagnosis ( Xu and Saleh, 2021 ; Zope et al., 2019 ), system

rognosis ( Carvalho et al., 2019 ; Paolanti et al., 2018 ), diagnosis 

nd prognosis of industrial alarm systems ( Langstrand et al., 2021 ; 

amascelli et al., 2021 ; N. 2020 b), and Dynamic Risk Assessment 

 Paltrinieri et al., 2020 , 2019 ). Although the topic is still young and

ragmented ( Xu and Saleh, 2021 ), several authors have argued that 

I and Machine Learning will play an increasingly important role 

n the future of process safety ( Alcides et al., 2018 ; Lee et al., 2019 ;

asman and Fabiano, 2020 ). 

Since learning from major accidents is deeply affected by hu- 

an factors, one may argue that an artificial learner would be a 

ood support to enhance learning opportunities. Machine Learning 

lgorithms could be trained to link accident characteristics (e.g., 

ubstances and equipment involved, release magnitude, population 

ensity) to accident consequences – e.g., the number of people in- 

olved. Such predictive models would be a quick, effective, and 

nexpensive means of supporting risk-based decision-making and 

rocess safety. Nonetheless, the analysis of process accident data 

hrough ML algorithms is still a largely unexplored topic. In this 

ontext, this investigation aims to contribute to this area of re- 

earch by exploring the use of Machine Learning methods to an- 

lyze and extract knowledge from historical accident data. This 

tudy responds to specific and compelling needs for tools to ex- 

ract knowledge from past accidents, retain and easily recall such 

nowledge for future use. The authors believe that the approach 

escribed in this study may provide safety managers and practi- 

ioners with advanced predictive models that may significantly im- 

rove decision making, accident prevention, and accident mitiga- 

ion, representing an essential step toward Safety 4.0. What users 

an learn from the approach described herein is to (i) evaluate the 

riticality of different accident scenarios based on a set of simple 

nd readily available features, (ii) discriminate between different 

riticality levels and direct effort s to prevent/mitigate high critical- 
2 
ty scenarios, (iii) estimate the consequences of new accident sce- 

arios without resorting to computation-intensive techniques (e.g., 

FD models) and detailed modeling. 

.2. Objectives 

The purpose of this study is to determine whether Machine 

earning methods might be used to exploit the knowledge embed- 

ed in accident databases and predict the outcomes of new acci- 

ents and incidents. Specifically, the research focuses on classifi- 

ation algorithms and their ability to capture the relationship be- 

ween accident features and consequences to humans in terms of 

eople injured or killed. 

There are three primary aims of this study: 

• to propose and describe a methodology for the analysis of acci- 

dent databases through Machine Learning classification models; 
• to describe how these models might be used to predict the 

severity category of process accidents; 
• to test and compare different models, highlighting the advan- 

tages and limitations and discussing optimization strategies. 

In order to achieve objectives 1 and 2, a generic framework 

as been developed, which might be promptly adapted for use 

n different accident databases and ML models. The methodology 

as been applied to a test case in order to reach the third objec- 

ive. Specifically, three classification models (i.e., Wide, DNN, and 

ide&Deep) have been trained and tested on a generic accident 

atabase – i.e., the Major Hazard Incident Data Service (MHIDAS). 

.3. Related works 

Several studies have proposed Machine Learning meth- 

ds to extract safety-critical information from historical data 

nd predict the outcomes of accidental events. For instance, 

arkar et al. (2020) used six different classification algorithms to 

redict injury severity of accidents that occurred in a steel man- 

facturing plant; investigation reports and inspection reports col- 

ected in a time period of 3 years are used to train and evaluate 

he models. Phark et al. (2018) discussed the application of naïve 

ayes classifiers and Multi-Layer Perceptron for predicting the is- 

uance of emergency evacuation orders after the release of toxic 

ubstances. A method for the semiautomatic retrieval of Natech 

cenarios from the National Response Center database has been 

roposed by Luo et al. ( X. 2020 ), which employed Long Short-Term 

emory and Convolutional Neural Network as classification mod- 

ls. 

Also, several studies focused on Natural Language Process- 

ng (NPL) and Machine Learning methods to analyze acci- 

ent narratives and extract useful information. For example, 

urian et al. (2020) proposed a Machine Learning approach to clas- 

ify unstructured accident reports into basic accident types (e.g., 

health/safety”, “leak/spill”, “operation”). Also, they proposed NPL 

lgorithms to derive a more informative and helpful set of key- 

ords from raw accident reports. Jing et al. (2022) used Word2Vec 

 Mikolov et al., 2013 ) and bidirectional Long Short Term Memory 

eural network (Bi-LSTM) with an attention mechanism to (i) ana- 

yze the correlation between accidents and extract accident pre- 

ursors, causes, and high-frequency types of chemical accidents, 

nd (ii) automatically classify accident reports into their respec- 

ive accident type (i.e., “fire”, “explosion”, “poisoning”, and “other”). 

 proprietary dictionary was developed to improve word segmen- 

ation and classification performance. Bi-LSTM was also used by 

ang and Whao (2022) to extract and estimate the frequency of 

ontributory factors from confined space accident reports. The au- 

hors used BERT algorithm to build word embedding and a BiL- 

TM with a conditional random field (CRF) to classify accidents 
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s

t

ased on their contributory factors (e.g., improper tool, gas detec- 

ion, inadequate supervision). Since the approach is fully super- 

ised, manual intervention by experts is needed to extract fun- 

amental characteristic of accidents and their contributory factors. 

nstead, a semi-supervised approach was proposed by Ahadh et al. 

 2021 ) to automatically classify accident reports from different 

omains based on user-defined topics. The approach is domain- 

ndependent and requires minimal human intervention. The au- 

hors proposed to extract domain-relevant keywords from a do- 

ain corpus (e.g., guidelines, standard manuals, scholarly articles, 

nd Wikipedia pages) and identify the accident cause (e.g., “Ex- 

ernal force”, “Equipment Failure”, “Incorrect Operation”) or other 

ser-defined accident characteristics from accident narratives. A 

uided version of the Latent Dirichlet Allocation ( Jelodar et al., 

019 ) algorithm was used to extract the accident features. 

Although the investigations described above represent a valu- 

ble attempt to extract information from accident reports, their in- 

ent and methodology differ significantly from the approach de- 

cribed in this study. For instance, unstructured accident narra- 

ives are analyzed, while this study focuses on structured accident 

atabases. In addition, the primary aim of those studies is to au- 

omate the extraction of key pieces of information from unstruc- 

ured text and, therefore, to reduce the need for manual interven- 

ion by experts, which is time-consuming and expensive. Instead, 

he algorithms proposed in our study are not designed to extract 

eneric accidents characteristics (e.g., the substance involved, the 

ause, the amount of substance released) since this information 

s already available in the structured database used for the anal- 

sis. Instead, this study seeks to extract higher-level knowledge, 

hich experts cannot extract by simply reading accident reports. 

pecifically, the proposed algorithms aim to capture and quantify 

he relationship between accident features and consequences in 

erms of people killed and injured. In other words, the objective 

s to extract knowledge from historical accident reports to build 

 mapping between accident features and accident consequences. 

he method presented in this study can be used to perform pre- 

ictions; given a short list of accident features, the model returns 

he number of people involved in the accident. Instead, the studies 

escribed above take a large text (i.e., accident narratives) as an 

nput and extract key information. In other words, their aim is not 

nowledge extraction to predict the outcome of accidental events; 

hey just mimic the knowledge discovery process of a human 

eader. 

Similar to this study, Chebila (2021) proposed a Machine 

earning-based method to predict whether accidents involving 

angerous substances will cause damage to humans, the environ- 

ent, and material assets. Specifically on the consequences on 

eople, a set of binary classifications was performed using six 

ifferent models in order to predict the occurrence of at least 

ne injured or killed. The study concluded that Random For- 

st ensures the best performance. Also, Neural Networks pro- 

ided good results, but they proved to be less effective than 

andom Forest in dealing with unbalanced datasets. The inves- 

igation by Chebila (2021) shares some features with this study, 

uch as the overall intent and the approach; however, there are 

lso significant differences. For instance, the approach proposed 

y Chebila (2021) did not distinguish between injuries and killed, 

hile the present study considers these outcomes separately. Fur- 

hermore, the present study uses a set of multiple discrete out- 

ome variables to differentiate accidents according to their severity 

i.e., from 1 to 10 killed, from 11 to 100 killed, etc.). On the other

and, a greater number of classification models were used and 

ested by Chebila (2021) , which also considers more targets (i.e., 

he environment and material assets). Finally, different databases 

re used; eMARS was used by Chebila (2021) , while this study fo- 

uses on MHIDAS. 
s

3 
The chemical and process industry is not the only industrial 

ector that has been involved in this line of research. For example, 

erassis et al. (2020) proposed the use of a Multiple Correspon- 

ence Analysis in conjunction with Bayesian Networks to classify 

ining accidents as fatal or non-fatal. The approach was tested 

n an occupational accident database and allowed the identifica- 

ion of the factor contributing most to the accident severity. A 

ifferent approach has been developed by Yedla et al. (2020) to 

redict the number of days away from work after a mining acci- 

ent. The method makes use of regression and classification mod- 

ls – such as Logistic Regression, Decision Trees, Random Forests, 

nd Artificial Neural Networks – to predict the number of days 

way from work and the degree of injury. Similarly, Choi et al. 

2020) demonstrated that accident data could be used to build 

lassification models for the prediction of the likelihood of mor- 

ality in the event of an accident in a construction site. 

Several studies have also focused on the transportation indus- 

ry. In the analysis proposed by Zhang et al. (2018) , four different 

achine Learning algorithms were compared based on the ability 

o predict the severity of crashes that occurred in freeway seg- 

ents. The study concluded that Machine Learning models pro- 

uce better performance than traditional statistical methods in this 

pecific task. Also, the results suggested that Random Forest and 

-Nearest Neighbors were the best models. Assi et al. (2020) in- 

estigated the use of Feed Forward Neural Networks and Support 

ector Machine to predict the severity level of traffic crashes. In 

ddition, the study investigates the use of fuzzy c-means clustering 

o enhance the model prediction capabilities. A similar approach 

as proposed by Wahab and Jiang (2019) , which focused on the 

rediction of motorcycle crash severity using Decision Trees, Ran- 

om Forest (RF), and Instance-Based Learning. Also, Burnett and 

i (2017) demonstrated the use of Machine learning classification 

echniques to predict the levels of injuries and fatalities in aviation 

ccidents. The analysis concluded that Artificial Neural Networks 

erformed better than the other models. 

Overall, a search of the literature revealed that the attention 

f the scientific community has only recently focused on the ap- 

lication of Machine Learning methods for accident severity pre- 

iction. The idea of utilizing process data to update the risk pic- 

ure has already been proposed in past works – e.g., ( Landucci and 

altrinieri, 2016 ). However, the growing body of research on Ma- 

hine Learning methods indicates that the approach may play a 

ignificant role in the future of safety assessment and manage- 

ent in several areas. Also, the search revealed that there is a no- 

able paucity of studies investigating the application of such meth- 

ds to accidents involving dangerous substances. In this context, 

his is the first study to propose a Machine Learning-based method 

o predict the consequences of accidents involving dangerous sub- 

tances in terms of people killed and injured. Only one similar 

tudy was found in the literature ( Chebila, 2021 ), which only con- 

idered whether or not the accident damaged people, therefore 

acking the level of detail provided in this investigation. In addi- 

ion, this study makes use of a set of multiple discrete outcome 

ariables to estimate the number of people involved, therefore pro- 

iding a much more detailed and valuable output. 

.4. Outline 

The paper is organized into 7 Sections. Section 2 presents the 

ethodology, including the pre-processing of accident data and the 

achine Learning simulations. The test case is described in section 

 , which also includes a description of the database used for the 

imulations. Section 4 presents a selection of the most representa- 

ive findings, while the full results are provided separately in the 

upplementary material. Results are discussed in section 5 , which 
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Fig. 1. Methodology workflow. Colors represent two main stages: Data pre- 

processing (orange), and Machine Learning Simulations (green). 
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Table 1 

Accident consequence categories. 

Category Description 

NO no killed/injured 

1 - 10 from 1 to 10 killed/injured 

10 - 100 from 10 to 100 killed/injured 

- 1000 from 100 to 1000 killed/injured 

> 1000 more than 1000 killed/injured 
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lso highlights the limitations of the study and provides sugges- 

ions for future works. Finally, conclusions are drawn in section 6 . 

. Method and data 

The overall workflow of the methodology developed to analyze 

nd extract knowledge from accident databases through Machine 

earning techniques is outlined in Fig. 1 . The method involves two 

ain steps: data pre-processing and Machine Learning simulations. 

n the first step, raw accident data are converted in a suitable for- 

at for Machine Learning analyses. Next, part of accident data is 

sed to train the Machine Learning classification algorithm. Finally, 

he trained model is used to predict the severity of new events. 

redictions are compared with expectations in order to assess the 

odel performance and discuss optimization strategies. A detailed 

escription of the methodology is provided in the following 2 sec- 

ions. 

The method has been demonstrated on a test case study using 

hree classification models, namely Wide, Deep Neural Network, 

nd a hybrid Wide&Deep model. The algorithms were trained and 

valuated separately on the same datasets, and their performance 

as compared to highlight their strength and limitations. It is 

orth mentioning that this is the first study that takes advantage 

f these algorithms to predict the consequences of process acci- 

ents with a high level of detail. Also, this is the first study that 

nvestigates the use of a hybrid Wide&Deep model for the analysis 

f accident data. 

.1. Accident database and features selection 

Accident data are extracted from the data source and stored in 

 convenient format, such as a CSV file. The database has a matrix- 

ike shape where each row represents an event and each column 

n attribute of the event (e.g., the date, the substance involved, the 

ncident type). 

Some of the attributes included in the database may not be 

eaningful or useful for the analyses; these attributes must be 

emoved (step 1.1 in Fig. 1 ). In general, the database should con- 

ain only attributes that link event characteristics to event conse- 

uences. After removing unnecessary attributes, the database must 

e prepared for the Machine Learning simulations (step 1.2 in 

ig. 1 ). This task requires three steps: 

• Missing data must be imputed or removed because most Ma- 

chine Learning models cannot process null values. Different 

techniques have been developed to impute or remove missing 

values based on the type and characteristics of the data (i.e., 

numerical or categorical, random or not random). An overview 

of the most used methods can be found in Brink et al. (2016) ,
4 
Bruha (2017) , and Makaba and Dogo (2019) . In this study, miss- 

ing values have been substituted by the user-defined string 

“Na”. This should allow the model to deal with uncertainty and 

learn the impact of missing values on the outcome measure. 
• Attributes that may contain more than one entry must be split 

so that each column in the database contains only one entry. 
• The attributes indicating the Number of People that are In- 

jured (NPI) and Killed (NPK) must be converted into their re- 

spective severity categories. To this end, a set of consequence 

categories are considered to reflect severity categories used by 

risk matrices and other risk analysis methods ( ARAMIS project 

team, 2004 ) ( Table 1 ). 

After these steps, a clean version of the original database is ob- 

ained, which is eventually used for the simulations. The Machine 

earning algorithms are trained to classify accidents into one of the 

ategories described in Table 1 , therefore predicting the severity of 

ccidental events with a high level of detail. 

.2. Machine learning simulations 

Machine Learning (ML) refers to a class of computer algo- 

ithms designed to gain experience from data and leverage the ac- 

uired knowledge to perform accurate predictions, reveal correla- 

ions between variables, and identify hidden patterns and trends 

 Brink et al., 2016 ; Hastie et al., 2009 ). In other words, Machine

earning concerns training a machine to learn from past under- 

tanding ( Schottenfels, 2019 ). 

There are three macro-categories of Machine Learning algo- 

ithms: Supervised Learning, Unsupervised Learning, and Rein- 

orcement Learning ( Murphy, 2012 ). Supervised Learning is used 

hen the problem involves the prediction of an outcome measure 

ased on one or more input variables ( Hastie et al., 2009 ). Instead,

f no output measure is applicable, Unsupervised Learning algo- 

ithms may be used to analyze input data and reveal relationships 

nd patterns with little or no human intervention ( IBM Cloud Ed- 

cation, 2020 ; Jukes, 2018 ). In Reinforcement Learning, the learner 

e.g., an industrial robot) is not passively analyzing input data; in- 

tead, it collects data from the environment through a set of ac- 

ions, and a reward system is used to guide the learning process 

 Stone, 2017 ). 

In this study, both the input (i.e., the features of an event) and 

he outcome measure (i.e., the event severity) are available and 

eported in the data source. Therefore, Supervised Learning algo- 

ithms are a natural choice. Further, the objective of this study 

s to categorize (i.e., classify) accidents based on their severity of 

onsequences, which may be expressed in terms of the number of 

eople that are killed or injured in the event - for this reason, two 

istinct sets of simulations are performed. Therefore, the problem 

s a classification task. However, a regression approach may also be 

ossible and should be investigated by further research. 

.3. Classification: training and evaluation 

The aim of a classification algorithm is to classify objects into 

wo or more categories ( Drummond, 2017 ). An object is described 

y a set of features (i.e., meaningful attributes of the object, say 
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Fig. 2. Schematic representation of a Deep Neural Network. Orange, blue, and green 

circles represent input features (X i ), hidden units ( Z j 
i 
) , and labelsY k . Adapted from 

Tamascelli et al. (2020a) . 
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 ) and one label (i.e., its category, say Y ); in this study, releases of

angerous substances are the objects. 

At first, the clean database is divided into two parts: the train- 

ng database and the evaluation database (step 2.2 in Fig. 1 ). The 

ormer comprises 80% of the events, and the remaining part (20%) 

orms the latter. Next, the training database is fed to the algorithm, 

hich tunes the internal parameters of a function f in order to find 

he optimal mapping between features and corresponding labels 

 James et al., 2013 ). The function f is also called the model of the

achine Learning algorithm ( TensorFlow.org, 2020a ). 

 ≈ f ( X ) (1) 

here: 

• X = N × M matrix of the features. N is the number of objects, 

and M is the number of features; 
• Y = N × 1 vector of the labels; 
• f = function with tunable parameters. 

This phase is the so-called training phase (2.3 in Fig. 1 ). Next, 

nlabeled objects are fed to the trained model, which predicts the 

orresponding labels according to the following equation. 

f ( X i ) = 

ˆ Y (2) 

here: 

• X i = 1 × M vector of the features of the unlabeled object i ; 
• ˆ Y = label probabilities produced by the model for the object i . 

Finally, predicted labels are compared with the true labels to 

valuate the performance of the model. This phase is the so-called 

valuation phase (steps 2.4 in Fig. 1 ). The batch of objects used to

valuate the algorithm is the evaluation database. 

It is worth noting that the output of the model (i.e., ˆ Y i ) is 

ot a single label but a vector that contains the label probabili- 

ies ( James et al., 2013 ). In other words, if K different categories

re possible, ˆ Y i is a K × 1 vector whose elements represent the 

robability of each category. In order to convert label probabilities 

nto one predicted label, a probability decision threshold is used 

 Google, 2020a ), which is often 0.5 by default. 

. Models 

Different models are available to perform a classification task. 

n this study, a Linear model, a Deep Neural Network, and a hybrid 

ide&Deep model are used to demonstrate the approach. 

.1. Linear model 

The Linear model represents the labels as a linear combination 

f features ( James et al., 2013 ). Therefore, Eq. (1) can be written

s: 

 ≈ β0 + 

M ∑ 

j=1 

β j X j (3) 

here: 

• Y = label; 
• β0 = bias; 
• X j = a feature; 
• β j = weight of the j-th feature. 

Linear models are robust, fast, easy to interpret, and suitable 

or analyzing large datasets ( Brink et al., 2016 ; Hastie et al., 2009 ;

ames et al., 2013 ). On the other hand, they cannot capture nonlin- 

ar relationships between features. Also, linear models cannot infer 

he impact of combinations of features that have not occurred in 

he past ( Cheng et al., 2016 ). 
5 
.2. Deep neural network 

Deep Neural Networks (DNNs) are directed acyclic graph- 

cal models consisting of densely interconnected units 

 Goodfellow et al., 2016 ). A visual representation of a DNN is 

hown in Fig. 2 . 

In these models, the features of an object (orange circles in 

ig. 2 ) are converted into label probabilities (green circles in Fig. 2 )

hrough a series of linear combinations and nonlinear transfor- 

ations ( Hastie et al., 2009 ). In between the Input and Out- 

ut layers, a series of interconnected hidden units (blue circles 

n Fig. 2 ) is arranged into one or more hidden layers (e.g., H1, 

2, and H3 in Fig. 2 ). The unit of a generic hidden layer H i is

btained by a nonlinear transformation of the linearly combined 

nits of the previous layer. In this study, the Rectified Linear Unit 

 TensorFlow.org, 2020b ) is used to perform the nonlinear transfor- 

ation. Further details and formulas behind Neural Networks may 

e found in Goodfellow et al. (2016) and Hastie et al. (2009) . 

DNNs have good generalization capabilities and can capture 

onlinear relationships between features ( Goodfellow et al., 2016 ). 

s a drawback, they are sensitive to poor quality input data and 

re prone to overfitting and overgeneralization ( Brink et al., 2016 ; 

oodfellow et al., 2016 ; Hastie et al., 2009 ). In addition, the com- 

utational cost required for training a DNN is larger if compared to 

impler models ( Goodfellow et al., 2016 ). 

.3. Wide&Deep 

In an attempt to combine the advantages of the Linear and 

eep models, Cheng et al. (2016) developed the Wide&Deep 

odel, whose structure is displayed in Fig. 3 . 

The model comprises a Linear part (top of Fig. 3 ) and a Deep

art (bottom of Fig. 3 ). During the training phase, the Linear and 

eep models are jointly trained –i.e., predicted labels (green cir- 

les in Fig. 3 ) are obtained by combining the outputs of both mod- 

ls, and the weights of the models are optimized simultaneously 

 Cheng et al., 2016 ). Usually, the linear part of the model takes 

s in input a small set of crossed-features ( Cheng et al., 2016 ),

hich are synthetic features obtained by taking the cartesian prod- 

ct of two or more features ( Google, 2020b ). On the contrary, the 

eep part uses all available features (X D in Fig. 3 ). Hence, the Deep

art is a full-size DNN model, while the Linear part integrates and 

complements the weaknesses of the deep part with a small num- 

er of cross-product” ( Cheng et al., 2016 ). As an example, the fea- 
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Fig. 3. Schematic representation of a Wide&Deep model, which consists of a deep 

part (bottom) and a wide part (top). The deep part is a DNN and takes as an input 

a full set of features (X Di ). The wide part is a Linear model and takes as an input a 

small set of crossed-features (X Li ). 
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ure X L1 in Fig. 3 is obtained by crossing X D1 and X D2 . In general,

he hybrid nature of the Wide&Deep model ensures good memo- 

ization (Linear part) and generalization (Deep part) capabilities. 

.4. Performance metrics 

The performance of a Classification algorithm is assessed during 

he evaluation phase. For instance, the classification may consider 

lasses “Y” and “N”, respectively positive and negative. Whenever 

he model predicts the class of an object, there are four possible 

utcomes: 

• TP = True Positive –i.e., predicted label = Y , true label = Y ; 
• TN = True Negative –i.e., predicted label = N , true label = N ; 
• FP = False Positive –i.e., predicted label = Y , true label = N ; 
• FN = False Negative –i.e., predicted label = N , true label = Y . 

The sum of True Positives and True Negatives represents the 

umber of correct predictions, while the sum of False Positives and 

alse Negatives indicates the number of wrong predictions. 

True Positives, True Negatives, False Positives, and False Nega- 

ives are used to obtain three performance indicators: 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(4) 

 recision = 

T P 

T P + F P 
(5) 

ecall = 

T P 

T P + F N 

(6) 

Accuracy represents the fraction of objects that have been cor- 

ectly classified. Precision indicates the success rate of a positive 

rediction. Recall denotes the fraction of actual positives that have 

een correctly identified. 

Accuracy alone is not informative if the problem involves the 

dentification of rare classes –i.e., when the dataset is class imbal- 

nced ( Google, 2020c ); in these situations, Precision and Recall are 

ore representative of the model performance ( Google, 2020d ). In 
6 
ddition, if the cost for a False Negative is higher than the cost for 

 False Positive, the Recall is the most meaningful metric. 

Rather than considering Precision and Recall individually, one 

ay aggregate them into the so-called F-score ( Chinchor, 1992 ). 

 β = 

(
1 + β2 

)
· P recision · Recall (

β2 · P recision 

)
+ Recall 

(7) 

here: 

• β = non-negative real number. 

If β = 1, the score represents the harmonic mean between Pre- 

ision and Recall ( Han et al., 2012 ). If β > 1, the score is Recall

riented ( Sasaki, 2007 ), meaning that the Recall is considered to 

e β times more important than Precision. 

Finally, it is worth mentioning that the metrics and indicators 

resented depend on the probability decision threshold (section 

.2.1). In fact, the decision threshold might be tuned in order to 

ptimize the model (step 2.5 in Fig. 1 ) ( Google, 2020a ). For exam-

le, if the decision threshold is lowered, the model may produce 

ore positive predictions. As a result, the Recall might increase, 

ut the Precision might decrease ( Scikit-learn.org, 2020 ). In fact, 

ctions aimed at increasing Recall often lower the Precision, and 

ice-versa ( Google, 2020d ). 

A convenient means of displaying the effect of the decision 

hreshold is the Precision-Recall curve –i.e., a plot where each 

oint represents the couple Precision vs. Recall at a specific de- 

ision threshold ( Murphy, 2012 ). A convenient means of summa- 

izing the information in the Precision-Recall curve is the area un- 

er the curve (AUC P-R) ( Murphy, 2012 ), which takes values be- 

ween 0 and 1. Being independent on the decision threshold, the 

UC PR is considered a more comprehensive indicator of the model 

erformance if compared with Accuracy, Precision, and Recall. In 

eneral, a large AUC P-R value indicates good performance ( Scikit- 

earn.org, 2020 ). 

.5. Test case analysis 

An accident database was used to validate the proposed 

ethodology and compare the performance of the models. A brief 

escription of the database and Machine Learning simulations are 

rovided in the following sections. 

. MHIDAS 

Founded in 1986 by the UK Safety and Reliability Directorate 

SRD) and the Health and Safety Executive (HSE), the Major Hazard 

ncident Data Service (MHIDAS) is an accident database that con- 

ains records of more than 8900 incidents involving hazardous ma- 

erials ( AEA Technology, 1999 ). Initially, the database included only 

vents that involved the ignition of flammable substances. Later, 

he scope was widened to include toxic gas dispersion and those 

ncidents that “have the potential to produce an off-site impact”

 AEA Technology, 1999 ). The database had been managed and up- 

ated by AEA Technology until the early 20 0 0s, when it was even- 

ually decommissioned. Incident data are entirely drawn from pub- 

ic domain sources, such as accident reports, newspapers, and jour- 

als ( Harding, 1997 ); this ensures the widest dissemination but, as 

 drawback, it raises issues of missing, incomplete, or biased infor- 

ation and inconsistencies ( Harding, 1997 ). 

.1. Attributes distribution 

Accidents in MHIDAS are described by a list of 22 different 

ttributes. Some attributes have a strong link, such as the type 

f substance released and its quantity. Other attributes may have 
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Table 2 

Accident attributes used in the Machine Learning simulations. ∗ marked attributes are Multiple entry fields (e.g., “Release” AND “Pool Fire” for IT, 

“Flammable” AND “Toxic” for MH). 

Attribute Description 

DA Date Date of the incident. 

LO Location Town, region, and country of the incident 

GC General Cause The general cause - or causes - which triggered the event (e.g., Mechanical failure, Human Error) 

SC Specific Cause The specific cause - or causes - which triggered the event (e.g., Brittle fracture, Overpressure, Fire) 

GOG General Origin Area of the plant where the incident originated from (e.g., Process, Storage, Warehouse) 

SOG Specific Origin Equipment that originated the incident (e.g., Pump, Vessel, Pipeline) 

MN Material Name ∗ Names of dangerous substances involved in the incident 

MH Material Hazard ∗ The hazard class of the substances involved (e.g., Toxic, Explosive, Corrosive, Oxidizing) 

MC Material Code ∗ Four-digit code of the substance involved 

QY Quantity The amount of substances released (tons) 

IS Ignition Source Type of ignition source (e.g., hot surface, flares, boilers) 

IT Incident Type ∗ Incident typology (e.g., Release, BLEVE, Physical Explosion) 

NPE Evacuated Number of people that are evacuated 

PD Population Density Population density in the Area (i.e., “Rural” for low - sparse population, “Urban” for highly populated Area) 

NPI Injured Number of people that are injured in the incident 

NPK Fatalities Number of fatalities in the accident 
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 weaker link, such as the date and the location of the acci- 

ent. However, date and location may be an indirect measure of 

he socioeconomic status of the area. As is known, industrializ- 

ng and impoverished countries are more exposed to industrial 

isk due to intense urbanization, disordered industrialization, and 

ess elaborate safety measures ( Souza et al., 1996 ). For example, 

he Bhopal disaster ( Kalelkar, 1988 ) and the recent Beirut explo- 

ion ( Pasman et al., 2020 ) are infamous events where unsatisfac- 

ory safety measures and uncertain emergency planning had con- 

ributed to the accident. Therefore, the date and location have not 

een removed from the database. 

In this study, six attributes were discarded during the Feature 

election phase. As a result, only the attributes listed in Table 2 

ave been used for the analyses. The reason for this choice is avail- 

bility and completeness; that is, these attributes are reported na- 

ively in the accident database used to perform the analysis, and 

hey provide a synthetic but exhaustive description of the accident, 

rom its causes to consequences. 

The first 14 attributes in Table 2 represent the input of the Ma- 

hine Learning models (i.e., the features). Instead, the last two at- 

ributes are the outputs of the models. 

It is worth examining the frequency distribution of some of 

hese attributes more in detail because the performance of the Ma- 

hine Learning models is deeply affected by the characteristics of 

he dataset. The frequency distribution of attributes General Ori- 

in, Incident Type, General Cause, Specific Cause, Material Name, 

nd the number of people affected (i.e., NPI and NPK) is shown in 

ig. 4 . 

The figure indicates that most of the incidents involved releases 

r explosions and subsequent fires ( Fig. 4 b), which often occurred 

uring the transportation of the substance ( Fig. 4 a). Also, a signifi- 

ant part of the incidents originated in the process and storage ar- 

as of chemical plants ( Fig. 4 a). The most frequent incident causes 

re “Impact”, “Mechanical”, and “Human” failures Fig. 4 e. Also, it 

s worth noting that the missing value frequency (“Na”) is high for 

he attributes General Cause and Specific Cause. This may be due 

o the public domain nature of the database because such techni- 

al and sector-specific information is rarely reported in newspapers 

nd journals. Finally, Fig. 4 f indicates that most of the incidents in 

he database did not cause any injured or killed. Also, the number 

f records in the database decreases as a larger number of peo- 

le involved is considered; that is, the rarity of events increases 

ith the severity of the consequences. Furthermore, incidents that 

esulted in injuries are more frequent than those that caused fatal- 

ties. It is also worth mentioning that the consequence category “> 

0 0 0” is not shown in Fig. 4 f because there are only 5 and 13 ac-

d

7 
idents with more than 10 0 0 killed or injured, respectively; there- 

ore, the box would not have been visible. 

.2. Simulations 

The Machine Learning models have been trained and tested on 

HIDAS as described in section 2.2. Specifically, the database has 

een split into a training dataset containing 7100 events and an 

valuation dataset containing 1872 events. Next, two sets of bi- 

ary classifications have been performed. The first set focuses on 

redicting the number of people that are killed in the accident 

i.e., NPK), while the second focuses on the number of people 

hat are injured (i.e., NPI). Within each set of simulations, distinct 

inary classifications were performed for each consequence cat- 

gory and model using different iteration steps, which represent 

he number of times the training dataset is fed to the model dur- 

ng the training phase ( TensorFlow.org, 2020c ). A large number of 

teration steps simulate a more extensive database, and therefore 

ay improve the learning phase. However, the model may over- 

t the training data if a large number of iteration steps are used 

 TensorFlow.org, 2021 ). In this study, a number of iteration steps 

qual to 20 0, 20 0 0, 20,0 0 0, and 20 0,0 0 0 were used in order to

ssess the effect of different iteration steps on the model perfor- 

ance. 

. Results 

The full results of the study are provided in the supplemen- 

ary material. A selection of the most representative findings is 

isplayed in Fig. 5 and Fig. 6 , which show the AUC P-R, Recall, Ac-

uracy, and Precision for the category NPI and NPK, respectively. 

 decision threshold equal to 0.5 is used to obtain the Accuracy, 

recision, and Recall values. 

The results shown in Fig. 5 and Fig. 6 have been obtained using 

he iteration steps displayed in Table 3 . The simulations have been 

elected based on the AUC PR value – i.e., the number of steps 

hat led to the highest AUC PR has been selected and shown in 

his section. If two simulations had comparable AUC PR values, the 

ne with the highest Recall has been chosen. 

. Discussion 

This paragraph is divided into two sections. In the first sec- 

ion, the feature selection phase will be described more in detail; 

pecifically, the choice of the attributes listed in Table 2 will be 

iscussed, the limitations of the approach will be highlighted, and 
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Fig. 4. Frequency distribution of the attributes GOG (a), IT (b), GC (c), SC (d), MN (e), NPK and NPI (f). “Na” refers to missing values, “Other” refers to attribute codes that 

have not been represented in the figure. 

Table 3 

Number of iteration steps used to obtain the metrics in Fig. 5 (i.e., Number of People that are 

Injured “NPI”) and Fig. 6 (i.e., Number of People that are Killed “NPK”). 

Category Models NO 1 – 10 10 – 100 100 – 10 0 0 > 10 0 0 

NPI ( Fig. 5 ) Wide 200 20,000 2000 2000 200,000 

Deep 2000 2000 20,000 200 200 

Wide&Deep 200 20,000 200 2000 20,000 

NPK ( Fig. 6 ) Wide 20,000 20,000 200 200,000 200,000 

Deep 2000 2000 20,000 200 200 

Wide&Deep 2000 200,000 2000 200 200,000 
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ecommendations will be drawn. In the second part, the discussion 

f the results will be specifically addressed. 

.1. Attributes selection and the need for a standardized taxonomy 

As previously stated, the reasons behind the selection of the 

ttributes described in section 2.1 are convenience and complete- 

ess. Regarding the last motivation, it is worth analyzing the role 

f each attribute in more detail. To this end, a graphical represen- 

ation – such as a bow-tie diagram – can be a helpful support. 

ow-ties are clear and direct means of indicating the causal re- 

ationships between Undesirable Events (i.e., the causes of an in- 
8 
ident), Critical Events (i.e., Top Events), and Major Events (i.e., 

hermal radiation, Overpressure, Toxic effects, Missiles). Taking the 

eneric Bow-Tie structure proposed by the ARAMIS project as a ref- 

rence ( ARAMIS project team, 2004 ), it might be argued that the 

ttributes described in Table 2 can be mapped into the diagram 

o that each intermediate event is described by one or more at- 

ributes. Fig. 7 clarifies this insight. The Bow-Tie in the figure is 

ivided into nine different intermediate events, as suggested by 

he ARAMIS framework. The codes describing the names of these 

vents are shown at the top of Fig. 7 . The attributes used in the

achine Learning simulations ( Table 2 ) may be used to describe 

ach event of the Bow-Tie, as shown at the bottom of Fig. 7 . 
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Fig. 5. Area Under the Curve Precision-Recall (AUC PR) (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the category “Number 

of People that are Injured” (NPI). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 

Fig. 6. Area Under the Curve Precision-Recall (AUC PR) (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the category “Number 

of People that are Killed” (NPK). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 

9 
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Fig. 7. Schematic representation of a Bow-Tie diagram. Names of intermediate events (top side) are defined according to MIMAH methodology ( ARAMIS project team, 2004 ). 

Database attributes listed in Table 2 are associated with each intermediate event (bottom side). The bold dashed line indicates that the Number of People that are Evacuated 

(NPE) may act as a safety barrier between the Major Event (ME) and the accident consequences. 
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The attributes Date (DA) and Location (LO) may provide back- 

round information for the accident causes; therefore, they are 

epresented at the bottom-left side of the diagram. Proceeding to 

he right, the attribute General Cause (GC) may describe the Un- 

esirable Event (UE) that started the incident. The Specific Cause 

SC) may be associated with both Detailed Direct Causes (DDC) 

nd Direct Causes (DC). General and Specific Origin (GOG and SOG) 

ay describe the Necessary and Sufficient Cause (NSC). The Critical 

vent (CE) may be defined by the type of substances involved (i.e., 

aterial Hazard, Material Code, and Material Name) and by the 

uantity of substance released (QY). On the event tree side, the at- 

ributes Quantity (QY), Ignition Source (IS), and Incident Type (IT) 

ay be used to describe the events Secondary and Tertiary Criti- 

al Events (SCE and TCE), Dangerous Phenomena (DP), and Major 

vent (ME). The effect of Major Events on humans are described by 

he attributes Population Density (PO), Number of People that are 

njured (NPI), and Number of People that are Killed (NPK), which 

re on the rightmost side of the diagram. Finally, the Number of 

eople that are Evacuated (NPE) may indicate the effectiveness of 

he Emergency Response Plan. For this reason, NPE is represented 

n Fig. 7 as a safety barrier that mitigates the harmful effects of a 

ajor Event. 

In conclusion, the attributes provide a synthetic but rather ex- 

austive description of the incident, from its causes to conse- 

uences on humans. Therefore, it appears reasonable to use this 

et of attributes for the Machine Learning simulations. However, 

here is not a globally accepted standard methodology for record- 

ng accidents into digital databases. That is, different databases use 

ifferent sets of attributes and taxonomies; this implies that prior 

o applying the method described in this work to other accident 

atabases, one must convert attributes and taxonomies to match 

hose described in Table 2 , which is a difficult and time-consuming 

ask. Instead, one may decide to use a different set of attributes 

nd taxonomy, but the issue will not be solved because the model 

ill still be limited to one of many taxonomies. For these reasons, 

t would be advisable that institutions and academics discuss and 

ropose a standardized system to record accidents, incidents, and 

ear misses into digital databases. Such a harmonized recording 

g

10 
ystem would terribly improve the use of advanced analysis meth- 

ds whose potential is not fully exploited due to the differences 

etween existing databases. 

In this work, MHIDAS has been used despite being decommis- 

ioned and no longer updated. The authors believe that this choice 

oes not affect the validity of the analysis since the database has 

 well-organized and rational structure and contains records of a 

arge number of incidents and accidents that occurred worldwide 

n more than a decade. Indeed, there are more recent and updated 

atabases that it may be beneficial to analyze, such as eMARS 

 European Commission, 2022 ), ARIA ( Bureau for Analysis of In- 

ustrial Risks and Pollutions, 2022 ), ZEMA ( Bundesministerium für 

mwelt Naturschutz Bau und Reaktorsicherheit, 2022 ), and FACST 

 Unified Industrial and Harbour Fire Department, 2022 ). However, 

heir use would not guarantee more reliable and accurate results. 

he exhaustive and informative set of attributes used in MHIDAS 

implifies the analyses and avoids time-consuming and expensive 

ata pre-processing. Instead, different datasets may require extra 

fforts to extract the most relevant features from limited native ac- 

ident representation. 

. Discussion of results 

The results reported in Fig. 5 and Fig. 6 suggest that each per- 

ormance metric follows a particular trend. Specifically, the AUC PR 

ppears to decrease as the task involves the identification of ac- 

idents with an increasing number of people involved, as shown 

n Fig. 5 a and Fig. 6 a. The trend might be explained by consider-

ng the rarity of events with a large number of people involved. 

n fact, the frequency distribution of the attributes NPI and NPK 

section 3.1.1) highlights that the number of events in the database 

ecreases as the number of people that are injured or killed in- 

reases. As a result, the performance of the models may have de- 

raded because there are fewer chances to learn from events that 

ave never or rarely occurred. 

A similar trend is observed for the metrics Precision and Re- 

all. The only exception is the label “100 – 10 0 0” of the cate- 

ory NPK ( Fig. 6 b), for which the Deep and Wide&Deep models 



N. Tamascelli, R. Solini, N. Paltrinieri et al. Computers and Chemical Engineering 162 (2022) 107786 

Table 4 

Example of two similar accidents that led to different classification results. Only the most relevant features are 

displayed. 

ID MN1 IT1 IT2 GOG1 SOG2 GC1 GC2 IS1 Result 

1 Crude Oil Contrel Fire Transport Pipeline Mechanical Human Electric TP 

2 Crude Oil Contrel Na Transport Pipeline Mechanical Na Nonignite FN 
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roduced a Recall higher than the label “10 – 100”. The trend 

ight be explained with the same considerations made for the 

UC PR; that is, the performance of the models degrades as rarer 

vents are considered because there are fewer chances to learn 

rom the data. The relatively high Recall value shown by the Deep 

nd Wide&Deep for the label “100 – 10 0 0” in Fig. 6 b may be ex-

lained by considering that the evaluation database contains only 

 events labeled as “100 – 10 0 0”; therefore, detecting a few of 

hem would make a significant difference in terms of Recall. In 

act, the Deep and Wide&Deep models could identify 2 of the 7 

arget events, which explains the Recall value of 0.28. The rea- 

on for this unexpected behavior may lie in the advanced abstrac- 

ion capabilities of these models, which might be able to capture 

he correct feature combinations leading to these rare events. The 

haracteristics of the datasets may also have played a role. Specifi- 

ally, considering the label “100 – 10 0 0”, the ratio of events in the 

raining dataset/events in the evaluation dataset is 2.86; instead, 

he ratio is 1.9 for the label “10 – 100”. This means that the mod- 

ls have more chances to learn and fewer chances to be tested on 

he label “100 – 10 0 0” than on the label “10 – 100”. Further tests 

ust be performed to verify this insight and assess whether a dif- 

erent label distribution in the training and evaluation databases 

ill change the performance of the models. 

The results shown in Fig. 5 c and Fig. 6 c suggest that the model

ccuracy increases as a larger number of people involved is con- 

idered. However, it is worth recalling that high accuracy does not 

mply good performance when the task involves the identification 

f rare events. For instance, if there are only a few examples of 

 specific label in the training dataset, the model could achieve a 

igh Accuracy by predicting that no event in the dataset has that 

pecific label. That is, ignoring extremely rare labels would pro- 

uce better results in terms of accuracy. Therefore, one possible ex- 

lanation for Accuracy behavior is that the model “confidence” in 

erforming positive predictions decreases when it deals with rare 

vents; as a result, the model may conclude that ignoring the label 

nd not performing any positive prediction may be more efficient, 

s the accuracy would not be affected. 

In order to investigate the above-mentioned hypotheses and 

rovide more insights into how the models performed their pre- 

ictions, examples of correct and incorrect classification have been 

tudied more in detail. The analysis has focused on the results ob- 

ained by the Wide&Deep model on the category “NPK” and label 

1 – 10” at 20 0,0 0 0 iteration steps. The results have been screened 

n order to identify groups of similar events (i.e., with similar fea- 

ures) that contain examples of True Positives (i.e., critical events 

orrectly identified) and False Negatives (i.e., undetected critical 

vents). In order to reduce the number of events to screen, only 

hose involving crude oil have been analyzed. This substance has 

een selected because it is well represented in both the training 

nd evaluation dataset. In fact, crude oil is the most frequent sub- 

tance in the training dataset (639 events) and the third most fre- 

uent in the evaluation dataset (99 events). The analysis of the 

valuation dataset reveals that two events that caused from 1 to 10 

atalities share most of their features. However, the model correctly 

lassified only one of them, while the other generated a False Neg- 

tive. These events have been examined more in detail to find a 

ossible reason for this error. Table 4 displays the most relevant 

eatures of these accidents. 
11 
The events involved a continuous release (i.e., “Contrel” in IT1, 

able 4 ) caused by a mechanical failure of a pipeline. The most 

otable difference is that the first event involved a fire while the 

econd release did not ignite (i.e., “Nonignite” in IS1, Table 4 ). Con- 

erning the second event, one may argue that a release of Crude 

il from a pipeline without ignition is unlikely to cause killed. In 

act, six other events in the evaluation dataset involved the re- 

ease of crude oil from pipelines without ignition, and none caused 

ny fatalities. All of these events have been correctly labeled by 

he model (i.e., True Negatives). A search for similar events in the 

raining database reveals that 112 events involved the continuous 

elease of crude oil without ignition, and all but two did not cause 

ny fatalities. The two events that resulted in fatalities were caused 

y sabotage, which may justify a high death toll. Also, the analysis 

f the results produced by the Wide model for the same category 

nd label shows that the algorithm performed the same kind of 

redictions for these events. This evidence suggests that the mis- 

lassification of event 2 in Table 4 may be explained by at least 

wo factors: (i) the event is extremely rare since there is no other 

ecord of a similar event in the dataset, and (ii) the event descrip- 

ion in MHIDAS may not be accurate enough to clarify the circum- 

tances surrounding the fatalities. This indicates that the combina- 

ion of features that rarely or never occurred in the training dataset 

ay seriously affect the model performance. The development of 

odels with better generalization capabilities may partially over- 

ome this limitation. In addition, a better-balanced and more com- 

rehensive database may considerably improve the prediction ca- 

abilities of data-driven models. The model inability to classify the 

econd event in Table 4 indicates the possibility to further improve 

he taxonomy used in MHIDAS. In fact, despite being rational and 

nformative, it cannot fully explain those incidents where fatalities 

re not caused by physical effects, such as exposure to thermal ra- 

iation, toxic levels in ambient air, and overpressure. 

In order to further investigate the role of class distribution 

mong training and test datasets, additional analysis has been per- 

ormed considering ammonia as a reference substance. In fact, am- 

onia is the most frequent substance in the evaluation database 

ith 153 events. However, only 137 events involving ammonia are 

ound in the training dataset, and only 14 caused 1 to 10 fatali- 

ies. Instead, 29 events in the evaluation dataset caused the same 

mount of deaths. The discussions made so far may suggest that 

he imbalance between train and test datasets could have signifi- 

antly degraded the performance of the algorithm. In fact, the re- 

ults confirm this insight; only 4 of the 29 critical events have 

een correctly classified by the Wide and Wide&Deep models. This 

esult proves that label and feature balance among training and 

valuation datasets is crucial for ensuring good prediction perfor- 

ance. 

The number of missing features may also play a significant role 

n determining the performance of the models. Intuitively, events 

ith more missing features may be more difficult to classify due 

o the uncertainty surrounding the accident characteristics. As a 

esult, the models may lack essential information to learn from or 

redict the outcomes of these incomplete observations. To confirm 

his insight, the frequency distribution of missing values among 

he correct and incorrect predictions made by the Wide&Deep 

odel on the same category and label discussed above has been 

ssessed and represented in Fig. 8 . 
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Fig. 8. Missing feature distribution among correct and wrong predictions made by 

the Wide&Deep model (category = “NPK”, label = 1 – 10). 
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Table 5 

Scoring system multipliers. 

Label Multiplier 

NO 1 

1–10 2 

10–100 3 

100–1000 4 

> 1000 5 
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Table 6 

Scores assigned to the models. 

Model Score NPI Score NPK Overall score 

Wide 134 108 242 

Deep 80 99 179 

Wide&Deep 146 153 299 
The x-axis in Fig. 8 represents the number of missing features, 

nd the height of the bars shows the percentage of correctly (blue) 

r wrongly predicted events (red). The chart suggests that a cor- 

elation exists between missing values and classification perfor- 

ance. Specifically, events with a low number of missing features 

i.e., 0, 1, and 3) are more likely to be correctly predicted. In con- 

rast, events with a large number of missing features (i.e., ≥ 4) 

re more frequently misclassified. However, it is worth mention- 

ng that the events with 2 missing features are more likely mis- 

lassified despite the low number of missing values. This abnormal 

ehavior may be due to random effects in data distribution since 

ost of the events in the training dataset have 2 missing features. 

otwithstanding this anomaly, data appear to confirm that a high 

umber of missing features has a negative impact on the model 

rediction capabilities. 

As previously mentioned, one of the objectives of this study is 

o compare the performance of different models. The Wide model 

ssumes a linear association between inputs and labels, while the 

eep and Wide&Deep models can capture nonlinear relationships 

etween features. The Bow-Tie representation shown in Fig. 7 sug- 

ests that the number of interactions between attributes increases 

s we consider an attribute that is far from the event to pre- 

ict – the final outcome in this case. For this reason, the Deep 

nd Wide&Deep may potentially provide better performance due 

o their ability to capture the effects of combinations of features. 

owever, the results in Fig. 5 , Fig. 6 , and supplementary material 

ndicate that there is not a single model that outperforms the oth- 

rs. In fact, the Deep model produces the best AUC PR and Re- 

all for the label “NO” of the category “NPI” ( Fig. 5 a); however, 

he other models show larger Accuracy and Precision values for 

he same label of the category “NPK” ( Fig. 6 a). In addition, it may

appen that a model produces the highest metric for the category 

PI and the lowest metric for the category NPK; as an example, 

he deep model produces the largest Recall for the label “1 – 10”

f the category NPI ( Fig. 5 b) and the smallest value for the same

abel of the category NPK ( Fig. 6 b). To further complicate the com-

arison, the number of iteration steps must be taken into account. 

herefore, a scoring system was developed to rank and compare 

he models. The aim is to assign a score to each model accord- 

ng to its performance; two scores are obtained for each model: 

ne for the category NPI and one for the category NPK. In order 
12 
o simplify the method, the scoring system takes into account only 

he AUC PR, which is the most significant metric in this context. 

he process involves 8 steps: 

• A category is selected (e.g., NPI). 
• A number of iteration steps is selected (e.g., 200). 
• The AUC PR values of the simulation performed for the pair 

category-number of iteration steps are selected and used in the 

following steps. 
• For each label, the models are ranked based on the AUC PR val- 

ues. Baseline scores are assigned to each model. 
• 3 if the model produced the largest AUC PR, 
• 2 if the model ranked second, 
• 1 if the model produced the smallest AUC PR. 
• Multipliers are assigned to each baseline score based on the 

severity category of the label ( Table 5 ) - a model is “rewarded”

when it outperforms the others on the identification of severe 

accidents. 
• For each model, the scores obtained in step 5 are summed to 

obtain a partial score that indicates which model performs bet- 

ter on the pair category – number of iteration steps. 
• Steps from 2 to 6 are repeated for each number of iteration 

steps. Partial scores of each model are summed to obtain a cat- 

egory score that indicates which model performs better on the 

category chosen in step 1. 
• Steps from 1 to 7 are repeated for the other category. 

The application of the procedure leads to the scores displayed 

n Table 6 . The scoring system suggests that the best model in the 

ategory NPI and NPK is the Wide&Deep, followed by the Wide 

nd Deep models. Obviously, the same ranking is obtained consid- 

ring the overall score, which is the sum of the scores obtained in 

he categories NPI and NPK. 

It is not surprising that the Wide&Deep model performed bet- 

er than the others. In fact, the hybrid model combines the ad- 

antages of both the Linear and Deep models, as described in sec- 

ion 2.2.2.3. Nevertheless, a relatively unexpected result is that the 

inear model performs better than the more sophisticated Deep 

odel. This may suggest that the problem considered in this study 

equires stronger memorization capabilities rather than general- 

zation. As already discussed, Deep models are prone to overfit- 

ing and overgeneralization. In addition, they need high-quality in- 

ut data to perform as intended. The quality of MHIDAS database 

s sufficient, but certainly not excellent considering its public do- 

ain nature. Also, such advanced models may need more opti- 

ization and hyperparameters fine-tuning to perform adequately. 

n the contrary, the linear part of the Wide&Deep model may 

dd stability and robustness to the algorithms, partially overcom- 

ng the issues related to the deep part. Apparently, the results indi- 
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Fig. 9. Precision-Recall curve of the Deep model for the label 1 – 10 (NPK) at 20 0 0 

integration steps. THOLD represents the decision threshold. 
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Fig. 10. F 1 , F 1.5 , and F 2 curves obtained by the Deep model for the label 1 – 10 

(NPK) at 20 0 0 integration steps. F 1.5 , and F 2 show a global maximum for Thresh- 

old = 0.011. F 1 has a maximum at Threshold = 0.031. 

i  

a

F

t

o

c

e

c  

c

i

i  

t

n

m

m

A

d

R

t

 

p

t

d

s

t

m

s

t

i

i

p

p

a

d

8

u

v

ate that the approach benefits from a model capable of assessing 

he weights of each feature (or groups of features) independently 

ather than generalizing over all the features. A further study with 

ore focus on the optimization of the model internal parame- 

ers (e.g., different number of hidden layers and units, activation 

unction, learning decay) is suggested to test whether a different 

onfiguration of the Deep and Wide&Deep models would improve 

heir performance. 

In addition to these general considerations, it is worth dis- 

ussing the role of the decision threshold in more detail. The Re- 

all, Precision, and Accuracy values shown in Fig. 5 and Fig. 6 are 

btained using a threshold equal to 0.5. One must bear in mind 

hat low Recall and Precision values do not necessarily indicate 

oor performance; if the AUC PR is large enough, fine-tuning the 

ecision threshold may improve the performance significantly. For 

xample, consider the performance of the Deep model for the la- 

el “1 – 10” of the category NPK at 20 0 0 integration steps ( Fig. 6 ).

he model produces a Recall close to 0 ( Fig. 6 b). But, the AUC PR

alue is in line with the other models ( Fig. 6 a). This suggests that

 threshold of 0.5 may not be the best choice. In order to visu- 

lize the effect of this parameter on the performance metrics, the 

recision-Recall curve is shown in Fig. 9 . 

Each point of the blue curve in Fig. 9 represents the Precision 

nd Recall values at a specific threshold (THOLD). The red mark 

ndicates Precision and Recall obtained using a threshold equal to 

.5 (i.e., the values shown in Fig. 6 for the Deep model and la-

el “1 – 10”). The orange mark highlights that if the threshold is 

owered to 0.165, the Deep model produces a Recall equal to 0.33 

nd a Precision of 0.41, which are in line with those obtained by 

he Wide and Wide&Deep models for the same label and category. 

his confirms that the Recall and Precision obtained using 0.5 as a 

hreshold may not be representative of the model performance. In 

ddition, it might be argued that misclassifying a “Deadly” accident 

s “Not Deadly” is more critical than misclassifying a “Not Deadly”

vent as “Deadly”; that is, False Negatives must be avoided, while 

alse Positives may be tolerated. In this context, a good model 

ust produce a high Recall, while a low precision might be con- 

idered acceptable and, to a certain extent, conservative. Therefore, 

he decision threshold may be further tuned in order to maxi- 

ize a Recall oriented F-score (e.g., F 1.5 or F 2 ), as explained in sec-

ion 2.2.3. The effect of the decision threshold on the F-measure 
13 
s presented in Fig. 10 , which describes three F-scores: F 1 , F 1.5 ,

nd F 2 . 

From the data in Fig. 10 , it is apparent that the recall-oriented 

 1.5 and F 2 scores show a maximum for a decision threshold equal 

o 0.011. Instead, the F 1 score reaches its maximum at a threshold 

f 0.031. The green mark in Fig. 9 indicates that decreasing the de- 

ision threshold to 0.011 allows the Deep model to achieve a Recall 

qual to 0.91 and a Precision of 0.29, which means that the model 

an identify 9 out of 10 events that caused 1 – 10 killed with a pre-

ision of 29%. The performance is significantly improved consider- 

ng that the same model can identify only 3 out of 100 events us- 

ng 0.5 as a decision threshold (red mark in Fig. 9 ). As a drawback,

he Precision has dropped from 0.41 to 0.29. However, Precision is 

ot as crucial as Recall. In this study, a key requirement is that the 

odel produces the fewest possible False Negatives (i.e., the Recall 

ust be small) in order to prevent overlooking severe accidents. 

 small number of False Positives (i.e., a large Precision), although 

esirable, is not critical. Therefore, the significant improvement in 

ecall obtained through threshold tuning appear to compensate for 

he relatively small decrease in Precision. 

In general, the results shown in Fig. 5 and Fig. 6 and the im-

rovement obtained by an accurate threshold tuning suggest that 

he approach described in this study may be used to predict and 

iscriminate the outcomes of accidents involving dangerous sub- 

tances in terms of people injured and killed. The high level of de- 

ail, the ease of use, and the classification speed are some of the 

ost significant benefits of this method. Furthermore, no earlier 

tudy prosed a Machine Learning approach for severity prediction 

hat reached such a high level of detail. In addition to discriminat- 

ng between injuries and fatalities, the algorithms proposed in this 

nvestigation provide additional information about the number of 

eople involved. The detail level offered by these algorithms may 

ermit the definition of more accurate preventive and mitigative 

ctions and provides more practical and concrete support to safe 

esign and operations. 

. Conclusions 

The main goal of the current study was to demonstrate the 

se of Machine Learning techniques to (i) analyze and extract rele- 

ant knowledge from existing chemical accident databases and (ii) 



N. Tamascelli, R. Solini, N. Paltrinieri et al. Computers and Chemical Engineering 162 (2022) 107786 

u

c

l

i

h

e

W

e

F

u

t

m

o

c

e

n

t

a

t

d

b

r

i

i

a

s

f

a

c

c

t

a

v

i

t

a

d

t

t

e

m

p

s

t

a

m

r

t

c

u

l

p

m

s

D

R

A

A

J

A

A

A

B  

B

B

B

B

C  

C

C  

 

C

C

C

C  

D

E

E  

G

G

G

G

G

G

H  

H

H
H

se the acquired knowledge to predict the outcomes of new ac- 

idental events. A generic approach has been proposed, which re- 

ies on classification algorithms to predict the outcomes of chem- 

cal accidents in terms of people killed and injured. The method 

as been tested on a specific database, namely MHIDAS. To this 

nd, three classification models have been used and compared, i.e., 

ide, Deep, and Wide&Deep; the results indicate that the latter 

nsures the best performance. 

The following conclusions can be drawn from the present study. 

irstly, the results suggest that advanced analysis methods may be 

sed to exploit existing accident data and perform predictions on 

he severity of new accidents. Secondly, the performance of the 

odel largely depends on the quality of input data and the nature 

f the model itself. That is, if accident data are incomplete or un- 

ertain, the choice of a model with advanced abstraction and gen- 

ralization capabilities over a memorization-oriented model may 

ot be advisable due to the risk of overgeneralization and overfit- 

ing. Thirdly, the performance of the model also depends on data 

vailability. That is, the performance of the models degrades if ex- 

remely rare events are considered. Finally, the fine-tuning of the 

ecision threshold to maximize a Recall-oriented F-measure may 

e an effective means of improving the performance of the algo- 

ithms, partially overcoming the issues of data scarcity and allow- 

ng the identification of more critical accidents. 

However, although the results of the study appear promis- 

ng, it is worth acknowledging some limitations. For instance, the 

pproach has been tested on a specific database; further works 

hould investigate whether the method might be applicable to dif- 

erent accident databases or industrial sectors. Also, it would be 

dvisable to assess whether the knowledge extracted from a spe- 

ific database might be used directly on different databases. A 

ompanion paper is proposed by Tamascelli et al. (2021) to inves- 

igate this topic. Another potential limitation is the choice of the 

ttributes and taxonomy used to describe the accidents; the moti- 

ations behind this choice have been discussed in detail, but there 

s no guarantee that a different set of attributes would not improve 

he performance. In addition, the study reveals that the absence of 

n unambiguous and standardized system for recording accident 

ata is a substantial obstacle to the spread of data-driven predic- 

ive methods. Therefore, the authors strongly encourage coopera- 

ion between institutions and academics to address this issue and 

xploit the potential of advanced analysis methods. 

Notwithstanding the limitations, this is the first study that uses 

ultiple discrete outcome variables and different ML models to 

redict the severity category of accidents involving dangerous sub- 

tances. Therefore, this investigation makes a major contribution 

o research on Machine Learning methods for safety management 

nd assessment in the chemical industry. In general, the approach 

ay support the development of advanced predictive tools and 

epresent an essential step toward Safety 4.0. More specifically, the 

echniques herein discussed may support hazard identification and 

onsequence evaluation by providing a quick, practical, and easily 

nderstandable indication of the potential consequences of a re- 

ease. Also, the approach may be used to identify the most im- 

ortant factors contributing to the accident severity. Finally, the 

ethod allows a reactive response to accidents by providing es- 

ential information to the emergency response team. 
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