
05 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Liquidity Analysis in Resource-Aware Programming / Silvia Crafa;
Cosimo Laneve. - STAMPA. - 13712:(2022), pp. 205-221. (Intervento presentato al convegno 18th
International Conference on Formal Aspects of Component Software, FACS 2022 tenutosi a Oslo (virtuale)
nel 10-11/11/2022) [10.1007/978-3-031-20872-0_12].

Published Version:

Liquidity Analysis in Resource-Aware Programming

Published:
DOI: http://doi.org/10.1007/978-3-031-20872-0_12

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/901557 since: 2022-11-11

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-20872-0_12
https://hdl.handle.net/11585/901557

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Crafa, S., Laneve, C. (2022). Liquidity Analysis in Resource-Aware Programming. In:

Tapia Tarifa, S.L., Proença, J. (eds) Formal Aspects of Component Software. FACS

2022. Lecture Notes in Computer Science, vol 13712. Springer, Cham

The final published version is available online at

https://dx.doi.org/10.1007/978-3-031-20872-0_12

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1007/978-3-031-20872-0_12

Liquidity analysis in resource-aware programming

Silvia Crafa1 and Cosimo Laneve2

1 Dept. of Mathematics, University of Padova, Italy
2 Dept. of Computer Science and Engineering, University of Bologna, Italy

Abstract. Liquidity is a liveness property of programs managing re-
sources that pinpoints those programs not freezing any resource forever.
We consider a simple stateful language whose resources are assets (digi-
tal currencies, non fungible tokens, etc.). Then we define a type system
that tracks in a symbolic way the input-output behaviour of functions
with respect to assets. These types and their composition, which de-
fine types of computations, allow us to design an algorithm for liquidity
whose cost is exponential with respect to the number of functions. We
also demonstrate its correctness.

1 Introduction

The proliferation of programming languages that explicitly feature resources
has become more and more significant in the last decades. Cloud computing,
with the need of providing an elastic amount of resources, such as memories,
processors, bandwidth and applications, has pushed the definition of a number
of formal languages with explicit primitives for acquiring and releasing them
(see [1] and the references therein). More recently, a number of smart contracts
languages have been proposed for managing and transferring resources that are
assets (usually, in the form of digital currencies, like Bitcoin), such as the Bitcoin
Scripting [5], Solidity [8], Vyper [10] and Scilla [13]. Even new programming
languages are defined with (linear) types for resources, such as Rust [11].

In all these contexts, the efficient analysis of properties about the usage of
resources is central to avoid flaws and bugs of programs that may also have
relevant costs at runtime. In this paper, we focus on the liquidity property : a
program is liquid when no resource remains frozen forever inside it, i.e. it is not
redeemable by any party interacting with the program. For example, a program
is not liquid if the body of a function does not use the resources transferred
during the invocation by the caller. A program is also not liquid if, when it
terminates, there is a resource that has not been emptied.

We analyze liquidity for a simple programming language, a lightweight ver-
sion of Stipula, which is a domain-specific language that has been designed for
programming legal contracts [7]. In Stipula, programs are contracts that transit
from state to state and a control logic specifies what functionality can be invoked
by which caller; the set of callers is defined when the contract is instantiated.

Functions F ::“ @Q A : fpyqrks tS u => @Q1

Prefixes P ::“ E Ñ x | E Ñ A | c ˆ h ⊸ h1 | c ˆ h ⊸ A {{ 0 ď c ď 1
Statements S ::“ -- | P S | if pEq tS u else tS u S

Expressions E ::“ v | X | E opE | uopE

Values v ::“ c | false | true

Table 1. Syntax of Stipula (X are assets, fields and parameters names)

Resources are assets (digital currencies, smart keys, non-fungible tokens, etc.)
that may be moved with ad-hoc operators from one to another.

Our analyzer is built upon a type system that records the effects of functions
on assets by using symbolic names. Then a correctness property, whereby the
(liquidity) type of the final state of a computation is always an over-approximation
of the actual state, allows us to safely reduce our analysis arguments to verifying
if liquidity types of computations have assets that are empty.

We identify the liquidity property: if an asset becomes not-empty in a state
then there is a continuation where all the assets are empty in one of its states.
The algorithm for assessing liquidity looks for computations whose liquidity
types Ξ Ñ Ξ 1 are such that the contract’s assets in Ξ 1 are empty. The crucial
issue of the analysis is termination, given that computations may be infinitely
many because contracts may have cycles. For this reason we restrict to compu-
tations whose length is bound by a value. Actually we found more reasonable
computations where every function can be invoked a bounded number of times.
It turns out that the computational cost of the algorithm is exponential with
respect to the number of functions.

The structure of the paper is as follows. The lightweight Stipula language
is introduced in Section 2 and the semantics is defined in Section 3. Section 4
reports the theory underlying our liquidity analyzer and Section 5 illustrates
the algorithm for verifying liquidity. We end our contribution by discussing the
related work in Section 6 and delivering our final remarks in Section 7. Due to
page limits, the technical material has been omitted and can be found in the full
paper.

2 The Stipula language

We use disjoint sets of names: contract names, ranged over by C, C1, ¨ ¨ ¨ ; names
referring to digital identities, called parties, ranged over by A, A1, ¨ ¨ ¨ ; function
names ranged over by f, g, ¨ ¨ ¨ ; asset names, ranged over by h, k, ¨ ¨ ¨ , to be
used both as contract’s assets and function’s asset parameters; non asset names,
ranged over by x, y, ¨ ¨ ¨ , to be used both as contract’s fields and function’s non
asset parameters. Assets and generic contract’s fields are syntactically set apart
since they have different semantics; similarly for functions’ parameters. Names of
assets, fields and parameters are generically ranged over by X. Names Q, Q1, ¨ ¨ ¨
will range over contract states. To simplify the syntax, we often use the vector
notation x to denote possibly empty sequences of elements. With an abuse of

notation, in the following sections, x will also represent the set containing the
elements in the sequence.

The code of a Stipula contract is 3

stipula C { parties A fields x assets h init Q F }

where C identifies the contract name; A are the parties that can invoke contract’s
functions, x and h are the fields and the assets, respectively, and Q is the initial
state. The contract body also includes the sequence F of functions, whose syntax
is defined in Table 1. It is assumed that the names of parties, fields, assets and
functions do not contain duplicates and functions’ parameters do not clash with
the names of contract’s fields and assets.

The declaration of a function highlights the state Q when the invocation is
admitted, who is the caller party A, and the list of parameters. Function’s param-
eters are split in two lists: the formal parameters y in brackets and the asset pa-
rameters k in square brackets. The body { S } => @Q1 specifies the statement part
S and the state Q1 of the contract when the function execution terminates. We
write @Q A : f(y)[k] {S u => @Q1 P C when F contains @Q A : f(y)[k] {S u => @Q1

and we will often shorten the above predicate by writing Q A.f Q1 P C. Stipula
does not admit internal nondeterminism: for every Q, A and f, there is at most
a Q1 such that Q A.f Q1 P C.

Statements S include the empty statement -- and different prefixes followed
by a continuation. Prefixes P use the two symbols Ñ (update) and ⊸ (move)
to differentiate operations on fields and assets, respectively. The prefix E Ñ x

updates the field or the parameter x with the value of E – the old value of x
is lost – it is destroyed ; E Ñ A sends the value of E to the party A. The move
operations cˆh ⊸ h1 and cˆh ⊸ A define actions that never destroy resources.
In particular, c ˆ h ⊸ h1 subtracts the value of c ˆ h to the asset h and adds
this value to h1, where c is a constant between 0 and 1. Notice that, because
of this constraint, c ˆ h is always smaller or equal to h – therefore assets never
have negative values. It is also worth to notice that, according to the syntax,
the right-hand side of Ñ in E Ñ x is always a field or a non-asset function
parameter, while the right-hand side of ⊸ in c ˆ h ⊸ h1 is always an asset (the
left-hand side is an expression that indicates part of an asset). The operation
c ˆ h ⊸ A subtracts the value of c ˆ h to the asset h and transfers it to A.

Statements also include conditionals if pEq tS u else tS1 u with the standard
semantics. In the rest of the paper we will always abbreviate 1 ˆ h ⊸ h1 and
1 ˆ h ⊸ A (which are very usual, indeed) into h ⊸ h1 and h ⊸ A, respectively.

Expressions E include constant values v, names X of either assets, fields or
parameters, and both binary and unary operations. Constant values are

– real numbers n, that are written as nonempty sequences of digits, possibly
followed by “.” and by a sequence of digits (e.g. 13 stands for 13.0). The
number may be prefixed by the sign + or -. Reals come with the standard set
of binary arithmetic operations (+, -, ˆ) and the unary division operation
E{c where c ‰ 0, in order to avoid 0-division errors.

3 Actually this is a lightweight version of the language in [7].

– boolean values false and true. The operations on booleans are conjunction
NN, disjunction ||, and negation !.

– asset values that represent divisible resources (e.g. digital currencies). Di-
visible asset constants are assumed to be identical to positive real numbers
(assets cannot have negative values).

Relational operations (<, >, <=, >=, ==) are available between any expression.
The standard definition of free names of expressions, statements and func-

tions is assumed and will be denoted fnpEq, fnpSq and fnpF q, respectively. A
contract stipula C { parties A fields x assets h init Q F } is closed
if, for every F P F , fnpF q Ď A Y x Y h.

We illustrate relevant features of Stipula by means of few examples. Consider
the Fill Move contract

stipula Fill Move { parties Alice,Bob assets h1,h2 init Q0

@Q0 Alice: fill()[k]{ k ⊸ h2 } => @Q1

@Q1 Bob: move()[]{ h2 ⊸ h1 } => @Q0

@Q0 Bob: end()[]{ h1 ⊸ Bob } => @Q2

}

that regulates interactions between Alice and Bob. It has two assets and three
states Q0, Q1 and Q2, with initial state Q0. In Q0, Alice may move part of
her asset by invoking fill; the asset is stored in the formal parameter k.
That is, the party Alice is assumed to own some asset and the invocation,
e.g. Alice.fill()[5.0], is removing 5 units from Alice’s asset and storing
them in k (and then in h2). Said otherwise, the total assets of the system is
invariant during the invocation; similarly during the operations h ⊸ h1. The
execution of fill moves the assets in k to h2) and makes the contract transit
to the state Q1. In this state, the unique admitted function is move by which
Bob accumulates in h1 the assets sent by Alice. The contract’s state becomes
Q0 again and the behaviour may cycle. Fill Move terminates when, in Q0, Bob
decides to grab the whole content of h1. Notice the nondeterministic behaviour
when Fill Move is in Q0: according to a fill or an end function is invoked,
the contract may transit in Q1 or Q2 (this is called external nondeterminism in
the literature). Notice also that Stipula overlooks the details of the interactions
with the parties (usually an asset transfer between the parties and the contract
is mediated by a bank).

Fill Move has the property that assets are eventually emptied (whatever it
is the state of the contract – the contract is liquid). Stipula contracts do not
always retain this property. For example, the following Ping Pong contract

stipula Ping Pong { parties Amy,Mary assets h,k init Q0

@Q0 Mary: ping()[u]{ h ⊸ Mary u ⊸ k } => @Q1

@Q1 Amy: pong()[v]{ k ⊸ Amy v ⊸ h } => @Q0

}

has a cyclic behaviour where Mary and Amy exchange asset values. By invoking
ping, Mary moves her asset into u (and then into the asset field k) and grabs

the value stored in h; conversely, by invoking pong, Amy moves her asset into v

(and then into the asset field h) and grabs the value stored in k. (Since asset
fields are initially empty, the first invocation of ping does not deliver anything
to Mary.) Apart the initial state, Ping Pong never reaches a state where h and k

are both empty at the same time (if Mary and Amy invocations carry nonempty
assets) – in the terminology of the next section, the contract is not liquid. States
have either k empty – Q0 – or h empty – Q1.

3 Semantics

Let a configuration, ranged over by C, C1, ¨ ¨ ¨ , be a tuple CpQ , ℓ , Σq where

– C is the contract name and Q is one of its states;
– ℓ, called memory, is a mapping from names (parties, fields, assets and func-

tion’s parameters) to values. The values of parties are noted A,A1, ¨ ¨ ¨ . These
values cannot be passed as function’s parameters and cannot be hard-coded
into the source contracts, since they do not belong to expressions. We write
ℓrh ÞÑ us to specify the memory that binds h to u and is equal to ℓ otherwise;

– Σ is the (possibly empty) residual of a function body, i.e. Σ is either -- or a
term S => @Q.

Configurations such as CpQ , ℓ , --q, i.e. there is no statement to execute, are
called idle.

We will use the auxiliary evaluation function JEKℓ that returns the value of
E in the memory ℓ such that:

– JvKℓ “ v for real numbers and asset values, JtrueKℓ “ 1.0 and JfalseKℓ “ 0.0

(booleans are converted to reals); JXKℓ “ ℓpXq for names of assets, fields and
parameters.

– let uop and op be the semantic operations corresponding to uop and op,
then JuopEKℓ “ uop v, JE opE1Kℓ “ v op v1 with JEKℓ “ v, JE1Kℓ “ v1. In
case of boolean operations, every non-null real corresponds to true and 0.0

corresponds to false; the operations return the reals for true and false.
Because of the restrictions on the language, uop and op are always defined.

The semantics of Stipula is defined by a transition relation, noted C
µ

ÝÑ C1,
that is given in Table 2, where µ is either empty or A : fpuqrvs or v Ñ A or
v ⊸ A. Rule [Function] defines invocations: the label specifies the party A

performing the invocation and the function name f with the actual parameters.
The transition may occur provided (i) the contract is in the state Q that admits
invocations of f from A such that ℓpAq “ A and (ii) the configuration is idle.
Rule [State-Change] says that a contract changes state when the execution of
the statement in the function’s body terminates. To keep simple the operational
semantics of Stipula, we do not remove garbage names in the memories (the
formal parameters of functions once the functions have terminated). Therefore
memories retain such names and the formal parameters keep the value they have
at the end of the function execution. These values are lost when the function

[Function]

@Q A : f(y)[k] {S u => @Q1 P C

ℓpAq “ A ℓ1 “ ℓry ÞÑ u, k ÞÑ vs

CpQ , ℓ , --q
A:fpuqrvs

ÝÑ CpQ , ℓ1 , S => @Q1q

[State-Change]

CpQ , ℓ , -- => @Q
1q ÝÑ CpQ1 , ℓ , --q

[Value-Send]

JEKℓ “ v ℓpAq “ A

CpQ , ℓ , E Ñ A Σq
vÑA
ÝÑ CpQ , ℓ , Σq

[Asset-Send]

Jc ˆ hKℓ “ v ℓpAq “ A Jh ´ vKℓ “ v1

CpQ , ℓ , c ˆ h ⊸ A Σq
v⊸A
ÝÑ CpQ , ℓrh ÞÑ v1s , Σq

[Field-Update]

JEKℓ “ v

CpQ , ℓ , E Ñ x Σq ÝÑ CpQ , ℓrx ÞÑ vs , Σq

[Asset-Update]

Jc ˆ hKℓ “ v Jh ´ vKℓ “ v1 Jh1 ` vKℓ “ v2

ℓ1 “ ℓrh ÞÑ v1, h1 ÞÑ v2s

CpQ , ℓ , c ˆ h ⊸ h1 Σq ÝÑ CpQ , ℓ1 , Σq
[Cond-true]

JEKℓ “ true

CpQ , ℓ , if pEq tS u else tS1 u Σq
ÝÑ CpQ , ℓ , S Σq

[Cond-false]

JEKℓ “ false

CpQ , ℓ , if pEq tS u else tS1 u Σq
ÝÑ CpQ , ℓ , S1 Σq

Table 2. The transition relation of Stipula

is called again (c.f. rule [Function]: in ℓ1, the assets k are updated with v). A
function that does not empty asset formal parameters is clearly incorrect and
the following analysis will catch such errors.

Regarding statements, we only discuss [Asset-Send] and [Asset-Update] be-
cause the other rules are standard. Rule [Asset-Send] delivers part of an asset
h to A. This part, named v, is removed from the asset, c.f. the memory of the
right-hand side state in the conclusion. In a similar way, [Asset-Update] moves
a part v of an asset h to an asset h1. For this reason, the final memory becomes
ℓrh ÞÑ v1, h1 ÞÑ v2s, where v1 “ ℓphq ´ v and v2 “ ℓph1q ` v.

A contract stipula C { parties A fields x assets h init Q F }
is invoked by CpA, uq that corresponds to the initial configuration

CpQ , rA ÞÑ A, x ÞÑ u, h ÞÑ 0s , --q .

We remark that no field and asset is left uninitialized, which means that no
undefined-value error can occur during the execution by accessing to field and
assets. Notice that the initial value of assets is 0. In order to keep the notation
light we always assume that parties A are always instantiated by the correspond-
ing names A written with italic fonts.

Below we use the following notation and terminology:

– We write C
A.fpuqrvs

ùñ C1 if C
A.fpuqrvs

ÝÑ
µ1ÝÑ ¨ ¨ ¨

µnÝÑ C1 and µi are either empty
or v ⊸ A or v Ñ A and C1 is idle.

– We write C ùñ C1 if C
A1.f1pu1qrv1s

ùñ ¨ ¨ ¨
An.fnpunqrvns

ùñ C1, for someA1.f1pu1qrv1s,
¨ ¨ ¨ , An.fnpunqrvns. C ùñ C1 will be called computation.

An important property of closed contracts guarantees that the invocation of
a function never fails. This property immediately follows by the fact that, in

such contracts, the evaluation of expressions and statements can never rise an
error (operations are total, names are always bound to values and type errors
cannot occur because values are always converted to reals).

Theorem 1 (Progress). Let C be a closed Stipula contract with fields x, assets
h, parties A and @Q A:f(y)[k]{ S } => @Q1 P C. For every ℓ such that x, h, A Ď

dompℓq, there is ℓ1 such that CpQ, ℓ, --q
A.fpuqrvs

ùñ CpQ1, ℓ1, --q.

We conclude with the definition of liquidity. We use the following notation:

– we write ℓphq ą 0 if and only if there is k P h such that ℓpkq ą 0; similarly
ℓphq “ 0 if and only if, for every k P h, ℓpkq “ 0.

Definition 1 (Liquidity). A Stipula contract C with assets h and initial con-
figuration C is liquid if, for every computation C ùñ CpQ, ℓ, --q, then

1. ℓph1q “ 0 with h1 “ dompℓqzh;
2. if ℓphq ą 0 then there is CpQ, ℓ, --q ùñ CpQ1, ℓ1, --q such that ℓ1phq “ 0.

We notice that Progress is critical for reducing liquidity to some form of
reachability analysis (otherwise we should also deal with function invocations
that terminate into a stuck state because of an error). In the following sections,
using a symbolic technique, we define an algorithm for assessing liquidity and
demonstrate their correctness.

4 The theory of liquidity

We begin with the definition of the liquidity type system that returns an abstrac-
tion of the input-output behaviour of functions with respect to assets. These
abstractions record whether an asset is zero – notation 0 – or not – notation 1.
The values 0 and 1 are called liquidity values and we use the following notation:

– liquidity expressions e are defined as follows, where ξ, ξ1, ¨ ¨ ¨ range over
(symbolic) liquidity names:

e ::“ 0 | 1 | ξ | e \ e | e [e .

They are ordered as 0 ď e and e ď 1; the operations \ and [respectively
return the maximum and the minimum value of the two arguments; they
are monotone with respect to ď (that is e1 ď e1

1
and e2 ď e1

2
imply e1 \

e2 ď e1
1

\ e1
2
and e1 [e2 ď e1

1
[e1

2
). A liquidity expression that does not

contain liquidity names is called ground. Two tuples are ordered ď if they
are element-wise ordered by ď.

– environments Ξ map contract’s assets and asset parameters to liquidity ex-
pressions. Environments that map names to ground liquidity expressions are
called ground environments.

– liquidity function types Q A.f Q1 : Ξ Ñ Ξ 1 where Ξ Ñ Ξ 1 records the liquidity
effects of fully executing the body of Q A.f Q1.

[l-send]

A, fnpEq Ď X Y dompΞq

Ξ $X E Ñ A : Ξ

[l-update]

x, fnpEq Ď X Y dompΞq

Ξ $X E Ñ x : Ξ

[l-asend]

h P dompΞq A P X

Ξ $X h ⊸ A : Ξrh ÞÑ 0s

[l-expasend]

h P dompΞq c ‰ 1 A P X

Ξ $X c ˆ h ⊸ A : Ξ
[l-aupdate]

h, h1 P dompΞq e “ Ξphq \ Ξph1q

Ξ $ h ⊸ h1 : Ξrh ÞÑ 0, h1 ÞÑ es

[l-expaupd]

h, h1 P dompΞq c ‰ 1 e “ Ξphq \ Ξph1q

Ξ $ c ˆ h ⊸ h1 : Ξrh1 ÞÑ es

[l-zero]

Ξ $X -- : Ξ

[l-seq]

Ξ $X P : Ξ 1 Ξ 1 $X S : Ξ2

Ξ $X P S : Ξ2

[l-cond]

fnpEq Ď X Y dompΞq
Ξ $X S : Ξ 1 Ξ $X S

1 : Ξ2

Ξ 1 \ Ξ2 $X S
2 : Ξ3

Ξ $X if pEq tS u else tS1 u S2 : Ξ3

[l-function]

A, fnpSq Ď X Y y ξ1 fresh Ξrk ÞÑ ξ1s $XYy S : Ξ 1

Ξ $X @Q A : fp y qr k stS u ñ @Q1 : Q A.f Q1 : Ξrk ÞÑ 1s Ñ Ξ 1t1{
ξ1 u

[l-contract]

ξ fresh
´

rh ÞÑ ξs $
AYx

F : LF

¯FPF

$ stipula C tparties A fields x assets h init Q F u :
Ť

FPF LF

Table 3. The Liquidity type system of Stipula

– judgments Ξ $X S : Ξ 1 for statements and Ξ $X @Q A :fp x qr h1 s tS u ñ
@Q1 : L for function definitions, where L is a liquidity function type. The set
X contains party and field names.

The liquidity type system is defined in Table 3; below we discuss the most
relevant rules. Asset movements have four rules – [l-asend], [l-expasend] [l-

aupdate] and [l-expaupd] – according to whether the constant factor is 0 or not
and whether the asset is moved to an asset or a party. According to [l-aupdate],
the final asset environment of h ⊸ h1 (which is an abbreviation for 1 ˆ h ⊸ h1)
has h that is emptied and h1 that gathers the value of h, henceforth the liquidity
expression Ξphq \ Ξph1q. Notice that, when both h and h1 are 0, the overall
result is 0. In the rule [l-expaupd], the asset h is decreased by an amount that
is moved to h1. Since c ‰ 1, the static analysis (which is independent of the
runtime value of h) can only safely assume that the asset h is not emptied by
this operation (if it was not empty before). Therefore, after the withdraw, the
liquidity value of h has not changed. On the other hand, the asset h1 is increased
of some amount if both c and h have a non zero liquidity value, henceforth the
expression Ξphq \Ξph1q. In particular, as before, when both Ξphq and Ξph1q are
0, the overall result is 0.

The rule for conditionals is [l-cond], where the operation \ on environments
is defined pointwise by pΞ 1 \ Ξ2qphq “ Ξ 1phq \ Ξ2phq. That is, the liquidity
analyzer over-approximates the final environments of if pEq tS u else tS1 u by
taking the maximum values between the results of parsing S (that corresponds
to a true value of E) and those of S1 (that corresponds to a false value of E).
Regarding E, the analyzer only verifies that its names are bound in the contract.

The rule for Stipula contracts is [l-contract]; it collects the liquidity labels
Li that describe the liquidity effects of each contract’s function; each function
assumes injective environments that respectively associate contract’s assets with
fresh symbolic names. In turn, the type produced by [l-function] says that

the complete execution of Q A.f Q1 has liquidity effects Ξrh1 ÞÑ 1s Ñ Ξ 1t1{
ξ1 u,

assuming that the body S of the function is typed as Ξrh1 ÞÑ ξ1s $ S : Ξ 1.
That is, in the conclusion of [l-function] we replace the symbolic values of the
liquidity names representing formal parameters with 1, because they may be any
value when the function will be called.

Example 1. The set L of the Fill Move contract contains the following liquidity
types:

Q0 Alice.fill Q1 : rh1 ÞÑ ξ1, h2 ÞÑ ξ2, k ÞÑ 1s Ñ rh1 ÞÑ ξ1, h2 ÞÑ ξ2 \ 1, k ÞÑ 0s
Q1 Bob.move Q0 : rh1 ÞÑ ξ1, h2 ÞÑ ξ2s Ñ rh1 ÞÑ ξ1 \ ξ2, h2 ÞÑ 0s
Q0 Bob.end Q2 : rh1 ÞÑ ξ1, h2 ÞÑ ξ2s Ñ rh1 ÞÑ 0, h2 ÞÑ ξ2s

In the following we will always shorten $ stipula C tparties A fields x

assets h init Q F u : L into $ C : L. A first property of the liquidity type
system is that typed contracts are closed.

Proposition 1. If $ C : L then C is closed.

Therefore typed contracts own the progress property (Theorem 1). The correct-
ness of the system in Table 3 requires the following notions:

– A (liquidity) substitution is a map from liquidity names to liquidity expres-
sions (that may contain names, as well). Substitutions will be noted either
σ, σ1, ¨ ¨ ¨ or te{χu. A substitution is ground when it maps liquidity names
to ground liquidity expressions. For example t0,1{χ,ξu and t0\1,1[0{χ,ξu are

ground substitutions, t0\χ1

{χu is not.
We let σpΞq be the environment where σpΞqpxq “ σpΞpxqq.

– Let JeK be the partial evaluation of e by applying the commutativity axioms
of \ and [and the axioms 0 \ e “ e, 0 [e “ 0, 1 \ e “ 1, 1 [e “ e. More
precisely

JeK “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

e if e “ 0 or e “ 1 or e “ ξ

Je1K if pe “ e1 \ e2 or e “ e2 \ e1q and Je2K “ 0

Je1K if pe “ e1 [e2 or e “ e2 [e1q and Je2K “ 1

0 if e “ e1 [e2 and either Je1K “ 0 or Je2K “ 0

1 if e “ e1 \ e2 and either Je1K “ 1 or Je2K “ 1

Je1K#Je2K otherwise p# is either \ or [q

Notice that if e is ground then JeK is either 0 or 1.

– We let JΞK be the environment where JΞKpxq “ JΞpxqK. Therefore, when Ξ

is ground, JΞK is ground as well. The converse is false.
– When Ξ and Ξ 1 are ground, we write Ξ ď Ξ 1 if and only if, for every

h P dompΞq, JΞphqK ď JΞ 1phqK. Observe that this implies that dompΞq Ď
dompΞ 1q.

– Ξ|h is the environment Ξ restricted to the names h, defined as follows

Ξ|hpkq “

"

Ξpkq if k P h

undefined otherwise

– let ℓ “ rA ÞÑ A, x1 ÞÑ u, h1 ÞÑ vs be a memory, where x1 are contract’s
fields and non-asset parameters, while h1 are contract’s assets and the asset
parameters. We let Epℓq be the ground environment defined as follows:

Epℓqpkq “

$

&

%

0 if k P h1 and ℓpkq “ 0
1 if k P h1 and ℓpkq ‰ 0
undefined otherwise

Liquidity types are correct, as stated by the following theorem.

Theorem 2 (Correctness of liquidity labels). Let $ C : L and @Q A : f(y)[k]

{S u => @Q1 P C and Q A.f Q1 : Ξ Ñ Ξ 1 in L. If CpQ , ℓ , --q
A.fpuqrvs

ùñ CpQ1 , ℓ1 , --q then
there are X and Ξ2 such that:

1. Epℓry ÞÑ u, k ÞÑ vsq $X S : Ξ2;
2. Epℓry ÞÑ u, k ÞÑ vsq|dompΞq ď JσpΞqK and JΞ2|dompΞqK ď JσpΞ 1qK, for a ground

substitution σ;
3. Epℓ1q|dompΞq ď JΞ2K.

For example, consider the transition

Fill MovepQ1 , ℓ , --q
Bob.movepqrs

ÝÑ Fill MovepQ0 , ℓ1 , --q

of Fill Move where ℓ “ rh1 ÞÑ 25.0, h2 ÞÑ 5.0s and ℓ1 “ rh1 ÞÑ 30.0, h2 ÞÑ 0.0s.
By definition, Epℓq “ rh1 ÞÑ 1, h2 ÞÑ 1s. Letting X “ tAlice, Bobu, by the
liquidity type system we obtain Epℓq $X h2 ⊸ h1 : Ξ2, Ξ2 “ rh1 ÞÑ 1 \ 1, h2 ÞÑ
0s. Since Q1 Bob.move Q0 : rh1 ÞÑ ξ1, h2 ÞÑ ξ2s Ñ rh1 ÞÑ ξ1 \ ξ2, h2 ÞÑ 0s
(see Example 1), the ground substitution σ that satisfies Theorem 2.2 is rξ1 ÞÑ
1, ξ2 ÞÑ 1s (actually, in this case, the “ď” are equalities). Regarding the last
item, Epℓ1q “ rh1 ÞÑ 1, h2 ÞÑ 0s and Epℓ1q ď JΞ2K follows by definition.

A basic notion of our theory is the one of abstract computation and its
liquidity type.

Definition 2. An abstract computation of a Stipula contract, ranged over by
ϕ,ϕ1, ¨ ¨ ¨ , is a finite sequence Q1 A1.f1 Q2 ; ¨ ¨ ¨ ; Qn An.fn Qn`1 of contract’s

functions, shortened into t Qi Ai.fi Qi`1 uiP1..n. We use the notation Q
ϕ
ñ Q1 to

highlight the initial and final states of ϕ and we let t Qi Ai.fi Qi`1 uiP1..n be the

abstract computation of
`

CpQi , ℓi , --q
Ai:fipuiqrvis

ùñ CpQi`1 , ℓi`1 , --q
˘iP1..n

.
An abstract computation ϕ is κ-canonical if functions occur at most κ-times

in ϕ.

We notice that abstract computations do not mind of memories. Regarding
canonical computations, every prefix of a κ-canonical computation is κ-canonical
as well, including the empty computation.

Definition 3 (Liquidity type of an abstract computation). Let $ C : L
and h be the assets of C. Let also Qi Ai.fi Qi`1 : Ξi Ñ Ξ 1

i P L for every i P 1..n.

The liquidity type of ϕ “ t Qi Ai.fi Qi`1 uiP1..n, noted Lϕ, is Ξ
pbq
1

|h Ñ Ξ
peq
n |h

where Ξ
pbq
1

and Ξ
peq
n (“b” stays for begin, “e” stays for end) are defined as

follows

Ξ
pbq
1

“ Ξ1 Ξ
pbq
i`1

“ Ξi`1tΞ
peq
i

phq{
ξ
u Ξ

peq
i “ Ξ 1

it
Ξ

pbq
i

phq{
ξ
u .

Notice that, by definition, the initial environment of the i-th type is updated so
that it maps assets to the values computed at the end of the (i´1)-th transition.
These values are also propagated to the final environment of the i-th transitions
by substituting the occurrence of a liquidity name with the computed value of

the corresponding asset. Notice also that the domains of the environments Ξ
pbq
i ,

1 ď i ď n, are in general different because they are also defined on the asset
parameters of the corresponding function. However, formal parameters are not
relevant because they are always replaced by 1 and are therefore dropped in the
liquidity types of computations.

For example, consider the computation of the Fill Move contract

ϕ “ Q0 Alice.fill Q1 ; Q1 Bob.move Q0 ; Q0 Bob.end Q2

(we refer to Example 1 for the types of the contract). Let H “ th1, h2u and

Ξ “ rh1 ÞÑ ξ1, h2 ÞÑ ξ2s. ϕ has liquidity type Ξ
pbq
1

|H Ñ Ξ
peq
3

|H where:

Ξ
pbq
1

“ Ξrk ÞÑ 1s Ξ
peq
1

“ Ξrh2 ÞÑ ξ2 \ 1, k ÞÑ 0s

Ξ
pbq
2

“ Ξtξ2\1{ξ2u Ξ
peq
2

“ rh1 ÞÑ ξ1 \ ξ2, h2 ÞÑ 0stξ2\1{ξ2u
“ Ξrh2 ÞÑ ξ2 \ 1s “ rh1 ÞÑ ξ1 \ ξ2 \ 1, h2 ÞÑ 0s

Ξ
pbq
3

“ Ξtξ1\ξ2\1,0{ξ1,ξ2u Ξ
peq
3

“ rh1 ÞÑ 0, h2 ÞÑ ξ2stξ1\ξ2\1,0{ξ1,ξ2u
“ rh1 ÞÑ ξ1 \ ξ2 \ 1, h2 ÞÑ 0s “ rh1 ÞÑ 0, h2 ÞÑ 0s

Therefore Lϕ “ Ξ Ñ rh1 ÞÑ 0, h2 ÞÑ 0s. That is, whatever they are the initial
values of h1 and h2, which are represented in Ξ by the liquidity names ξ1 and
ξ2, respectively, their liquidity values after the computation ϕ are 0 (henceforth
they are 0 by the following Theorem 3). Notice also the differences between Lϕ
and Ξ Ñ rh1 ÞÑ 0, h2 ÞÑ ξ2s, which is the type of Bob.end: from this last type
we may derive that h1 is 0 in the final environment, while the value of h2 is the
same of the initial environment (in fact, Bob.end only empties h1 and does not
access to h2).

We recall that the operational semantics of Stipula in Table 2 does not remove
garbage names in the memories (the formal parameters of functions once the
functions have terminated, see Section 3). However, these names do not exist in
environments of the liquidity types of abstract computations. For this reason, in
the following statement, we restrict the inequalities to the names of the contract’s
assets.

Theorem 3 (Correctness of an abstract computation). Let $ C : L and
`

CpQi , ℓi , --q
Ai:fipuiqrvis

ùñ CpQi`1 , ℓi`1 , --q
˘iP1..n

and the abstract computation
ϕ “ t Qi Ai.fi Qi`1 uiP1..n have liquidity type Lϕ “ Ξ Ñ Ξ 1.

Then there is a substitution σ such that Epℓ1q|h ď JσpΞqK and Epℓn`1q|h ď
JσpΞ 1qK.

5 The algorithm for liquidity

Analyzing the liquidity of a Stipula contract amounts to verifying the two con-
straints of Definition 1. Checking constraint 1 is not difficult: for every transition
Q A.f Q1 of the contract with assets h, we consider its liquidity type Ξ Ñ Ξ 1 and
verify whether, for every parameter k R h, JΞ 1pkqK “ 0. Since there are finitely
many transitions, this analysis is exhaustive. The correctness is the following: if
k R h implies JΞ 1pkqK “ 0 then, for every substitution σ, JσpΞ 1qKpkq “ 0. Specif-
ically for the substitution σ1 such that Epℓ1q ď Jσ1pΞ 1qK, which is guaranteed by
Theorem 2.

On the contrary, verifying the constraint 2 of Definition 1 is harder because
the transition system of a Stipula contract may be complex (cycles, absence of
final states, nondeterminism).

We first define the notions of reachable function and reachable state of a
Stipula contract C. Let $ C : L; Tκ

Q is the set of κ-canonical liquidity types

Q
ϕ
ñ Q1 : Lϕ where ϕ is a κ-canonical abstract computation starting at Q in

the contract (the contract is left implicit). Notice that, by definition, the empty

computation Q
ε

ñ Q : Ξ Ñ Ξ belongs to Tκ
Q . We say that Q1 is reachable from

Q if there is ϕ such that Q
ϕ
ñ Q1 : Lϕ is in Tκ

Q . For example, in the Fill Move

contract, the set Tκ
Q0 is the following

Tκ
Q0 “

Ť

iďκ,jď1

´

Q0 Alice.fill Q1 ; Q1 Bob.move Q0
¯i

;
´

Q0 Bob.move Q2
¯jď1

: Li,j

Y
Ť

iďκ´1

´

Q0 Alice.fill Q1 ; Q1 Bob.move Q0
¯i

; Q0 Alice.fill Q1 : Li

(with suitable Li,j and Li).

Below, without loss of generality, we assume that every state in the contract
is reachable from the initial state. A straightforward optimization allows us to
reduce to this case. We also assume that our contracts satisfy item 1 of liquidity.
Therefore we focus on item 2.

Verifying liquidity is complex because a single asset or a tuple of assets may
become 0 during a computation, rather than just one transition. Let us discuss
the case with an example. Consider the Ugly contract with assets w1 and w2 and
functions:

@Q0 Mark: get()[u]{ u ⊸ w2 } => @Q1

@Q1 Sam: shift()[]{ w1 ⊸ Sam w2 ⊸ w1 } => @Q1

@Q1 Sam: end()[]{ } => @Q2

Let Q be the initial state of C whose assets are h.

step 1. Compute T
κ
Q1 for every Q1 reachable from Q; let Z “ H.

step 2. For every Q1 and Q1 ϕ
ñ Q2 : Ξ Ñ Ξ 1 P T

κ
Q1 and H Ĺ k Ď h such that

(a) for every k1 P k, JΞ 1pk1qK ‰ 0 and JΞ 1pk1qK ‰ JΞpk1qK
(b) for every k2 P hzk, JΞ 1pk2qK “ JΞpk2qK
(c) pQ2, kq R Z:

2.1 If there is no Q1, Q1 ϕ
ñ Q2 : Ξ Ñ Ξ 1 and k then exit: the contract is liquid.

2.2 otherwise verify whether there is Q2 ϕ1

ñ Q3 : Ξ2 Ñ Ξ3 P T
κ
Q2 such that

JΞ3pkqK “ 0 and, for every k1 P hzk, either JΞ3pk1qK “ 0 or JΞ3pk1qK “
JΞ2pk1qK. If this is the case, add pQ2, kq to Z and reiterate step 2, otherwise
exit: the contract is not liquid.

Table 4. The algorithm for liquidity – Z contains pairs pQ, kq

In this case there is no single transition that empties all the assets. However
there is a liquid computation (a computation that empties all the assets), which
is the one invoking shift two times: Q1 Sam.shift Q1 ; Q1 Sam.shift Q1. In
particular, we have

Q1 Sam.shift Q1 : rw1 ÞÑ ξ1, w2 ÞÑ ξ2s Ñ rw1 ÞÑ 0 \ ξ2, w2 ÞÑ 0s

Q1 Sam.shift Q1 ; Q1 Sam.shift Q1 : rw1 ÞÑ ξ1, w2 ÞÑ ξ2s Ñ rw1 ÞÑ 0, w2 ÞÑ 0s

(we have simplified the final environment). That is, in this case, liquidity requires
the analysis of 2-canonical computations to be assessed. (When the contract has
no cycle, 1-canonical computations are sufficient to verify liquidity.) Since we
have to consider cycles, in order to force termination, we restrict our analysis to
κ-canonical abstract computations (with a finite value of κ).

The algorithm uses the set Tκ
Q1 , for every state Q1 of the contract that is

reachable from Q – see step 1 of Table 4. Step 2 identifies the “critical pairs”
pQ2, kq such that there is a computation updating the assets k and terminating

in the state Q2. Assume that pQ2, kq R Z. Then we must find Q2 ϕ1

ñ Q3 : Ξ2 Ñ Ξ3

in Tκ
Q2 such that Ξ3pkq “ 0 and the other assets in hzk are either 0 or equal to

the corresponding value in Ξ2. That is, as for the efficient algorithms, assets hzk
have not been modified by ϕ1 and may be overlooked. Notice that these checks

are exactly those defined in step 2.2. If no liquidity type Q2 ϕ1

ñ Q3 : Ξ2 Ñ Ξ3 is
found in Tκ

Q2 such that Ξ3pkq “ 0, the liquidity cannot be guaranteed and the
algorithm exits stating that the contract is not liquid (which might be a false
negative because the liquidity type might exist in T

κ`1

Q2).

For example, in case of the Fill Move contract, the liquidity algorithm spots

Q0
Alice.fill

ñ Q1 : Ξ Ñ Ξ 1 because JΞ 1ph1qK ‰ JΞph1qK. Therefore it parses the

liquidity types in T1

Q1 and finds the type Q1
ϕ1

ñ Q2 : rh1 ÞÑ ξ1, h2 ÞÑ ξ2s Ñ rh1 ÞÑ
0, h2 ÞÑ 0s, where ϕ1 “ Q1 Bob.move Q0 ; Q0 Bob.end Q2. Henceforth pQ1, h1q

is added to Z. There is also another problematic type: Q1
Bob.move

ñ Q0 : Ξ2 Ñ Ξ3,
because JΞ3ph1qK ‰ JΞ2ph1qK. In this case, the liquidity type of the abstract
computation Q0 Bob.end Q2 (still in T1

Q0) satisfies the liquidity constraint. We
leave this check to the reader.

The correctness of the algorithm follows from Theorem 3. For example, as-
sume that step 2.2 returns Q

ϕ
ñ Q1 : Ξ Ñ Ξ 1 where Ξ 1pkq “ 0 and Ξ 1phzkq “

Ξphzkq. Then, for every initial memory ℓ, the concrete computation correspond-
ing to ϕ ends in a memory ℓ1 such that Epℓ1q|k ď JσpΞ 1|kqK “ Jσprk ÞÑ 0sqK “
rk ÞÑ 0s (for every σ) and Epℓ1q|hzk ď JσpΞ 1|hzkqK “ Jσprhzk ÞÑ ξsqK “ rk ÞÑ 1s, by

taking a σ “ rξ ÞÑ 1s. As regards termination, the set Z increases at every iter-
ation. When no other pair can be added to Z (and we have not already exited)
the algorithm terminates by declaring the contract as liquid.

Proposition 2. Let $ C : L. If the algorithm of Table 4 returns that C is liquid
then it is liquid. Additionally, the algorithm always terminates.

The computational cost of liquidity is the following. Let n be the size of the
Stipula contract (the number of functions, prefixes and conditionals in the code),
h be the number of assets, m be the number of states and m1 be the number of
functions. Then

– the cost of the inference of liquidity types is linear with respect to the size
of the contract, i.e. Opnq;

– the length of κ-canonical traces starting in a state is less than κˆm1; therefore
the cardinality of Tκ

Q is bounded by
ř

0ďiďκˆm1 i!. The cost of computing Tκ
Q ,

for every Q, and the liquidity types of the elements therein is proportional
to the number of κ-canonical traces, which are N “ m ˆ p

ř

0ďiďκˆm1 i!q;

– the cost for verifying steps 2 and 3 of the algorithm is OpN ˆ N ˆ 2hq
because, for every κ-canonical trace and every subset of h, we must look for
a κ-canonical trace satisfying step 3.

Therefore the overall cost of the algorithm is Opn`N `N2 ˆ 2hq, which means
it is OpN2q, i.e. exponential with respect to m1, assuming the other values are
in linear relation with m1.

6 Related works

Liquidity properties have been put forward by Tsankov et al. in [14] as the prop-
erty of a smart contract to always admit a trace where its balance is decreased
(so, the funds stored within the contract do not remain frozen). Later, Barto-
letti and Zunino in [3] discussed and extended this notion to a general setting –
the Bitcoin language – that takes into account the strategy that a participant
(which is possibly an adversary) follows to perform contract actions. More pre-
cisely, they observe that there are many possible flavours of liquidity, depending
on which participants are assumed to be honest and on what are the strategies.
In the taxonomy of [3, 2], the notion of liquidity that we study in this work is the

so-called multiparty strategyless liquidity, which assumes that all the contract’s
parties cooperate by actually calling the functions provided by the contract. We
notice that, without cooperation, there is no guarantee that a party that has the
permission to call a function will actually call it.

Both [14] and [3, 2] adopt a model checking technique to verify properties
of contracts. However, while [14] uses finite state models and the Uppaal model
checker to verify the properties, [3, 2] targets infinite state system and reduces
them to finite state models that are consistent and complete with respect to
liquidity. This mean that the technique of [3, 2] is close to ours (we also target
infinite state models and reduce to finite sets of abstract computations that
over-approximate the real ones), even if we stick to a symbolic approach. Last,
the above contributions and the ones we are aware of in the literature always
address programs with one asset only (the contract balance). In this work we
have understood that analyzing liquidity in programs with several different assets
is way more complex than the case with a single asset.

A number of research projects are currently investigating the subject of
resource-aware programming, as the prototype languages Obsidian [6] Nomos [9,
4], Marlowe [12] and Scilla [13]. As discussed in the empirical study [6], pro-
gramming with linear types, ownership and assets is difficult and the presence of
strong type systems can be an effective advantage. In fact, the above languages
provide type systems that guarantee that assets are not accidentally lost, even if
none of them address liquidity. More precisely, Obsidian uses types to ensure that
owning references to assets cannot be lost unless they are explicitly disowned by
the programmer. Nomos uses a linear type system to prevent the duplication or
deletion of assets and amortized resource analysis to statically infer the resource
cost of transactions. Marlowe [12], being a language for financial contracts, does
not admit that money be locked forever in a contract. In particular, Marlowe’s
contracts have a finite lifetime and, at the end of the lifetime, any remaining
money is returned to the participants. In other terms, all contracts are liquid by
construction. In the extension of Stipula with events, the finite lifetime constraint
can be explicitly programmed: a contract issues an event at the beginning so that
at the timeout all the contract’s assets are sent to the parties. Finally, Scilla is an
intermediate-level language for safe smart contracts that is based on System F
and targets a blockchain. It is unquestionable that a blockchain implementation
of Stipula would bring in the advantages of a public and decentralised platform,
such as traceability and the enforcement of contractual conditions. Being Scilla
a minimalistic language with a formal semantics and a powerful type system, it
seems an excellent candidate for implementing Stipula.

7 Conclusions

We have studied liquidity, a property of programs managing resources that pin-
points those programs not freezing any resource forever. In particular we have
designed an algorithm and demonstrated its correctness.

We are currently prototyping the algorithm. Our prototype takes in input an
integer value κ and verifies liquidity by sticking to types in Tκ

Q . This allows us
to tune the precision of the analysis according to the contract to verify. We are
also considering optimisations that improve both the precision of the algorithms
and the performance. For example, the precision of the checks JΞ 1pkqK ‰ 0 and
JΞ 1pkqK ‰ JΞpkqK may be improved by noticing that the algebra of liquidity
expressions is a distributive lattice with min (0) and max (1). This algebra has
a complete axiomatization that we may implement (for simplicity sake, in this
paper we have only used min-max rules – see definition of JeK). Other optimiza-
tions we are studying allow us to reduce the number of canonical computations
to verify (such as avoiding repetition of cycles that modify only one asset).

Another research objective addresses the liquidity analysis in languages fea-
turing conditional transitions and events, such as the full Stipula [7]. These prim-
itives introduce internal nondeterminism, which may undermine state reacha-
bility and, for this reason, they have been dropped in this paper. In particular,
our analysis might synthesize a computation containing a function whose execu-
tion depends on values of fields that never hold. Therefore the computation will
never be executed (it is a false positive) and must be discarded (and the contract
might be not liquid). To overcome these problems, we will try to complement
our analysis with an (off-the-shelf) constraint solver technique that guarantees
the reachability of states of the computations synthesized by our algorithms.

Acknowledgments. We thank the FACS 2022 referees for their careful reading
and many constructive suggestions on the submitted paper.

References

1. Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen, and Cosimo
Laneve. Engineering virtualized services. In NordiCloud ’13, volume 826 of ACM
International Conference Proceeding Series, pages 59–63. ACM, 2013.

2. Massimo Bartoletti, Stefano Lande, Maurizio Murgia, and Roberto Zunino. Ver-
ifying liquidity of recursive bitcoin contracts. Log. Methods Comput. Sci., 18(1),
2022.

3. Massimo Bartoletti and Roberto Zunino. Verifying liquidity of Bitcoin contracts. In
Principles of Security and Trust, pages 222–247. Springer International Publishing,
2019.

4. Sam Blackshear, David L. Dill, Shaz Qadeer, Clark W. Barrett, John C. Mitchell,
Oded Padon, and Yoni Zohar. Resources: A safe language abstraction for money.
CoRR, abs/2004.05106, 2020. URL: https://arxiv.org/abs/2004.05106.

5. Harris Brakmić. Bitcoin Script, pages 201–224. Apress, Berkeley, CA, 2019.

6. Michael J. Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. Can
advanced type systems be usable? An empirical study of ownership, assets, and
typestate in Obsidian. Proc. ACM Program. Lang., 4(OOPSLA):132:1–132:28,
2020.

7. Silvia Crafa, Cosimo Laneve, and Giovanni Sartor. Pacta sunt servanda: legal
contracts in Stipula. Technical report, arXiv:2110.11069, 10 2021.

8. Chris Dannen. Introducing Ethereum and Solidity: Foundations of Cryptocurrency

and Blockchain Programming for Beginners. Apress, Berkely, USA, 2017.
9. A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and I. Santurkar. Resource-aware ses-

sion types for digital contracts. In IEEE 34th CSF, pages 111–126. IEEE Computer
Society, 2021.

10. Mudabbir Kaleem, Anastasia Mavridou, and Aron Laszka. Vyper: A security com-
parison with Solidity based on common vulnerabilities. In BRAINS 2020, pages
107–111. IEEE, 2020.

11. Steve Klabnik and Carol Nichols. The RUST programming language. No Starch
Press, 2019.

12. Pablo Lamela Seijas, Alexander Nemish, David Smith, and Simon J. Thompson.
Marlowe: Implementing and analysing financial contracts on blockchain. In Fi-

nancial Cryptography and Data Security, volume 12063 of LNCS, pages 496–511.
Springer, 2020.

13. Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov,
and Ken Chan Guan Hao. Safer smart contract programming with scilla. Proc.

ACM Program. Lang., 3(OOPSLA):185:1–185:30, 2019.
14. Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Flo-

rian Bünzli, and Martin T. Vechev. Securify: Practical Security Analysis of Smart
Contracts. In Proc. ACM SIGSAC Conference on Computer and Communications

Security, pages 67–82. ACM, 2018.

