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—— Abstract

We establish a tight connection between two models of the A-calculus, namely Milner’s encoding

into the m-calculus (precisely, the Internal m-calculus), and operational game semantics (OGS). We
first investigate the operational correspondence between the behaviours of the encoding provided by
m and OGS.

We do so for various LTSs: the standard LTS for 7 and a new “concurrent” LTS for OGS; an
“output-prioritised” LTS for m and the standard alternating LTS for OGS. We then show that the
equivalences induced on A-terms by all these LTSs (for 7 and OGS) coincide.

These connections allow us to transfer results and techniques between m and OGS. In particular
we import up-to techniques from 7 onto OGS and we derive congruence and compositionality
results for OGS from those of 7. The study is illustrated for call-by-value; similar results hold for
call-by-name.
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1 Introduction

The topic of the paper is the comparison between Operational Game semantics (OGS) and
the m-calculus, as generic models or frameworks for the semantics of higher-order languages.

Game semantics [4,20] provides intentional models of higher-order languages, where the
denotation of a program brings up its possible interactions with the surrounding context.
Distinct points of game semantics are the rich categorical structure and the emphasis on
compositionality. Game semantics provides a modular characterization of higher-order
languages with computational effects like control operators [25], mutable store [3,5] or
concurrency [15,27]. This gives rise to the “Semantic Cube” [2], a characterization of the
absence of such computational effects in terms of appropriate restrictions on the interactions,
with conditions like alternation, well-bracketing, visibility or innocence. For instance, well-
bracketing corresponds to the absence of control operators like call/cc.

Game semantics has spurred Operational Game Semantics (OGS) [16,23,24,28,30], as a
way to describe the interactions of a program with its environment by embedding programs
into appropriate configurations and then defining rules that turn such configurations into
an LTS. Besides minor differences on the representation of causality between actions, the
main distinction with “standard” game semantics is in the way in which the denotation
of programs is obtained: via an LTS, rather than, compositionally, by induction on the
structure of the programs (or their types). It is nonetheless possible to establish a formal
correspondence between these two representations [30].
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OGS is particularly effective on higher-order programs. To avoid being too intensional,
functional values exchanged between the program and its environment are represented as
atoms, seen as free variables. Therefore OGS configurations include open terms. The basic
actions in the LTS produced by OGS represent the calls and returns of functions between a
program and its environment. The OGS semantics has been shown fully-abstract, that is, to
characterize observational equivalence, for a wide class of programming languages, including
effectful subsets of ML [22,28], fragments of Java [24], aspect-oriented programs [23]. The
conditions in the above-mentioned Semantic Cube (alternation, well-bracketing, etc.) equally
apply to OGS.

In this paper, we consider forms of OGS for the pure untyped call-by-value A-calculus,
which enforce some of such conditions. Specifically we consider: an Alternating OGS, where
only one term can be run at a time, and the control on the interactions alternates between
the term and the environment; and a Concurrent OGS, where multiple terms can be run in
parallel.

The m-calculus is the paradigmatical name-passing calculus, that is, a calculus where
names (a synonym for “channels”) may be passed around. In the literature about the
m-calculus, and more generally in Programming Language theory, Milner’s work on functions
as processes [33], which shows how the evaluation strategies of call-by-name A-calculus and
call-by-value A-calculus [1,35] can be faithfully mimicked, is generally considered a landmark.
The work promotes the 7-calculus to be a model for higher-order programs, and provides
the means to study A-terms in contexts other than the purely sequential ones and with the
instruments available to reason about processes. In the paper, m-calculus is actually meant to
be the Internal m-calculus (Im), a subset of the original m-calculus in which only fresh names
may be exchanged among processes [41]. The use of Ir avoids a few shortcomings of Milner’s
encodings, notably for call-by-value; e.g., the failure of the 3, rule (i.e., the encodings of
(Az. M)V and M{V/z} may be behaviourally distinguishable in 7).

Further investigations into Milner’s encodings [11,42] have revealed what is the equivalence
induced on A-terms by the encodings, whereby two A-terms are equal if their encodings are
behaviourally equivalent (i.e., bisimilar) I terms. In call-by-value, this equivalence is eager
normal-form bisimilarity [29], a tree structure proposed by Lassen (and indeed sometimes
referred to as “Lassen’s trees”) as the call-by-value counterpart of Bohm Trees (or Lévy-Longo
Trees).

In a nutshell, when used to give semantics to a language, major strengths of the 7-calculus
are its algebraic structure and the related algebraic properties and proof techniques; major
strengths of OGS are its proximity to the source language — the configurations of OGS are
built directly from the terms of the source language, as opposed to an encoding as in the
m-calculus — and its flexibility — the semantics can be tuned to account for specific features
of the source language like control operators or references.

The general goal of this paper is to show that there is a tight and precise correspond-
ence between OGS and m-calculus as models of programming languages and that such a
correspondence may be profitably used to take advantage of the strengths of the two models.
We carry out the above program in the specific case of (untyped) call-by-value A-calculus,
Ay, which is richer and (as partly suggested above) with some more subtle aspects than
call-by-name. However similar results also hold for call-by-name; see [21] for the technical
details for more comments on it. Analogies and similarities between game semantics and
m-calculus have been pointed out in various papers in the literature (e.g., [6,19]; see Section 9),
and used to, e.g., explain game semantics using m-like processes, and enhance type systems
for m-terms. In this paper, in contrast, we carry out a direct comparison between the two
models, on their interpretation of functions.
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We take the (arguably) canonical representations of Ay into Ir and OGS. The latter
representation is Milner’s encoding, rewritten in Ir. We consider two variant behaviours for
the Ir terms, respectively produced by the ordinary LTS of Iw, and by an “output-prioritised”
LTS, opLTS, in which input actions may be observed only in the absence of outputs and
internal actions. Intuitively, the opLTS is intended to respect sequentiality constraints in the
Im terms: an output action stands for an ongoing computation (for instance, returning the
result of a previous request) whereas an input action starts a new computation (for instance,
a request of a certain service); therefore, in a sequential system, an output action should
have priority over input actions. For OGS, the Ay representation is the straightforward
adaptation of the OGS representations of typed A-calculi in the literature, e.g., [28].

We then develop a thorough comparison between the behaviours of the OGS and Iw
representations. For this we define a mapping from OGS configurations to Im processes.
We also exploit the fact that, syntactically, the actions in the OGS and Im LTSs are the
same. We derive a tight correspondence between the two models, which allows us to transfer
techniques and to switch freely between the two models in the analysis of the OGS and Ix
representations of Ay, so to establish new results or obtain new proofs. On these aspects,
our main results are the following:

1. We show that the representation of Ay in the Alternating OGS is behaviourally the same
as the representation in Ir assuming the opLTS. Thus the semantics on A-terms induced
by the OGS and Ir representations coincide. The same results are obtained between the
Concurrent OGS and Ir under its ordinary LTS.

2. We transfer “bisimulation up-to techniques” for Iw, notably a form of “up-to context”,
onto (Concurrent) OGS. The result is a powerful technique, called “up-to composition”
that allows us to split an OGS configuration into more elementary configurations during
the bisimulation game.

3. We show that the semantics induced on Ay by the Alternating and by the Concurrent
OGS are the same, both when the equality in OGS is based on traces and when it is based
on bisimulation. In other words, all the OGS views of Ay (Alternating or Concurrent,
traced-based or bisimulation-based) coincide. Moreover, we show that such induced
semantics is the equality of Lassen’s trees. We derive the result in two ways: one in which
we directly import it from Im; the other in which we lift eager normal-form bisimulations
into OGS bisimulations via the up-to-composition technique.

4. We derive congruence and compositionality properties for the OGS semantics, as well as
a notion of tensor product over configurations that computes interleavings of traces.

The results about OGS in (2-4) are obtained exploitingthe mapping into Ir and its
algebraic properties and proof techniques, as well as the up-to-composition technique for
OGS imported from Ir.

Structure of the paper. Sections 2 to 5 contain background material: general notations,
In, Ay, the representations of Ay in the Alternating OGS (A-OGS) and in Ir. The following
sections contain the new material. In Section 6 we study the relationship between the two
Ay representations, in I7 using the output-prioritised LTS. In Section 7 we establish a similar
relationship between a new Concurrent OGS (C-OGS) and Ir using its ordinary LTS. We
also transport up-to techniques onto OGS, and prove that all the semantics of Ay examined
(OGS, I, traces, bisimulations) coincide. We import compositionality results for OGS from
I in Section 8.
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2 Notations

In the paper, we use various LTSs and behavioural relations for them, both for OGS and for
the m-calculus. In this section, we introduce or summarise common notations.

We use a tilde, like in @, for (possibly empty) tuples of objects (usually names). Let
K L>g K’ be a generic LTS (for OGS or Ir; the grammar for actions in the LTSs for OGS
and Ir will be the same). Actions, ranged over by i, can be of the form a(b), a(b), 7, and (@),
where 7, called silent or (invisible) action, represents an internal step in K, that is, an action
that does not require interaction with the outside, and (a) is a special action performed by
abstractions in Ir and initial configurations in OGS. If u # 7 then u is a visible action; we
use £ to range over them. We sometimes abbreviate ;>g as —. We write =, for the

reflexive and transitive closure of L>g. We also write K :“>g K it K :>gi>g:>g K’

(the composition of the three relations. Then :“>g is :“>g if p#7,and =4 if p=1.

Traces, ranged over by s, are finite (and possibly empty) sequences of visible actions.
Ifs=4¢,...,4, (n > 0), then K :S>g K’ holds if there are Ky,..., K, with Ky = K,
K, =K', and K; 25 K,y for 0 < i < n; and K =5 if there is K’ with K =, K'.

Two states K1, K of the LTS are trace equivalent, written Ky =~; Ko, if (K3 :s>g iff
Ky ==,), for all s.

Similarly, bisimilarity, written =, is the largest symmetric relation on the state of the

LTS such that whenever K; ~, K5 then K; :ﬂ>g K| implies there is K} with Ky :ﬂ>g K}
and K| =, Kj. For instance, in the Ir LTS £ - of Section 3.1, P =, @ means that the Ir
processes P and () are trace equivalent, and P =, () means that they are bisimilar.

» Remark 1 (bound names). In an action a(b) or @(b) or (b), name a is free whereas b are
bound; the free and bound names of a trace are defined accordingly. Throughout the paper,
in any statement (concerning OGS or Ir), the bound names of an action or of a trace that
appears in the statement are supposed to be all fresh; i.e., all distinct from each other and
from the free names of the objects in the statement.

3 Background

3.1 The Internal w-calculus

The Internal m-calculus, I, is, intuitively, a subset of the m-calculus in which all outputs
are bound. This is syntactically enforced by having outputs written as E(g) (which in the
m-calculus would be an abbreviation for vb E(B) All tuples of names in I7 are made of
pairwise distinct components. Abstractions are used to write name-parametrised processes,
for instance, when writing recursive process definitions. The instantiation of the parameters
of an abstraction B is done via the application construct B(a). Processes and abstractions
form the set of agents, ranged over by T. Lowercase letters a,b,...,x,y, ... range over the

infinite set of names. The grammar of Iz is thus:

P
B

0 | a(g).P | E(E).P | vaP | P | P, | la(b). P | B(a) (processes)
(@ P | K (abstractions)

> 1>

The operators have the usual meaning; we omit the standard definition of free names, bound
names, and names of an agent, respectively indicated with fn(—), bn(—), and n(—).
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In the grammar, X is a constant, used to write recursive definitions. Each constant K has
a defining equation of the form K £ () P, where (&) P is name-closed (that is, without free
names); & are the formal parameters of the constant. Replication could be avoided in the
syntax since it can be encoded with recursion. However, its semantics is simple, and it is
useful in encodings.

An application redex ((Z)P)(a) can be normalised as P{a/Z}. An agent is normalised if
all such application redexes have been contracted. In the remainder of the paper we identify
an agent with its normalised expression.

Since the calculus is polyadic, we assume a sorting system [32] to avoid disagreements in
the arities of the tuples of names Being not essential, it will not be presented here.

Operational semantics and behavioural relations

In the LTS for Ir, recalled in [21] transitions are of the form T -5, T’, where the bound
names of p are fresh, i.e., they do not appear free in T

Trace equivalence (=) and bisimilarity (=) have been defined in Section 2. We refer
to [21] for the standard definition of expansion, written <. (The expansion relation <, is
an asymmetric variant of /z,; in which, intuitively, P <, @ holds if P =, @ but also @ has
at least as many 7-moves as P.) All behavioural relations are extended to abstractions by

requiring ground instantiation of the parameters; this is expressed by means of a transition;

e.g., the action (z) P @M P.

The “up-to” techniques

The “up-to” techniques allow us to reduce the size of a relation R to exhibit for proving
bisimilarities. Our main up-to technique will be up-to context and expansion [40], which
admits the use of contexts and of behavioural equivalences such as expansion to achieve the
closure of a relation in the bisimulation game. So the bisimulation clause becomes:

if PR Q and P -5 P” then there are a static context Ctyy and processes P’ and Q' s.t.

P" ;2 Cetx[P'], Q = 12 Coty[Q'] and P’ R Q' (%)
where a static context is a context of the form vé (R | []).

We will also employ: bisimulation up-to ~, [31], whereby bisimilarity itself is employed
to achieve the closure of the candidate relation during the bisimulation game; a variant
of bisimulation up-to context and expansion, called bisimulation up-to context and up-to
(22, &~z ), in which, in (*), when p is a visible action, expansion is replaced by the coarser
bisimilarity, at the price of imposing that the static context C¢x cannot interact with the
processes P or Q). (This technique, as far as we know, does not appear in the literature.)
Details on these techniques may be found in [21].

3.2 The Call-By-Value \-calculus

The grammar of the untyped call-by-value A-calculus, Ay, has values V', terms M, evaluation
contexts F, and general contexts C:

Vals \%4
Terms M, N

z | Ao M ECtxs E 2 [] | VE | EM
V| MN Ctxs C 2 []| x.C | MC | CM

> 1>

where [-] stands for the hole of a context. The call-by-value reduction —, has two rules:

M —, N
Ae. M)V —, M{V/x} E[M] —y E[N]

25:5
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In the following, we write M || M’ to indicate that M =, M’ with M’ an eager normal
form, that is, either a value or a stuck call E[zV].

4 Operational Game Semantics

We introduce the representation of Ay in OGS. The LTS produced by the embedding of a
term intends to capture the possible interactions between this term and its environment.
Values exchanged between the term and the environment are represented by names, akin to
free variables, called variable names and ranged over by z,y, z. Continuations (i.e., evaluation
contexts) are also represented by names, called continuation names and ranged over by p, g, .

Actions p have been introduced in Section 2. In OGS, we have five kinds of (visible)
actions:

Player Answers (PA), p(x), and Opponent Answers (OA), p(z), that exchange a variable

x through a continuation name p;

Player Questions (PQ), z(y,p), and Opponent Questions (0Q), z(y,p), that exchange a

variable y and a continuation name p through a variable z;

Initial Opponent Questions (I10Q), (p), that introduce the initial continuation name p.

» Remark 2. The denotation of terms is usually represented in game semantics using the
notion of pointer structure rather than traces. A pointer structure is defined as a sequence of
moves, together with a pointer from each move (but the initial one) to a previous move that
“justifies” it. Taking a trace s, one can reconstruct this pointer structure in the following way:
an action p is justified by an action p’ if the free name of u is bound by p’ in s (here we are
taking advantage of the “freshness” convention on the bound names of traces, Remark 1).

Environments, ranged over by ~, maintain the association from names to values and
evaluations contexts, and are partial maps. A single mapping is either of the form [z +— V]
(the variable = is mapped onto the value V), or [p — (E,q)] (the continuation name p is
mapped onto the pair of the evaluation context E and the continuation g).

There are two main kinds of configurations F: active configurations (M,p,~,$) and
passive configurations {7, @), where M is a term, p a continuation name, v an environment
and ¢ a set of names called its name-support. Names in dom(vy) are called P-names, and
those in ¢\dom(y) are called O-names. So we obtain a polarity function poly associated to
F, defined as the partial maps from ¢ to {O, P} mapping names to their polarity. In the
following, we only consider valid configurations, for which:

dom(y) € ¢

fv(M),p are O-names;

for all a € dom(7), the names appearing in y(a) are O-names.

The LTS is introduced in Figure 1. It is called Alternating, since, forgetting the Pr
transition, it is bipartite between active configurations that perform Player actions and
passive configurations that perform Opponent actions. Accordingly, we call Alternating the
resulting OGS, abbreviated A-OGS. In the OA rule, E is “garbage-collected” from ~, a
behavior corresponding to linear continuations.

The term of an active configuration determines the next transition performed. First,
the term needs to be reduced, using the rule (P7). When the term is a value V, a Player
Answer (PA) is performed, providing a fresh variable x to Opponent, while V' is stored in v
at position z. Freshness is enforced using the disjoint union W. When the term is a callback
E[zV], with p the current continuation name, a Player Question (PQ) at z is performed,
providing two fresh names y, ¢ to Opponent, while storing V" at y and (E,p) at ¢ in 7.
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(P1) | (M,p,7,9) %a (N,p,v,9) when M —, N
(PA) | (V,p,7, ) " e V]gu {a))

(PQ) | (EV].pvd) L (vl V] la— (B,p) o {y,q})
©04) | {(y-lam (B o) B, (Blel.py. o8 {2})

0Q) | (7.9) WV py, 8 {y,pl)  when y(z) =V
(I0Q) | {7+ M], ¢) W (Myp,e, 6w {p)

Figure 1 The LTS for the Alternating OGS (A-OGS).

VIVI= () 5)- V' [VIy) VD2 M] = (y) Wy(z,q). VIMIe)  V*[2] = () yoo
VIMN] £ (p) vq (VIM](g) | a(y)-vr (VINI(r) | r(w). 5w, p). (w'>w | p'ep)))

Figure 2 The encoding of call-by-value A-calculus into Ix.

On passive configurations, Opponent has the choice to perform different actions. It can

perform an Opponent Answer (OA) by interrogating an evaluation context F stored in .

For this, Opponent provides a fresh variable x that is plugged into the hole of F, while
the continuation name ¢ associated to F in « is restored. Opponent may also perform
an Opponent Question (0OQ), by interrogating a value V stored in 7. For this, Opponent
provides a fresh variable y as an argument to V.

To build the denotation of a term M, we introduce an initial configuration associated
with it, written ([? — M], ¢), with ¢ the set of free variables we start with. When this set is
taken to be the free variables of M, we simply write it as (M). In the initial configuration,
the choice of the continuation name p is made by performing an Initial Opponent question
(I0Q). (Formally, initial configurations should be considered as passive configurations.)

5 The encoding of call-by-value A-calculus into the w-calculus

We recall here Milner’s encoding of call-by-value A-calculus, transplanted into Iw. The core of

any encoding of the A-calculus into a process calculus is the translation of function application.

This becomes a particular form of parallel combination of two processes, the function, and
its argument; S-reduction is then modelled as a process interaction.

As in OGS, so in Ir the encoding uses continuation names p,q,r, ..., and variable names
x,y,v,w.... Figure 2 presents the encoding. Process a > b represents a link (sometimes

called forwarder; for readability we have adopted the infix notation a > b for the constant ).

It transforms all outputs at a into outputs at b thus the body of a > b is replicated, unless a
and b are continuation names:

a (p,q).-p(x).q(y).y>x if p, g are continuation names
B (z,y). '2(z,p). 7(w,q). (¢g>p | wr z) if x,y are variable names

The equivalence induced on call-by-value A-terms by their encoding into I coincides with
Lassen’s eager normal-form (enf) bisimilarity [29]. That is, V[M] ~, V[N] iff M and N
are enf-bisimilar [11]. In proofs about the behaviour of the Ir representation of A-terms we
sometimes follow [11] and use an optimisation of Milner’s encoding, reported in [21].

25:7
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Encoding of environments: Encoding of configurations:
Viy= V1T £ VIV [ VIY] VM, p, v, )] = VIMIp) | V]
Vllam (E,0)]-v] = a(@)-VIERp) | VIY] Viiv.ol = Vbl
V] & 0 V(7= M],¢)] 2 V[M]

Figure 3 From OGS environments and configurations to Ir.

6 Relationship between It and A-OGS

To compare the A-OGS and I representations of the (call-by-value) A-calculus, we set a
mapping from A-OGS configurations and environments to Ir processes. The mapping is
reported in Figure 3. It is an extension of Milner’s encoding of the A-calculus and is therefore
indicated with the same symbol V. The mapping uses a representation of environments v as
associative lists.

» Remark 3. The encoding of a configuration F' with name-support ¢ does not depend
on ¢. This name-support ¢ is used in OGS both to enforce freshness of names, and to
deduce the polarity of names, as represented by the function pol. And indeed, the process
V[F] has its set of free names included in ¢, and uses P-names in outputs and O-names in
inputs. The polarity property could be stated in 7-calculus using i/o-sorting [34]. Indeed, a
correspondence between arenas of game semantics (used to enforce polarities of moves) and
sorting has been explored [18,19].

6.1 Operational correspondence

The following theorems establish the operational correspondence between the A-OGS and
I representations. In Theorem 4, as well as in following theorems such as Theorems 5, 7,
and 13, the appearance of the expansion relation .= (in place of the coarser ~), in the
statement about silent actions, is essential, both to derive the statement in the theorems
about visible actions and to use the theorems in up-to techniques for Ir (more generally, in
applications of the theorems in which one reasons about the number of steps performed).

» Theorem 4.
1. If F =, F', then V[F] =, . V[F'];
2. If F =5, F', then V[F] ==» ~x V[F'].

» Theorem 5.
1. If V[F] = P then there is F' such that F =, F' and P .2 V[F'] ;

2. If V[F] =L P and { is an output, then there is F' such that F L, F' and P 2 VIF'];
3. If F is passive and V[F] =55 P, then there is F' such that F ==, F' and P ~ V[F'].

In Theorem 5, a clause is missing for input actions from V[F] when F active. Indeed such
actions are possible in Ir, stemming from the (encoding of the) environment of F', whereas

they are not possible in A-OGS. This is rectified in Section 6.2, introducing a constrained
LTS for Ir, and in Section 7, considering a concurrent OGS.

» Corollary 6. If F ==, then also V[F] ==,.
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6.2 An output-prioritised Transition System

We define an LTS for Ir in which input actions are visible only if no output can be consumed,
either as a visible action or through an internal action (i.e., syntactically the process has
no unguarded output). The new LTS, called output-prioritised and indicated as opLTS, is
defined on the top of the ordinary one by means of the two rules below. A process P is input
reactive if whenever P 5 P’, for some j, P’ then y is an input action.

P - P P input reactive PP

m — I is an output or 7 action
P, P P P

The opLTS captures an aspect of sequentiality in m-calculi: a free input prefix is to be
thought of as a service offered to the external environment; in a sequential system such a
service is available only if there is no ongoing computations due to previous interrogations
of the server. An ongoing computation is represented by a T-action, indicating a step of
computation internal to the server, or an output, indicating either an answer to a client
or a request to an external server. The constraint imposed by the new LTS could also be
formalised compositionally, see [21].

Under the opLTS, the analogous of Theorem 4 continue to hold: in A-OGS configurations,
input transitions only occur in passive configurations, and the encodings of passive configura-
tions are input-reactive processes. However, now we have the full converse of Theorem 5 and,
as a consequence, we can also establish the converse direction of Corollary 6.

» Theorem 7.
1. If V[F] ==ox P then there is F' such that F =>, F’ and P > V[F'] ;

2. If V[F] ==ox P then there is F' such that F ==, F' and P ~, V[F'].
» Corollary 8. For any configuration F and trace s, we have F ==, iff V[F] ==or.

» Remark 9. We recall that, following Remark 1 on the usage of bound names, in Corollary 8
the bound names in s are fresh; thus they do not appear in F. (Similarly, in Theorems 5
and 7 for the bound names in ).

For both results we first establish a correspondence result on strong transitions. See [21]
for details.

» Remark 10. Corollary 8 relies on Theorems 4 and 7. The corollary talks about the opLTS
of Im; however the theorems make use of the ordinary expansion relation <., that is defined
on the ordinary LTS. Such uses of expansion can be replaced by expansion on the opLTS
(defined as ordinary expansion but on the opLTS). For more details on this, see [21].

As a consequence of Corollary 8, trace equivalence is the same, on A-OGS configurations
and on the encoding Im terms. Moreover, from Theorem 7 the same result holds under a
bisimulation semantics. Further, since the LTS produced by A-OGS is deterministic, its trace
semantics coincides with its bisimulation semantics. We can thus conclude as in Corollary 11.
We recall that =, and ~,, are, respectively, trace equivalence and bisimilarity between Ir
processes in the opLTS; similarly for =, and =, between A-OGS terms.

» Corollary 11. For any F,F’' we have: F =, F' iff V[F] =or V[F'] iff F =a F' iff
V[F] =0r V[F'].

Corollary 11 holds in particular when F is the initial configuration for a A-term. That is,
the equality induced on call-by-value A-terms by their representation in A-OGS and in Irx
(under the opLTS) is the same, both employing traces and employing bisimulation to handle
the observables for the two models.
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(P7) [ (A-lp—=M,y.6)  —c (A-[p—N7,9) when M —, N
(PA) | (A-po Vv 2o Az V], oW {a))

(PQ) | (A-[p ElV]v¢) Y (A ly— V]-[am (D), ¢ {y.q})
(04) | (Av-lp— (E.q),¢) "o (A lg— Ela]], 7,0 {a})

(0Q) | (A7,9) W (A [pes Vi), 68 {y,p}) when y(x) = V
(10Q) | {[? = M], ) W, (lpe M),e, 69 {p})

Figure 4 The LTS for the Concurrent OGS.

» Corollary 12. For any \-terms M, N, we have:
(M) =4 (N) iff (M) =a (N) iff VIM] =or VIN] iff V[M] ~or V[N].

From Theorem 5 and Corollary 8, it also follows that F' and V[F] are weakly bisimilar,
on the union of the respective LTSs.

7 Concurrent Operational Game Semantics

In this section, we explore another way to derive an exact correspondence between OGS and
Ir, by relaxing the Alternating LTS for OGS so to allow multiple terms in configurations to
run concurrently. We refer to the resulting OGS as the Concurrent OGS, briefly C-OGS (we
recall that A-OGS refers to the Alternating OGS of Section 4).

We introduce running terms, ranged over by A, B, as finite mappings from continuation
names to A-terms. A concurrent configuration is a triple (A,~, ¢) of a running term A, an
environment 7y, and a set of names ¢. Moreover, the domains of A and v must be disjoint.
We extend the definition of the polarity function, considering names in the domain of both
A and ~ as Player names.

Passive and active configurations can be seen as special case of C-OGS configurations
with zero and one running term, respectively. For this reason we still use F,G to range
over C-OGS configurations. Moreover we freely take A-OGS configurations to be C-OGS
configurations, and conversely for C-OGS configurations with zero and one running term,
omitting the obvious syntactic coercions. Both the running term and the environment may
be empty.

We present the rules of C-OGS in Figure 4. Since there is no more distinction between
passive and active configurations, a given configuration can perform both Player and Opponent
actions. Notice that only Opponent can add a new term to the running term A. A singleton
is a configuration F' whose P-support has only one element (that is, in C-OGS, F'is either of
the form ([p — M], e, @), or (g, [z — V], ¢), or (¢, [p — (F,q)], ®)).

In this and in the following section F, G ranges over C-OGS configurations, as reminded
by the index “c” in the symbols for LTS and behavioural equivalence with which F, G appear

(e.g., =¢).

7.1 Comparison between C-OGS and Iw

The encoding of C-OGS into Ir is a simple adaptation of that for A-OGS. We only have
to consider the new or modified syntactic elements of C-OGS, namely running terms and
configurations; the encoding remains otherwise the same. The encoding of running term is:

VIlp = M]- A] € V[M](p) | V[A] VIl <o
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The encoding of configurations is then defined as: V[(A4,~, ¢)] & V[A] | V[7]-

The results about operational correspondence between C-OGS and I are as those between
A-OGS and Im under the opLTS.

» Theorem 13.

1. If F = F' then V[F] =,2 V[F'];

2. if F == F' then V[F] ==~ V[F'];

3. the converse of (1), i.e. if V[F] = P then there is F' such that F =, F’ and
P .= V[F].

4. the converse of (2), i.e. if V[F] =L P then there is F' such that F ==, F' and
P =, V[F'].

» Corollary 14. For any C-OGS configuration F and trace s, we have F == iff V[F] == .
From Corollary 14 and Theorem 13, we derive:

» Lemma 15. For any F, F’ we have:
1. Fl = F2 ZﬁV[[Fl]] =~ V[[FQ]],
2. F1 e F2 ZﬁV[[Fﬂ] ~r V[[FQ]]

To derive the full analogous of Corollary 12, we now show that, on the I7 representation
of A-terms, trace equivalence is the same as bisimilarity. This result needs a little care: it is
known that on deterministic LTSs bisimilarity coincides with trace equivalence. However,
the behaviour of the I7 representation of a C-OGS configuration need not be deterministic,
because there could be multiple silent transitions as well as multiple output transitions (for
instance, in C-OGS rule OQ may be applicable to different terms).

» Lemma 16. For any M, N we have: V[M] =, V[N] iff V[M] =~ V[N].

The proof uses the “bisimulation up-to context and up-to (=, ~,)” technique. We can

finally combine Lemmas 16 and 15 to derive that the C-OGS and In semantics of A-calculus
coincide, both for traces and for bisimilarity.

» Corollary 17. For all M, N we have: (M) =, (N) iff (M) =. (N) iff V[M] =, V[N] iff
V[M] ~, V[N].

More details on proofs may be found in [21].

7.2 Tensor Product

We now introduce a way of combining configurations, which corresponds to the notion of
tensor product of arenas and strategies in (denotational) game semantics.

» Definition 18. Two concurrent configurations F,G are said to be compatible if their
polarity functions polg,pols are compatible — that is, for all a € dom(poly) N dom(pols),
we have polp(a) = polg(a).

» Definition 19. For compatible configurations F' = (A,~,¢) and G = (B, 4, '), the tensor
product F ® G is defined as F@ G2 (A-B,v-6,0U¢)

The polarity function of F®G is then equal to pol zUpol, and V[F1@F] = V[Fi] | V[F2],
where = is the standard structural congruence of m-calculi. In the following, we write
inter(sy, so) for the set of traces obtained from an interleaving of the elements in the
sequences s; and ss.
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» Lemma 20. Suppose Fy, Fy are compatible concurrent configurations. The set of traces
generated by Fy @ Fy is the union of the sets of interleaving inter(sy, s2), for Fi =L and
F =

The tensor product of A-OGS configurations is defined similarly, with the additional
hypothesis that at most one of the two configurations is active, in order for their tensor
product to be a valid A-OGS configuration. The details can be found in [21].

7.3 Up-to techniques for games

We introduce up-to techniques for C-OGS, which allow, in bisimulation proofs, to split two
C-OGS configurations into separate components and then to reason separately on these.
These up-to techniques are directly imported from Iw. Abstract settings for up-to techniques
have been developed, see [36,37]; but we cannot derive the OGS techniques from them
because these settings are specific to first-order LTS (i.e., CCS-like, without binders within
actions).

The new techniques are then used to prove that C-OGS and A-OGS yield the same
semantics on A-terms; a further application is in Section 7.5, discussing eager normal-form
bisimilarity.

A relation R on configuration is well-formed if it relates configurations with the same
polarity function. Below, all relations on configurations are meant to be well formed. Given
a well-formed relation R we write:

R! for the relation {(F},Fy) : 3G s.t. F; = F/ ®G (i =1,2) and F| R F}}.

RI* for the reflexive and transitive closure of Rl. Thus from F; R G and Fy R Go we

obtain (F1 X FQ) R‘* (Gl [024] FQ) R‘* G ® Gs.

=. RI* .« for the closure of R* under reductions. That is, F; = RI* .« F; holds if

there are F, i = 1,2 with F; =, F/ and F] RI* F}. (As = is reflexive, we may have

» Definition 21. A relation R on configurations is a bisimulation up-to reduction and
composition if whenever F; R F5:

1. if Fy 25 F| then there is Fj such that Fy =, F}y and F| =. R* < F} ;
2. the converse, on the transitions from Fy.

A variant of the technique in Definition 21, where the bisimulation game is played only
on visible actions at the price of being defined on singleton configurations is presented in [21]
and used in Section 7.5 to lift any eager normal form bisimulation to an OGS “bisimulation
up-to”.

» Theorem 22. [f R is bisimulation up-to reduction and composition then R C =..

The theorem is proved by showing that the I7 image of R is a bisimulation up-to context
and up-to (2, ~,), and appealing to Lemma 15(2). See [21] for details.

~)

» Remark 23. Results such as Corollary 17 and Theorem 22 might suggest that the equality
between two configurations implies the equality of all their singleton components. That is, if
F =~. G, with [p — M] part of F and [p — N] part of G, then also ([p — M]) = ([p — NJ).
A counterexample is given by the configurations

n Y ([p1 = M] - [p2 — Q) where M & (Az. Q) (zAy. Q)
def

Fy = lpr—= Q- [p2— M)
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Intuitively the reason why F; = Fj is that M can produce an output (along the variable ),
but an observer will never obtain access to the name at which M is located (p; or ps). That
is, the term M can interrogate x, but it will never answer, neither at p; nor at p,.

7.4 Relationship between Concurrent and Alternating OGS

In Section 6 we have proved that the trace-based and bisimulation-based semantics produced
by A-OGS and by Ir under the opLTS coincide. In Section 7.1 we have obtained the same
result for C-OGS and Ir under the ordinary LTS. In this section, we develop these results
so to conclude that all such equivalences for A-terms actually coincide. In other words,
the equivalence induced on A-terms by their representations in OGS and Ir is the same,
regardless of whether we adopt the alternating or concurrent flavour for OGS, the opLTS or
the ordinary LTS in I, a trace or a bisimulation semantics. For this, in one direction, we
show that the trace semantics induced by C-OGS implies that induced by A-OGS. In the
opposite direction, we lift a bisimulation over the alternating LTS on singleton configurations
into a bisimulation up-to composition over the concurrent LTS.

» Lemma 24. If I, Fy are A-OGS singleton configurations and Fy =, Fy, then also
Fl e F2.

Details may be found in [21].

» Corollary 25. For any \-terms M, N, the following statements are the same: (M) =, (N);
(M) ma (N); (M) =c (N); (M) ~c (N); V[M] =ox V[N]; V[M] ~or V[N]; V[M] =¢
V[N]; V[M] ~, V[N].

7.5 Eager Normal Form Bisimulations
We recall Lassen’s eager normal-form (enf) bisimilarity [29].

» Definition 26. An enf-bisimulation is a triple of relation on terms R, values Ry, and
evaluation contexts Ric that satisfies:

My Ry My if either:
both My, My diverge;
My | Eq[xVi] and My |} Es[xVa] for some x, values Vi, Va, and evaluation contexts
El,Eg with ‘/1 RV VQ and Kl R)C KQ,‘
My U Vi and Ms || Vo for some values Vi, Vo with Vi Ry Va.
Vi Ry Vo if Vix Raq Vax for some fresh x;
K1 Ry K if Kqi[z] Ry Kalz] for some fresh x.

The largest enf-bisimulation is called enf-bisimilarity.

From Corollary 25 and existing results in the m-calculus [11] we can immediately conclude
that the semantics on A-terms induced by OGS (Alternating or Concurrent) coincides with
enf-bisimilarity (i.e., Lassen’s trees).

In this section, we show a direct proof of the result, for C-OGS bisimilarity, as an example
of application of the up-to composition technique for C-OGS.

Terms, Values, and Evaluations contexts can be directly lifted to singleton concurrent
configurations, meaning that we can transform a relation on terms, values, and contexts R
into a relation R on singleton concurrent configurations in the following way:
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If (M1, M3) € R then (([p — Mi],€,9),([p = Mz, ¢)) € R, with ¢ = £v(My, My)w{p}
If (V1,V2) € R then (([z — V1], ¢), ([x = V2], 4)) € R, with ¢ = £v(V1,V2) W {z};

If (E1, Es) € R then (([p — (E1,q)],¢),{[p — (E2,q)],¢)) € R, with ¢ = £v(E;, E2) W
{r.q}-

» Theorem 27. Taking (R, Ry, Rx) an enf-bisimulation, then (’EA\/( U @U ﬁ;) is a
singleton bisimulation up-to composition in C-OGS (as defined in [21]).

Proof. Taking Fi, F5 two singleton configurations s.t. (Fy, F3) € 7€/\\4, then we can write
F; as ([p — M;],¢) for i = 1,2, such that (M;, M) € R. suppose that F} :>ci>c F,
with ¢ a Player action. We only present the Player Question case, which is where “up-to
composition” is useful. So writing ¢ as Z(y, q), F] can be written as ([y — V1] [¢ — (E1,p)]),
so that My —% Eq[zV4].

As (M17M2) €ER, there are FEy, Vo s.t. My —>$ EQ[Z‘VQ], (Vl,‘/g) € R and (El,EQ) eER.
Hence Fy =~ 5¢ F} with Ff = ([y = V3] - [g = (B2, p))). R

Finally, ({[y = Vi)), {[y = Val)) € R and ({[q > (E1,p))), (lg — (E2.p)])) € R, so that
(F{, F) € RI*.

The case of passive singleton configurations is proved in a similar way. <

8 Compositionality of OGS via Ix

We now present some compositionality results about C-OGS and A-OGS, that can be proved
via the correspondence between OGS and Ir.

Compositionality of OGS amounts to compute the set of traces generated by (M{V/z})
from the set of traces generated by (M) and ([x — V]]). This is the cornerstone of
(denotational) game semantics, where the combination of (M) and ([ + V) is represented
via the so-called “parallel composition plus hiding”. This notion of parallel composition of two
processes P, @ plus hiding over a name « is directly expressible in I as the process va(P | Q).
Precisely, suppose F, G are two configurations that agree on their polarity functions, but on
a name x; then we write

vae(F | G) )

for the In process va(V[F] | V[G]), the parallel composition plus hiding over x. To define
this operation directly at the level of OGS, we would have to generalize its LTS, allowing
internal interactions over a name x used both in input and in output.

As the translation V from OGS configurations into Ir validates the f3, rule, we can prove
that the behaviour of (M{V/xz}) (e.g., its set of traces) is the same as that of the parallel
composition plus hiding over z of (M) and {[z — V])). We use the notation (x) above to
express the following two results.

» Theorem 28. For < € {~on, X, Zon, =x}, we have

VI(p = M{V/a}],v, o U N pave(([p — Ml,e, oW {z}) | {v- [z — V], ¢ & {z}))

» Corollary 29. For any trace s:
L (M{V/x},p,7,0U ) =a iff ve((M,p,e, o W {a}) | (- [z = V],¢' & {z})) ==ox
2. ([p= M{V/2}],7,0U¢) = iff va(([p = Ml.e, o {a}) | (v-[z > V], ¢' 0 {z})) ==

Other important properties that we can import in OGS from In are the congruence
properties for the A-OGS and C-OGS semantics. We report the result for =,; the same
result holds for ~,, =, ~~..

» Theorem 30. If (M) =, (N) then for any Ay context C, (C[M]) =, (C[N]).
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The result is obtained from the congruence properties of Im, Corollary 25, and the
compositionality of the encoding V.

9 Related and Future Work

Analogies between game semantics and m-calculus, as semantic frameworks in which names
are central, have been pointed out from the very beginning of game semantics. In the
pioneering work [19], the authors obtain a translation of PCF terms into the m-calculus
from a game model of PCF by representing strategies (the denotation of PCF terms in the
game model) as processes of the m-calculus. The encoding bears similarities with Milner’s,
though they are syntactically rather different (“it is clear that the two are conceptually quite
unrelated”, [19]). The connection has been developed in various papers, e.g., [8,14,17,18,46].
Milner’s encodings into the m-calculus have sometimes been a source of inspiration in the
definition of the game semantics models (e.g., transporting the work [19], in call-by-name,
onto call-by-value [18]). In [46], a typed variant of m-calculus, influenced by differential linear
logic [13], is introduced as a metalanguage to represent game models. In [9], games are
defined using algebraic operations on sets of traces, and used to prove type soundness of a
simply-typed call-by-value A-calculus with effects. Although the calculus of traces employed
is not a m-calculus (e.g., being defined from operators and relations over trace sets rather
than from syntactic process constructs), there are similarities, which would be interesting to
investigate.

Usually in the above papers the source language is a form of A-calculus, that is interpreted
into game semantics, and the m-calculus (or dialects of it) is used to represent the resulting
strategies and games. Another goal has been to shed light into typing disciplines for 7-calculus
processes, by transplanting conditions on strategies such as well-bracketing and innocence
into appropriate typings for the m-calculus (see, e.g., [6,45]).

The results in this paper (e.g., operational correspondence and transfer of techniques)
are not derivable from the above works, where analogies between game semantics and 7-
calculus are rather used to better understand one of the two models (i.e., explaining game
semantics in terms of process interactions, or enhancing type systems for processes following
structures in game semantics). Indeed, in the present paper we have carried out a direct
comparison between the two models (precisely OGS and Ir). For this we have started from
the (arguably natural) representations of the A-calculus into OGS and Ir (the latter being
Milner’s encodings). Our goal was understanding the relation between the behaviours of the
terms in the two models, and transferring techniques and results between them.

Technically, our work builds on [10,11], where a detailed analysis of the behaviour of
Milner’s call-by-value encoding is carried out using proof techniques for m-calculus based
on unique-solution of equations. Various results in [10,11] are essential to our own (the
observation that Milner’s encodings should be interpreted in Iz rather than the full 7w-calculus
is also from [10, 11]).

Bisimulations over OGS terms, and tensor products of configurations, were introduced
in [30], in order to provide a framework to study compositionality properties of OGS. In
our case, the compositionality result of OGS is derived from the correspondence with the
m-calculus. In [39], a correspondence between an i/o typed asynchronous w-calculus and
a computational A-calculus with channel communication is established, using a common
categorical model (a compact closed Freyd category). It would be interesting to see if our
concurrent operational game model could be equipped with this categorical semantics.
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Normal form (or open) bisimulations [29,43], as game semantics, manipulate open terms,
and sometimes make use of environments or stacks of evaluation contexts (see, e.g., the
recent work [7], where a fully abstract normal-form bisimulation for a A-calculus with store
is obtained).

There are also works that build game models directly for the w-calculus, i.e., [12,26,27,38]
A correspondence between a synchronous m-calculus with session types and concurrent game
semantics [44] is given in [8], relating games (represented as arenas) to session types, and
strategies (defined as coincident event structures) to processes. We have exploited the full
abstraction results between OGS and I to transport a few up-to techniques for bisimulation
from Im onto OGS. However, in I, there are various other such techniques, even a theory of
bisimulation enhancements. We would like to see which other techniques could be useful in
OGS, possibly transporting the theory of enhancements itself.
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