
Abstract
The fruit industry needs rapid and non-destructive techniques

to evaluate the quality of the products in the field and during the
post-harvest phase. The soluble solids content (SSC), in terms of
°Brix, and the flesh firmness (FF) are typical parameters used to
measure fruit quality and maturity state. Hyperspectral imaging
(HSI) is a powerful technique that combines image analysis and
infrared spectroscopy. This study aimed to evaluate the potential
of the application of the Vis/NIR push-broom hyperspectral imag-
ing (400 to 1000 nm) to predict the firmness and the °Brix in apri-
cots (180 samples) during storage (11 days). Partial least squares
(PLS) and artificial neural networks (ANN) were used to develop
predictive models. For the PLS, R2 values (test set) up to 0.85
(RMSEP=1.64 N) and 0.72 (RMSEP=0.51 °Brix) were obtained
for the FF and SSC, respectively. Concerning the ANN, the best
results in the test set were achieved for the FF (R2=0.85,
RMSEP=1.50 N). The study showed the potential of the HSI tech-
nique as a non-destructive tool for measuring apricot quality even
along the whole supply chain.

Introduction
The optimal harvest time or the right degree of ripeness of

apricots (Prunus armeniaca L.) intended for the fresh market are
typically determined by measuring the fruit’s chemical and physi-
cal quality parameters, i.e., the ripening indexes. The measure-
ment of the quality parameters of the fruit is traditionally carried
out using destructive analytical techniques, which also involve
long operating times (Witherspoon and Jackson, 1995). In the last
decades, numerous researches have been addressed the fast and
non-destructive estimation of fruit ripening indexes through spec-
troscopic methods, including near- and mid-infrared spectroscopy
(NIR/MIR); in particular, for apricots have been analysed: soluble
solids content (SSC), titratable acidity (TA), flesh firmness (FF),
total carotenoids content (TCC), total phenolic content (TPC) and
flavonols content (FLC) (Carlini et al., 2000; Manley et al., 2007;
Ruiz et al., 2008; Bureau et al., 2009; Camps and Christen, 2009a;
Camps and Christen, 2009b; Berardinelli et al., 2010; Bureau et
al., 2012; Christen et al., 2012; De Oliveira et al., 2014; Buyukcan
and Kavdir, 2017; Amoriello et al., 2018; Bureau et al., 2018;
Ciacciulli et al., 2018; Amoriello et al., 2019; Guo et al., 2019).
Another spectroscopic technique that has been increasingly
applied in the last decade to determine fruit and vegetable quality
parameters is hyperspectral imaging (HSI). HSI combines image
analysis and spectroscopy, in particular Vis/NIR spectroscopy.
HSI allows to obtain as many absorbance/reflectance/transmit-
tance spectra as there are single acquired pixels (in this technique
called voxels) that form the hyperspectral image; the output is a
hypercube, composed of data with two spatial and a spectral
dimension. This method of analysis is fast and non-destructive,
without the need for contact with the sample to be analysed. HSI
is applied for the determination of quality parameters of fruit and
vegetables both directly in the field and in the laboratory. The pro-
cessing of the acquired hyperspectral images generally requires
several steps: the use of hyperspectral image segmentation tech-
niques, in order to reduce the size of the acquired data; the appli-
cation of a region of interest (ROI) selection method, from which
the hyperspectral data required can be derived; finally, the appli-
cation of spectra pre-treatment techniques for the implementation
of multivariate data analysis. Partial least square regression (PLS),
supporting vector machines (SVM) and artificial neural networks
(ANN), are popular multivariate regression techniques used for
hyperspectral imaging.

There are several studies on the determination of fruit quality
parameters through HSI (Chandrasekaran et al., 2019), but there is
only one study concerning apricots (Xue et al., 2015). The authors
evaluated the ripeness of the Shajin apricot, in terms of 4 ripeness
classes (unripe, mid-ripe, ripe, and over-ripe according to the days
after harvesting) and SSC, by using the HSI in the band range of
400-1000 nm. The extreme learning machine (ELM) was used as
a classification technique. The results showed a correct discrimi-
nation rate of 93.33%, but regression models able to estimate the
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SSC have not been developed.
In this study, the potential of the HSI technique combined with

multivariate data analyses (PLS and ANN) to non-destructively
predict quality parameters (SSC and FF) of apricots in post-harvest
conditions was investigated. This would allow  assessing the
degree of ripeness of the fruit suitable for the fresh market.

Materials and methods

Samples
180 samples of apricot c.v. Farbaly harvested in July 2019 in

the Cesena area (Italy) and stored at 4°C were used for the
research. The analyses were carried out after 1 (I), 2 (II), 3 (III), 4
(IV), 5 (V), 8 (VI), 9 (VII), 10 (VIII), and 11 (IX) days of storage
at 20 °C, for a total of nine storage times. Twenty apricots for stor-
age time were evaluated. These storage conditions have been cho-
sen to reproduce those in the fresh market.

Hyperspectral measurements
The hyperspectral (HS) images of the apricots were obtained

through the use of a push-broom linear array hyperspectral camera
(HSC) working in the spectral range from 400 to 1000 nm (Nano-
Hyperspec VNIR, Headwall Photonics, Inc., Fitchburg, MA, USA)
with a 17 mm EFL (effective focal length) lens. The HSC scans
one line of voxels at a time, with a spatial resolution of 640 points,
each characterised by 272 spectral bands, with a nominal spectral
resolution of 2.2 nm. The HSC has been set with an exposure and
frame period of 25 ms: the frame rate is a variable depending on
the set exposure time; in this case, it was 34.22 frames per second
(FPS).

The set-up used during the experimental test is shown in
Figure 1. Remarkably, the HSC has been mounted on a metallic
frame with the optical axis perpendicular to the underlying con-
veyor belt, on which the sample runs, at the height of 54 cm. The
conveyor belt speed has been set to 8 mm s–1. On the same frame,
two halogen spotlights with 120 W lamps have been mounted,
inclined by 15° as compared to  the conveyor belt plane and at the
height of 32 cm. The analysis was carried out by isolating the appa-
ratus from the external light using a correctly assembled box. The
hyperspectral image was obtained by progressive scanning several
lines, keeping the HSC fixed, and running the sample on a proto-
type conveyor belt, which simulates an industrial fruit sorting line.

The reflectance spectrum of white reference (RW) was obtained
respectively utilising a white cardboard sheet covering the entire
angle of view of the HSC; the reflectance spectrum of dark refer-
ence (RD) was obtained by placing the cover on the lens. The scan
of the sample obtained raw diffuse reflectance spectrum (RR). The
calibrated diffuse reflectance spectrum (RC) was calculated by the
following equation (Guo et al., 2019): 

                                                                      
(1)

Each whole apricot was longitudinally scanned twice, one per
side. The sample temperature was 23±1°C.

Destructive measurements of quality parameters
The quality parameters (FF and SSC) were measured immedi-

ately after acquiring the HS images. The apricots were prepared for

FF analysis by cutting them in half with a knife along the longitu-
dinal plane, depriving them of the kernel, and finally removing the
concavity resulting from the removal of the kernel in order to
obtain a flat support surface. FF (N) was determined on each half
portion of the fruit on the equatorial area by a compression test per-
formed with a texture analyser (TA-HDi, Stable Micro System
Ltd., Godalming, UK) during a penetration of 9 mm obtained by a
6 mm diameter flat-headed cylindrical steel probe mounted on a 50
N load cell. The test speed was 0.5 mm s–1. The SSC (°Brix) was
measured through a digital refractometer (PR-101 Digital
Refractometer, ATAGO CO., LTD, Tokyo, Japan) on juice
obtained from the pulp in the equatorial area of the fruit side pre-
viously analysed with the texture analyser (Witherspoon and
Jackson, 1995). An average value of the ripening index was subse-
quently obtained by averaging the FF and °Brix grade values of the
two sides of the fruit. Significant differences between the means of
the quality parameters at different storage times were evaluated
through analysis of variance (ANOVA with Tukey-HSD post-hoc
test, p-level<0.05). In the case of non-homogeneity of variance,
evaluated by the Levene test, the non-parametric Kruskal-Wallis
test (p-level<0.05) with multiple comparison z’ post-hoc test
(Dunn’s test) was applied.

Multivariate data analysis
For each sample side, a mean spectrum was calculated by aver-

aging the spectra of the region of interest (ROI), a selected equato-
rial area measuring 30×30 voxels (900 spectra). This operation was
done using HyperCube v. 11.52 software (U.S. Army Engineer
Research and Development Centre (ERDC), USA). The mean
spectra of the two sides were averaged and used for the chemomet-
ric elaborations. Principal component analysis (PCA) was used as
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Figure 1. Components of the hyperspectral imaging system devel-
oped for the experiment.
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an explorative technique to evaluate the spectra variations and
identify sample outliers. Two different statistical techniques were
used to predict SSC and FF: the first (PLS) based on a linear
approach and the second (ANN) on a non-linear approach. The
dataset was split into two sub-sets, one to train and cross-validate
the models (80% of the entire dataset) and the other (20%) to exter-
nal validate it (test set) by using the Kennard-Stone method
(selects samples that best span the same range as the original data,
but with an even distribution of samples across the same range).
The overfitting of the models was avoided by monitoring the root
mean square error in cross-validation (RMSECV) as a function of
the latent variables (PLS) or iterations number (ANN). Variable
importance in the projection (VIP) method was adopted to identify
and select relevant variables. VIP scores estimate the relevance of
each predictor in the projection used in a PLS model: since the
mean of squared VIP scores is equal to 1, and the ‘greater than one’
rule is frequently used as a variable selection criterion (Chong and
Jun, 2005). Finally, the results were expressed in terms of R2, root
mean square error (RMSE), and residual prediction deviation
(RPD), defined as the standard deviation of observed values divid-
ed by the RMSE: a good model should have a high R2, a low
RMSE, and a high RPD.

PLS regression models were developed by using PLS Toolbox
for Matlab2018a®. Spectral bands between 400 and 426 nm (13
spectral bands) and between 980 and 1000 nm (11 spectral bands)
were excluded due to the low signal-to-noise ratio generated by the
hyperspectral sensor as also observed by Wendel et al. (2018). The
spectra were pre-treated with standard normal variate (SNV) or
Savitzky-Golay first derivative (D1) transformation (10 points)
and finally mean centred (MC) to improve the prediction perfor-
mance.

The ANN models were performed using the Neural Net Fitting
tool for Matlab2018a®. Specifically, two multi-layer perceptron
(MLP) neural networks were built to predict SSC and FF. A linear
activation function was used for input and output layers, while for
the hidden layer, a logistic activation function was applied. Given
that the ANN ability should capture an implicit pre-processing of
the spectra (Helin et al., 2021), the raw spectra were only subjected
to denoising (Savitzky-Golay method with 15 smoothing points).
Furthermore, the software independently applies min-max normal-
isation to speed up learning and lead to faster convergence.

Looking for the best classification ability, different node num-
bers in the hidden layer and combinations were tested. The ANNs
were trained by using the Levenberg-Marquardt backpropagation
method.

Results and discussion
The mean and standard deviation values of SSC and FF are

shown in Table 1. The obtained values are in agreement with those
reported by Ciacciulli et al. (2018), Berardinelli et al. (2010), and
Manley et al. (2007) for apricots analysed during different days of
storage. Significant differences emerged for both FF and SSC
between measurements at different storage times.

The range of variation of FF is relatively high, with a decrease
from the day I to the day IX of 79%. However, in the same period,
SSC increased by 9%.

Raw spectra and pre-treated spectra by the first derivative of
all the samples by day of analysis are shown in Figure 2. The
Vis/NIR region from 400 to 1000 nm is characterised by vibration
overtones and combination bands of O–H, C–H, and N–H bonds

related to the principal structural organic molecules (Manley et al.,
2007). In the visible spectrum (400-700 nm) are present the
absorption bands of substances used as ripening indexes of fruit
(Manley et al., 2007). For example, the absorption band of antho-
cyanins is around 500 nm (ElMasry et al., 2007), the range of
absorption bands related to carotenoids is between 570 and 590 nm
(Munera et al., 2017), and between 680 and 710 nm for chloro-
phyll-α (McGlone and Kawano, 1998; ElMasry et al., 2007; Pu et
al., 2016; Munera et al., 2017; Amoriello et al., 2018). 

                             Article

Table 1. Means and standard deviations (in brackets) of maturity
indices as a function of storage time (n=20 for each storage time).

Storage time              SSC (°Brix)                           FF (N)

I                                                 15.0a (1.0)                                     14.3a (2.8)
II                                              15.7a,b (0.9)                                   13.0a (3.4)
III                                             16.5b,c (1.4)                                  10.2a,b (1.7)
IV                                             16.4b,c (0.7)                                  8.3a,b,c (1.4)
V                                               16.6b,c (0.8)                                  6.6b,c,d (0.8)
VI                                             16.6b,c (0.6)                                  4.0c,d,e (0.4)
VII                                                                17.0c (0.8)                                    3.5d,e (0.6)
VIII                                          16.5b,c (0.7)                                     3.4e (0.6)
IX                                             16.4b,c (0.9)                                     3.0e (0.6)
Differences between means with the same letter are not significant at P<0.05. SSC, soluble solids con-
tent; FF, flesh firmness.

Figure 2. Raw spectra (A) and first derivative (B) of all samples on
different days (from I to IX) of analysis.

                                                             [Journal of Agricultural Engineering 2022; LIII:1311]                                          [page 145]

Non
-co

mmerc
ial

 us
e o

nly



Absorption bands related to water with an overtone of O–H
bonds were observed at 760 nm (Nicolaï et al., 2007) and 970 nm
(Nicolaï et al., 2007; Bureau et al., 2009). Following the latter
statement, a strong absorption band related to water was observed
at around 960 nm (McGlone and Kawano, 1998; Pu et al., 2016;
Guo et al., 2019) and can be expected to prevail since the water
content of the fresh fruit is 80-90% (McGlone and Kawano, 1998).
In general, the water absorption peaks in the spectral region
between 700 and 1000 nm are less marked and wide. Therefore,
the spectral information from substances present in the fruit at low
concentrations will tend to be less covered by the presence of water
(Manley et al., 2007). Absorbance peaks were observed between
950 and 1000 nm for carbohydrates and water, corresponding to
the second overtone of O–H and N–H, a combination band of O–
H bonds, and the third overtone of C–H (Camps and Christen,
2009a). Absorption regions at 840 nm have been indicated as prob-
able sugar absorption bands (Pu et al., 2016). In summary, regions
within the 800-1000 nm range have been related to SSC variations,
while absorption bands referred to water have been located at 960-
970 nm (Camps and Christen, 2009b).

The variance between the spectra acquired at different storage
times was evaluated through PCA. Two different PCAs were

developed, the first one by using the spectra pre-treated by
SNV+MC and the second one by applying the D1+MC. The score
plots of the first two PCs (76.38% and 13.43%; 62.90% and
17.96%) are reported in Figure 3A and B. For both cases, a clear
separation of the samples according to all the days of storage is not
evident, but the samples are placed from right to left along the PC1
and from bottom to top along the PC2, passing from the time one
to time nine. The loading plots (Figure 3C and D) suggest that the
discrimination might be attributed to absorption bands related to
carotenoids (around 560-590 nm) and chlorophyll-α (around 680-
690 nm).

PLS and ANN models were developed to predict FF and SSC.
PLS results, in terms of R2, RMSE, RPD, and number of latent
variables (LV), in calibration, cross-validation, and test set, are
reported in Table 2. The best models were obtained for both quality
parameters (FF and SSC) by treating the spectra with the first
derivative and mean centring. In particular, for the FF parameter,
R2 in the test set ranging from 0.83 (RMSEP=1.98 N) to 0.85
(RMSEP=1.64 N) was achieved. For SSC prediction, the results
are less good in terms of R2, ranging from 0.68 to 0.72, probably
due to the small variation of the measured SSC values; however,
good RMSEP values range from 0.59 to 0.51 °Brix were obtained.

                             Article

Figure 3. Score plots (A, B) and loading plots (C, D) obtained by principal component analysis (PCA) were developed on all the spectra.
Spectra pre-treatments: A, C) standard normal variate and mean centring; B, D) first derivative and mean centring.

[page 146]                                           [Journal of Agricultural Engineering 2022; LIII:1311]                                                             

Non
-co

mmerc
ial

 us
e o

nly



RPD values above 2 confirm that the PLS models built to estimate
FF are robust; instead, the RPD values calculated for the °Brix
models are slightly lower. Figure 4 shows the best results in mea-
sured vs predicted FF values for the test set.

The spectral and spatial information of each pixel in HS
images allows the evaluation of quality parameters of each pixel
with chemometric models. The pixels having similar spectra
showed similar colours in the images and, consequently, similar
predicted values. False colour images were obtained using the best
PLS model developed to predict FF. The prediction maps of FF of
two representative apricots are shown in Figure 5. The colour bar
indicates the scale of the reference values (FF in N). The spatial
distribution of FF aligns with the measured values, particularly
passing from 2.74 N to 16.53 N; the colour ranges from blue to red.
However, the noise of the HS image, influenced by the fruit curva-
ture and inclination of the light source, especially in the peripheral

zone, could affect the spectrum of each pixel, which may result in
the underestimation of the FF.

The VIP scores obtained by the PLS models built to estimate
FF are reported in Figure 6. These scores estimate the importance
of each variable in the projection used in a PLS model. A variable
with a VIP score close to or greater than one can be considered
important in a given model. Considering different spectra pre-
treatments (SNV+MC or D1+MC), similar regions with VIP
scores higher than one were obtained, suggesting that the wave-
lengths with the highest contribution to FF prediction range from
about 525 to 725 nm. Similar VIP trends were obtained for PLS
models developed by using Vis/NIR data and measuring FF and
IQI ripening index in peaches and nectarine, respectively (Munera
et al., 2017; Uwadaira et al., 2017).

Regarding ANN, training was repeated five times, and results,
in terms of R2 and RMSE, were averaged since the convergence is
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Figure 4. Measured vs predicted values of flesh firmness (FF) (A) and soluble solids content (SSC) (B) for the test set, obtained by means
of partial least squares (PLS) regression.

Table 2. Results of partial least squares, in terms of coefficient of determination (R2), root mean square error (RMSE), residual predic-
tion deviation (RPD) and number of latent variables (LV).

Parameter                  Pre-treatment           LV                            Calibration set Cross-validation set                    Test set
                                                                                                    R2      RMSEC    RPD                     R2   RMSECV   RPD           R2    RMSEP  RPD

FF (7.3±4.4 N)                           SNV+MC                      12                                0.93           1.16           3.9                            0.81         1.99           2.3                0.83        1.98         2.4
                                                       D1+MC                       12                                0.91           1.39           3.2                            0.82         1.85           2.4                0.85        1.64         2.6
SSC (16.3±1.03 °Brix)             SNV+MC                      13                                0.82           0.42           2.3                            0.69         0.58           1.8                0.68        0.59         1.8
                                                       D1+MC                       13                                0.78           0.46           2.1                            0.72         0.50           1.9                0.72        0.51         1.9
SNV, standard normal variate; MC, mean centring; D1, first derivative; FF, flesh firmness; SSC, soluble solids content.

Table 3. Results of artificial neural networks in terms of mean coefficient of determination (R2), root mean square error (RMSE), and
the number of iterations.

Parameter                      Training set    Cross-validation set                              Test set                                Iterations
                                  R2      RMSEC    RPD                           R2    RMSECV   RPD                      R2     RMSEP   RPD                              

FF (N)                              0.95           1.14            4.4                                   0.86            a              2.6                             0.85         1.50           2.6                                        5
SSC (°Brix)                    0.82           0.43            2.4                                   0.66         0.67            1.7                             0.65         0.68           1.7                                        6
FF, flesh firmness; SSC, soluble solids content.
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influenced by the initial weight values. An early stopping tech-
nique was used to select the number of training cycles (iterations)
to avoid overfitting, using the validation set to monitor the predic-
tion error. Above this point, the error increased further, indicating
that the ANN tends to overfit. An example of the trend of the errors

(training, validation, and external set) as a function of the iteration
number is shown in Figure 7. Finally, the optimal number of itera-
tions (six) was selected, corresponding to the minimum value of
the validation error. Over this point, the validation error starts to
increase.

The best prediction results were obtained for both the quality
parameters with only two nodes in the hidden layer; a more signif-
icant number of nodes did not increase the network performance.
In terms of R2, RMSE and number of iterations, in training, cross-
validation and test set, the ANN results are reported in Table 3. As
for the PLS, the best result in terms of R2 was achieved for the FF
parameter (R2=0.85, RMSEP=1.50 N). On the other hand, for the
prediction of the SSC, R2 values (0.65 in the test set) lower than
those from PLS regression were obtained. A worse performance
was also obtained for RMSEP, which was 0.68 °Brix. This is prob-
ably due to the slight variation of the measured SSC values during
the storage. Also, in this case, RPD values greater than 2 were
reached for the prediction of FF.

Comparing the results with those reported in the literature and
based on the predictive models built considering a spectral range

                             Article

Figure 5. Prediction maps of flesh firmness (FF) of two representative apricots.

Figure 6. Variable importance in projection (VIP) scores of the
partial least squares models to predict flesh firmness (FF).
Spectra pre-treatments: A) standard normal variate and mean
centring; B) first derivative and mean centring.

Figure 7. Error graph of training, validation, and test set used to
stop the artificial neural networks (ANN) model and select the
optimal number of iterations.
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comparable with that of this study, it is possible to confirm that R2

values achieved for the FF parameter are higher or in agreement
with those reached in previous works. Camps and Christen (2009a)
analysed three apricot varieties by using a portable Vis/NIR spec-
trometer (650-1200 nm) and reported R values (in validation)
between 0.85 and 0.92 for the prediction of the firmness. Camps
and Christen (2009b) achieved R values of 0.85 and 0.87 for the
Bergarouge and Harostar variety, respectively, considering the
same parameters and spectral range. In the former study mentioned
(Camps and Christen, 2009a), the SSC prediction resulted in R val-
ues between 0.88 and 0.96 (in validation), and RMSECV between
0.67 and 1.00 °Brix. In terms of SSC, the present work results are
slightly lower; on the contrary, the range of RMSEP from the PLS
models is lower (0.51-0.59 °Brix), which means better perfor-
mance in RMSEP.

Conclusions
The application of HSI technology allowed us to estimate the

FF and SSC of apricots. Two different multivariate techniques
were used to build the predictive models. Particularly a linear
method (PLS) and a non-linear method (ANN) were tested.

Good and similar results were achieved for the FF parameter
by using both the statistical techniques, with R2 values (test set) of
0.85 for both PLS and ANN and RMSEP of 1.64 N and 1.50 N for
the PLS and ANN, respectively. SSC was characterised by a low
level of variation (9%) and an initial level already suitable for retail
sale: as a possible consequence, both the prediction models (PLS
and ANN) were less able to estimate this quality parameter than the
previous one (R2 up to 0.72); nevertheless, RMSEP range obtained
by PLS models (0.51-0.59 °Brix) was good. Due to this finding, it
would be possible to discriminate and then sort apricots for the
fresh market, discarding those with too low FF values and there-
fore undesirable for retail sale. In light of the obtained results, the
HSI technology could be implemented in a sorting line of apricots
for the fresh market, subject to the improvement of hyperspectral
image segmentation techniques, dimensionality reduction, and
finally, prediction to automate real-time analysis.
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