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THE DISTANCE FUNCTION
IN THE PRESENCE OF AN OBSTACLE

PAOLO ALBANO, VINCENZO BASCO, AND PIERMARCO CANNARSA

Abstract. We study the Riemannian distance function from a
fixed point (a point-wise target) of Euclidean space in the pres-
ence of a compact obstacle bounded by a smooth hypersurface.
First, we show that such a function is locally semiconcave with
a fractional modulus of order one half and that, near the obsta-
cle, this regularity is optimal. Then, in the Euclidean setting, we
prove that the singularities of the distance function propagate, in
the sense that each singular point belongs to a nontrivial singular
continuum. Finally, we investigate the lack of differentiability of
the distance function when a convex obstacle is present.

1. Introduction and statement of the results

We study the distance function d from a fixed point of Rn in the
presence of an obstacle, O, bounded by a C2 hypersurface. We are
interested in two main issues, namely:

• the regularity of d up to the boundary of O, and
• the analysis of the singularities of d (i.e. points where the dis-

tance function is not differentiable) on Rn \ O.

For simplicity, we may assume that

(O) O is the closure of a bounded connected open subset of Rn with
boundary of class C2, such that Rn \ O is connected.

In order to define the distance function, let us consider a family of
positive definite quadratic forms with C2 coefficients

R
n ∋ x 7→ A(x),

and the set of all the “subunit” curves

Γ = {γ ∈ AC(0,+∞;Rn \ O) | for a.e. t ≥ 0, 〈A(γ(t))γ̇(t), γ̇(t)〉 ≤ 1}.
Date: October 25, 2021.
2010 Mathematics Subject Classification. 49J52, 26A27, 26B25, 49L2.
Key words and phrases. distance function, state contraints, semiconcave func-

tions, singularities.
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For every x ∈ Rn \ O, we define

Γ[x] = {γ ∈ Γ | γ(0) = x}.
Let k0 ∈ Rn \ O be fixed, set

τ(γ) = inf{t ≥ 0 | γ(t) = k0} ∈ [0,+∞],

and consider the following constrained minimization problem

(1.1) inf
γ∈Γ[x]

τ(γ).

We observe that the problem above can be seen as a constrained mini-
mum time problem with a point-wise target. Then, the distance func-
tion of x from k0 is given by

(1.2) d(x) = inf
γ∈Γ[x]

τ(γ), x ∈ Rn \ O.

Remark 1.1. We observe that the assumption “Rn \ O is connected”

ensures that Γ[x] 6= ∅, for every x ∈ Rn \ O, i.e., d(x) is finite for

every x ∈ Rn \ O.

We recall that d is the viscosity solution of a suitable boundary value
problem for the eikonal equation (see, e.g., Theorem X.1 in [18])

(1.3) 〈A−1(x)Dd(x), Dd(x)〉 = 1 in R
n \ (O ∪ {k0}),

where A−1 denotes the inverse matrix of A.
Since d is the value function of a minimum time problem with state

constraints, d is expected to be “more” than Lipschitz continuous but
“less” than differentiable. The appropriate regularity class for d is the
one of semiconcave functions with fractional modulus.
Given a set U ⊂ Rn, we say that u : U −→ R is a fractionally

semiconcave function on U of exponent α ∈]0, 1] if u is locally Lipschitz
continuous on U and there exists C > 0 such that

(1.4) λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ Cλ(1− λ)|x− y|1+α,

for any x, y ∈ U such that the line segment [x, y] is contained in U and
for every λ ∈ [0, 1]. In the case α = 1 we say that u is semiconcave
with linear modulus or linearly semiconcave. Furthermore, we call the
constant C given in (1.4) a semiconcavity constant for u in U . We call
C a linear semiconcavity constant for u when α = 1. We denote by
SCα(U) the set of all the fractionally semiconcave functions of exponent
α in U . Such a property can obviously be made local, in which case we
refer to the space SCα

loc(U).
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Remark 1.2. We recall that, if U is an open set with ∂U 6= ∅ and u
satisfies (1.4) on every compact set K ⊂ U for some constant CK, then
u is locally Lipschitz continuous on U (see e.g. [15]) but not on ∂U ,
in general. For this reason, in the above definition, we require u to be
locally Lipschitz continuous on U .

For any function u ∈ SCα
loc(U) and any fixed x ∈ U , we denote by

D∗u(x) the nonempty compact set of reachable gradients of u at x, i.e.,

(1.5) D∗u(x) = {p ∈ R
n | ∃xh ∈ int(U), xh → x, ∃Du(xh) → p},

where int(U) stands for the interior of U .
We recall the following interior regularity property which is a direct

consequence of the results in [25] and [2].

Theorem 1.1 (Interior regularity). Let u be a viscosity solution of
Equation (1.3) and assume x 7→ A(x) to be a map of class C2 taking
values in the set of all positive definite n× n matrices. Then, we have
that u ∈ SC1

loc(R
n \ (O ∪ {k0})).

Our first goal is to study the regularity of d up to the boundary of
the obstacle O. We have the following

Theorem 1.2 (Boundary Regularity). Under Assumption (O), let
k0 ∈ Rn \ O, assume that x 7→ A(x) is a map of class C2 taking
values in the set of all positive definite matrices, and let d be given by

(1.2). Then d ∈ SC
1

2

loc(R
n \ O \ {k0}).

The conclusion of Theorem 1.2 can be obtained by reducing our
problem to a minimum energy problem and then applying the semi-
concavity result of [13] for Tonelli type Hamiltonians. We give the
reasoning in the appendix of this paper.

Remark 1.3. Observe that, since the above conclusion is of local na-
ture, Theorem 1.2 holds true without assuming O to consist of a single
connected component.

One may wonder if the regularity result above is somehow optimal.
For this reason, let us consider the special case where A(x) ≡ I (the

n× n identity matrix) and the obstacle is the ball B1(0). Let us split

Rn \ O into two sets

(1.6) I(k0) = {x ∈ Rn \ O | d(x) = |x− k0|}
and

(1.7) S(k0) = {x ∈ Rn \ O | |x− k0| < d(x)} = Rn \ O \ I(k0).
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S(k0)

k0

I(k0)
O

.

We observe that I(k0) 6= ∅ is a closed set and S(k0) 6= ∅ is a relatively

open subset of Rn \ O. Furthermore, we have that

(1.8) d(x) = |x− k0|, for every x ∈ I(k0).

We begin with observing that, in general, linear semiconcavity does
not hold up to the boundary. More precisely, we have the following

Proposition 1.1. Let O = B1(0), let k0 ∈ Rn \ O, let A(·) ≡ I, and
let d be given by (1.2). Then,

(i) d /∈ SC1(Bδ(x) \ O), for every x ∈ S(k0) ∩ ∂O and δ > 0.

(ii) d ∈ SCα
loc(R

n \ O \ {k0}) =⇒ α ≤ 1
2
.

Our second goal is the study of the singularities (i.e. points of non-
differentiability) of d. In order to avoid mixing up different effects
(e.g. the presence of conjugate points), we limit our analysis to con-
stant coefficients (A(x) ≡ I). In this setting, singularities can only be
generated by the presence of the obstacle, indeed d is smooth if O = ∅.
Recalling the definition of reachable gradients (1.5), we introduce

the singular set of d as follows

(1.9) Σ(d) = {x ∈ Rn \ O \ {k0} :

D∗d(x) has at least two elements}.

It is well-known that x ∈ Σ(d) \ O if and only if d fails to be differen-
tiable at x (see e.g. [15]).
We begin to study the singular set by analyzing the ”propagation”

of singularities.
For this purpose, we need some preliminaries on generalized gradient

flows. Given a real valued function u defined on an open set Ω, for
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x ∈ Ω we define

D+u(x) =

®

p ∈ R
n | lim sup

Ω∋y→x

u(y)− u(x)− 〈p, y − x〉
|y − x| ≤ 0

´

.

If u is a semiconcave function with linear modulus, then we have that
D+u(x) 6= ∅, for every x ∈ Ω. The generalized gradient flow of u is
given by

(1.10) ẋ(t) ∈ D+u(x(t)), for a.e. t ≥ 0.

We observe that the existence of a solution of (1.10) is a classical result
in the theory of differential inclusions (see, e.g., [10, p.98]).
For every x0 ∈ Ω, Equation (1.10) admits a unique Lipschitz contin-

uous solution x(·) satisfying x(0) = x0 (uniqueness is a consequence of
linear semiconcavity). We observe that the flow associated with (1.10)
may have stationary points. Let us also point out that a solution of
(1.10) is a priori defined only until the first time t∗ such that x(t∗) ∈ ∂Ω.
If we add the additional information that u is a viscosity solution of

the eikonal equation on Ω, then it is well known that the singular set
of u, Σ(u), is invariant for the generalized gradient flow, i.e.,

x(0) ∈ Σ(u) =⇒ x(t) ∈ Σ(u) , ∀t ≥ 0 .

More precisely, either x(·) reaches ∂Ω in finite time or x(t) ∈ Σ(u)
for every t ≥ 0 (provided that x(0) ∈ Σ(u)). For the proof of the
invariance of the singular set for short time see [7]; invariance for all
times is a consequence of the results in [3].
In the following, we assume that d is singular at a point x0 /∈ O

and we obtain different conclusions depending on whether x0 ∈ coO
or x0 /∈ coO. Hereafter, coO stands for the convex hull of O.

Theorem 1.3. Under Assumption (O), let k0 ∈ R
n \ O, assume that

A ≡ I, and let d given by (1.2).
(i) Let x0 ∈ Σ(d)∩ (coO \O), with x0 6= k0. Then there exist σ > 0

and a Lipschitz map

[0, σ[∋ t 7→ x(t) ∈ Σ(d)

such that x(0) = x0 and x(t) 6= x0, for every t ∈]0, σ[.
(ii) Let x0 ∈ Σ(d) \ coO, with x0 6= k0, and let x(·) be the solution

of the equation

(1.11)

®

ẋ(t) ∈ D+d(x(t)), t ≥ 0,

x(0) = x0.
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Then, we have that x(t) ∈ Σ(d) for every t ≥ 0, t 7→ d(x(t)) is a
strictly increasing function (i.e., t 7→ x(t) is an injective map), and
{x(t) | t ≥ 0} is an unbounded set.

Remark 1.4. We observe that there are several papers dealing with
the (local) propagation of singularities for solutions of Hamilton-Jacobi
equations when x0 is not a critical point for d (i.e., 0 /∈ D+d(x0)), see,
e.g., [7], [17] and [12]. Since this assumption is not satisfied in general,
Theorem 1.3(i) cannot be deduced from these results. For instance,
one can easily find O ⊂ R2 such that there exists x0 ∈ coO \ O with
0 ∈ D+d(x0). In this special case, the singular curve provided by (1.11)
reduces to the constant arc x(t) ≡ x0, for every t ≥ 0, while the singular
curve given by Theorem 1.3(i) is not constant.
Instead, Theorem 1.3(ii) reduces to already established propagation

results provided that

• no critical points of d are present in the complement of coO,
• the solution of equation (1.11) does not intersect O for positive
times.

Finally, let us point out that the presence of unbounded components of
the singular set follows, in the case of solutions of evolutive Hamilton-
Jacobi equations, from the result in [3]. Furthermore, in the case of
stationary equations, the unbounded components of the singular set of
the Euclidean distance from a closed set are analyzed in [14].

For convex obstacles, we have propagation of singularities at infinity
even from boundary points.

Theorem 1.4 (Convex obstacle). Under Assumption (O), let O be a
convex set, let k0 ∈ Rn \ O, assume that A ≡ I, and let d given by
(1.2). Let x0 ∈ ∂O ∩ Σ(d)1 and let x(·) be the solution of the equation

®

ẋ(t) ∈ D+d(x(t)), t ≥ 0,

x(0) = x0.

Then, we have that x(t) ∈ Σ(d) for every t ≥ 0, t 7→ x(t) is an injective
map, and {x(t) | t ≥ 0} is an unbounded set.

In the general case we have a local propagation result.

Theorem 1.5. Under Assumption (O), let k0 ∈ Rn \ O, assume that
A ≡ I, and let d given by (1.2). Let x0 ∈ ∂O ∩ Σ(d). Then there exist
σ > 0 and a map

[0, σ[∋ t 7→ x(t) ∈ Σ(d)

1We observe that, by Theorem 1.6, we have that ∂O ∩ Σ(d) 6= ∅.
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such that x(0) = x0, limt→0+ x(t) = x0, and x(t) ∈ Rn \ O for all
t ∈]0, σ[.
Remark 1.5. As a consequence of the results above, for every singular
point x0 6= k0 of the distance function, in the presence of an obstacle,
there exists a continuum of singular points through x0.

In the next results we study the existence of singularities for the
distance function for convex obstacles.

Theorem 1.6. Under Assumption (O), let O be a convex set, let k0 ∈
Rn \ O, assume that A ≡ I, and let d be given by (1.2). Then,

∂O ∩ Σ(d) 6= ∅.
The convexity assumption in Theorem 1.6 is of technical nature. Un-

derstanding the case of a general compact obstacle is an open problem.

2. Proofs

2.1. Preliminaries on semiconcave functions. We recall the result
about the extension of a semiconcave function with fractional modulus,
obtained in [4]. Such a result will be used several times in the sequel.

Theorem 2.7. Let Ω ⊂ R
n be an open set with boundary of class C1,1,

and let u ∈ SCα
loc(Ω). Then, for every x ∈ ∂Ω and there exist δ > 0

and a function E(u) ∈ SCα(Bδ(x)) such that

(1) E(u)(y) = u(y) for every y ∈ Bδ(x) ∩ Ω;
(2) D∗E(u)(y) = D∗u(y) for every y ∈ Bδ(x) ∩ ∂Ω.
In particular, for the applications of interest to this paper, we will

take u = d, α = 1/2 and Ω = R
n \ {O∪Br(k0)}, for a suitable positive

r less than the distance of k0 from ∂O.

Remark 2.6. We observe that x ∈ Σ(d)∩ ∂O if and only if each local
semiconcave extension of d is not differentiable at x. Indeed, if D∗d(x)

contains p0, p1, with p0 6= p1, then for every local extension of d, d̃, we
have that p0, p1 ∈ D∗d̃(x), by the definition of reachable gradients, i.e.,

x ∈ Σ(d̃). Vice versa, if x ∈ ∂O \ Σ(d), then Theorem 2.7 provides a
local extension of d which is differentiable at x.

Let us also recall a result on the “propagation” of singularities for
semiconcave functions with linear modulus (see [6, Theorem 4.2]).

Theorem 2.8. Let Ω ⊂ Rn be an open set and let u ∈ SC1(Ω). Let
x0 ∈ Ω be such that

∂D+u(x0) \D∗u(x0) 6= ∅.
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Then, there exists a Lipschitz arc,

[0, σ[∋ t 7→ x(t) ∈ Σ(u),

such that x(0) = x0 and x(t) 6= x0, for every t ∈]0, σ[.
Finally, we will need also the following propagation result (see [4,

Theorem 1.5]).

Theorem 2.9. Let Ω be an open set with boundary of class C1,1, let
u ∈ SCα

loc(Ω) and let x0 ∈ ∂Ω such that

(2.12) ∂ coD∗u(x0) \D∗u(x0) 6= ∅.
Let p0 ∈ coD∗u(x0) \ D∗u(x0) and let −θ be a vector in the normal
cone to coD∗u(x0) at p0. Let E(u) ∈ SCα(Bδ(x0)) be an extension of
u satisfying property (2) of Theorem 2.7. Then, there is a map

[0, σ] ∋ s 7→ x(s) ∈ Bδ(x0)

(depending on E(u)) such that

(1) x(0) = x0 and lims→0+ x(s) = x0,
(2) x(s) 6= x0, for every s ∈ [0, σ];
(3) x(s) ∈ Σ(E(u)), for every s ∈ [0, σ];
(4) x(s) = x0 + sθ + o(s) with o(s)/s→ 0 as s→ 0+,

for a suitable σ > 0 depending on the ”initial” point x0.

In order to study the “propagation” of singularities from a point on
the boundary of a nonconvex obstacle, we need the following

Theorem 2.10. Let Ω ⊂ Rn be an open set with a C2-boundary and
let u ∈ SCα

loc(Ω), for a suitable α ∈]0, 1]. Let x0 ∈ Σ(u) ∩ ∂Ω and let
us suppose that there exists p0 ∈ coD∗u(x0) \D∗u(x0) such that

(2.13) p0 + tν(x0) /∈ coD∗u(x0), ∀t > 0.

(Here ν(x0) is the exterior unit normal to ∂Ω at x0.) Then, we can
find T > 0 and an arc x : [0, T ] −→ Σ(u) ∩ Ω such that

(2.14)

®

limt→0+ x(t) = x(0) = x0,

Ω ∋ x(t) 6= x0, ∀t ∈]0, T ].
Remark 2.7. Theorem 2.10 is based on a method introduced in [5].
We observe that the conclusion in Theorem 2.10 is slightly weaker than
the one in Theorem 2.9. Indeed, in Theorem 2.10, a “direction of
propagation” is not singled out while this is done in (4) of Theorem
2.9. On the other hand, the advantage of Theorem 2.10 consists in the
fact that Assumption (2.13) is weaker than the one of Theorem 2.9. In
other words, in order to apply Theorem 2.10, we need less information
on the exposed faces of the convex set coD∗u(x0).
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In order to prove Theorem 2.10, we need the following

Theorem 2.11. Let g ∈ SCα(Br(0)) for some r > 0 and α ∈]0, 1],
and let 0 ∈ Σ(g). Let

(2.15) p0 ∈ D+g(0) \D∗g(0),

and suppose that for some vector q ∈ Rn \ {0}
(2.16) p0 + tq /∈ D+g(0), ∀t > 0.

Then, a number T > 0 and an arc x : [0, T ] −→ Br(0) exist so that

(i) |x(t)|1+α < −t〈x(t), q〉, for every t ∈]0, T ],
(ii) x(0) = 0 and |x(t)| < (|q|t)1/α, for every t ∈]0, T ],
(iii) x(t) ∈ Σ(g), for every t ∈ [0, T ].

The proof of Theorem 2.11 follows the same lines of the one of [5,
Theorem 4.1]. We provide such a proof for the reader convenience.

Proof. Without loss of generality, possibly reducing r, we may assume
that g(0) = 0 and

(2.17) g(x)− 〈p0, x〉 − C|x|1+α ≤ 0, ∀x ∈ Br(0),

for a suitable C > 0. Set

ϕ(x) := g(x)− (C + 1)|x|1+α

Notice that ϕ ∈ SCα(Br(0)) and D
+g(0) = D+ϕ(0). Define

ψt(x) = ϕ(x)− 〈p0 + tq, x〉, x ∈ B̄r(0),

and observe that, due to (2.16) and the semiconcavity of g, we can find
yt ∈ Br(0) such that

(2.18) ψt(yt) > 0,

for every t > 0. Then, consider the maximum of the function ψt over
the ball B̄r(0) and let x(t) ∈ B̄r(0) so that

max
x∈B̄r(0)

ψt(x) = ψt(x(t)), (t > 0).

We define x(0) = 0 Now, (2.18) yields that ψt(x(t)) > 0 so, by (2.17),
we deduce that

0 < −t〈q, x〉 − |x|1+α, ∀t > 0.

So (i) and (ii) follow. In order to complete the proof of Theorem 2.11
it remains to show that there is T0 > 0 such that x(t) ∈ Σ(g) for every
t ∈ [0, T0]. We note that for, every t > 0 sufficiently small, x(t) ∈ Br(0)
and so

0 ∈ D+g(x(t)).
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Then, a direct computation yields that

(2.19) p0 + tq + (1 + α)(C + 1)|x(t)|α−1 x(t) ∈ D+g(x(t)),

for every t > 0 sufficiently small. We claim that there exists T > 0 such
that x(t) ∈ Σ(g) for every t ∈ (0, T ]. Let us argue by contradiction
assuming that there is a positive sequence tk, converging to 0 such that
x(tk) /∈ Σ(g). Then, in view of (2.19), we have that

Dg(x(tk)) = p0 + tkq + (1 + α)(C + 1)|x(tk)|α−1 x(tk),

and, taking the limit as k → ∞ in the formula above, we find that p0 ∈
D∗g(0) in contrast with Assumption (2.15). This proves Conclusion
(iii). �

Now, we are ready to prove Theorem 2.10

Proof. Let us denote by E(u) the semiconcave extension of u provided
by Theorem 2.7. Then, we can apply Theorem 2.11 to E(u), defined
on Bδ(x0) for some δ > 0. In order to complete the proof, we only need
to show that, possibly reducing T , x(t) ∈ Ω for every t ∈]0, T ]. Owing
to the C2 regularity of ∂Ω, we can find R > 0 such that

ß

y ∈ R
n | 1

2R
|y − x0|2 < −〈ν(x0), y − x0〉

™

⊂ Ω.

Furthemore, Theorem 2.11 (i) yields that

1

t
|x(t)− x0|1+α < −〈ν(x0), x(t)− x0〉, ∀t ∈]0, T ].

Then, since t|x(t) − x0|2 < 2R|x(t) − x0|1+α for 0 < t < 2R/δ1−α, we
conclude that, possibly reducing T , x(t) ∈ Ω for every t ∈]0, T ]. This
completes our proof. �

2.2. Preliminaries on length minimizers. For x ∈ Rn \ O, we de-
fine

Γ∗[x] = {γ ∈ Γ[x] | τ(γ) = inf
Γ[x]

τ}.

In other words, Γ∗[x] is the set of all the length minimizers joining x
with k0. If A ≡ I, it is clear that any shortest path consists of straight-
line segments and curves of minimal length on the boundary of the
obstacle. Then, since ∂O ∈ C2, any length minimizer is piecewise C2

and it is (globally) C1,1.

Remark 2.8. The C1,1 regularity of length minimizers is a well-kown
fact. To our knowldge, C1 regularity was established in [9] for C3-
Riemannian manifold with C1-boundary. Furthermore, in the case of
an obstacle with C3 boundary, the fact that length minimizers have first
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and second derivatives in L2 follows from the results in [26]. Finally,
in the case of an obstacle with a C2 boundary, the C1,1 regularity of
length minimizers is a consequence of the results given in [11] (see also
[21]). In particular, [11, Theorem 3.2] ensures that, given a compact
set K ⊂ Rn, there exists a constant c = c(K) such that for every

x ∈ K ∩ (Rn \ O) and γ ∈ Γ∗[x] we have that

(2.20) ‖γ̈‖∞ ≤ c.

Remark 2.9. Observe that, if a length minimizer γ touches O at an
“interior” point γ(t) , (t ∈]0, d(γ(0))[), then γ̇(t) is tangent to O at
γ(t). This fact is a consequence of the C1,1 regularity of minimizers.

We now proceed to relate the elements of Γ∗[x] with suitable gener-

alized gradients of d. We recall that if d ∈ SCα
loc(R

n \ O \ {k0}) for a
suitable α ∈]0, 1], as a consequence of Rademacher’s Theorem, we have
that D∗d(x) 6= ∅, for every x ∈ Rn \ (O∪{k0}). Furthermore, for every

compact set K ⊂ Rn \ O \ {k0}, every x, y ∈ K such that [x, y] ⊂ K,
and every p ∈ D+d(x), we have that

(2.21) d(y) ≤ d(x) + 〈p, y − x〉+ C|y − x|1+α,

for a suitable constant C depending on K. We point out that (2.21) is

a consequence of the assumption that d ∈ SCα
loc(R

n \ O \ {k0})) for a
suitable α ∈]0, 1].
Lemma 2.1. Under Assumption (O), let k0 ∈ Rn \ O, let A ≡ I,

and let d be given by (1.2). Then, for every x ∈ (Rn \ O) \ {k0} and
γ ∈ Γ∗[x], we have that

(2.22) − γ̇(t) ∈ D∗d(γ(t)), ∀t ∈ [0, d(x)].

Furthermore2,

(2.23) D∗d(γ(t)) = {Dd(γ(t))}, ∀t ∈]0, d(x)[.
Finally, for every x ∈ (Rn \ O) \ {k0} and for every p ∈ D∗d(x) there
exists γ ∈ Γ∗[x] such that −γ̇(0) = p.

Here and in the sequel we tacitly assume that γ̇(0) is the right
derivative while γ̇(d(x)) stands for the left derivative, i.e. γ̇(0) =

limt→0+
γ(t)−γ(0)

t
and γ̇(d(x)) = limt→d(x)−

γ(d(x))−γ(t)
d(x)−t

.

Remark 2.10. Observe that Lemma 2.1 ensures the existence of an
injective map

D∗d(x) −→ Γ∗[x]

2Hereafter, even at a point y ∈ ∂O, we have kept the notation Dd(y) to denote
the unique element of D∗d(y) whenever the last set reduces to a singleton.
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which fails, in general, to be onto. In particular, there can be more
than one minimizer starting from x with the same initial velocity. This
branching phenomenon for length minimizers depends on the presence
of an obstacle. Indeed, for unconstrained problems, the uniqueness of
solutions to the Hamiltonian formulation of the Maximum Principle
allows to construct a bijection between Γ∗[x] and D∗d(x) (see e.g. [15,
Theorems 6.4.9 and 8.4.14]).

Proof. We show first that (2.22) holds. For every γ ∈ Γ∗[x], we have
that d(x)− t = d(γ(t)), for every t ∈ [0, d(x)]. We claim that

(2.24) − 1 = min
q∈coD∗d(γ(t))

〈q, γ̇(t)〉 = min
q∈D∗d(γ(t))

〈q, γ̇(t)〉 = 〈pt, γ̇(t)〉,

for every t ∈ [0, d(x)[ and for a suitable pt ∈ D∗d(γ(t)). Indeed, for all
t ∈ [0, d(x)[ such that γ(t) /∈ O, (2.24) follows from [15, Theorem 3.3.6]
and the fact that Γ∗[x] ⊂ C1,1([0, d(x)];Rn). (We observe that the point
t = d(x) is excluded because γ(d(x)) = k0 and d(·) is not semiconcave
on a neighborhood of k0.) On the other hand, for all t ∈ [0, d(x)[ such
that γ(t) ∈ O, one can repeat the same argument as above using the
extension of d given by Theorem 2.7 instead of d and recalling that
D∗E(d)(γ(t)) = D∗d(γ(t)).
Then, since |γ̇(t)| ≤ 1 and |pt| = 1, we conclude that pt = −γ̇(t).

Thus, (2.22) holds for every t ∈ [0, d(x)[. This fact and the inclusion
Γ∗[x] ⊂ C1,1([0, d(x)];Rn) yield that also γ̇(d(x)) ∈ D∗d(k0) (we point
out that, because of the Lipschitz continuity of around k0, the set
D∗d(k0) is well-defined). This completes the proof of (2.22).

Now, let us show that (2.23) hold true. For every x ∈ (Rn \ O)\{k0},
γ ∈ Γ∗[x], t ∈]0, d(x)[, and p ∈ D∗d(γ(t)) by Theorem 1.2 and (2.21)
we have that

d(γ(t− h)) ≤ d(γ(t)) + 〈p, γ(t− h)− γ(t)〉+ C|γ(t− h)− γ(t)| 32 ,
for every h > 0 suitably small. We recall that d(γ(t)) = d(x) − t and
d(γ(t− h)) = d(x)− t + h. Then, we find

h ≤ 〈p, γ(t− h)− γ(t)〉+ C|γ(t− h)− γ(t)| 32 .
So, dividing both the sides of the inequality above by h and taking the
limit as h→ 0+, we conclude that

1 ≤ 〈p,−γ̇(t)〉.
(Here we use the fact that γ is differentiable at t.) Then, recalling
that |p| = 1 and |γ̇| ≤ 1, we conclude that γ̇(t) = −p. Consequently,
D∗d(γ(t)) = {−γ̇(t)}. This implies that d is differentiable along γ
and γ̇(t) = −Dd(γ(t)), for every t ∈]0, d(x)[, by possibly appealing to
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the extension of d given by Theorem 2.7 as above. Notice that the
endpoints are always excluded.
Finally, to prove that every element of D∗d(x) can be taken as the

initial velocity of a length minimizer, let p ∈ D∗d(x) and let xh be a
sequence converging to x such that Dd(xh) → p as h → ∞. Then,
there exists γh ∈ Γ∗[xh] such that γ̇h(0) = −Dd(xh). Hence, possibly
taking a subsequence, we have that γh uniformly converges to a limit
γ ∈ Γ∗[x]. Therefore, by the bound on the second derivatives given in
(2.20), we may assume that, up to a subsequence,

(2.25) lim
h→∞

‖γ̇h − γ̇‖∞ = 0.

Now, let sh ∈]0,min{d(x), d(xh)}] be a decreasing sequence converging
to 0 such that

(1) |γ̇h(sh)− γ̇(sh)| < 1
h
(this can be achieved because of (2.25));

(2) |γ̇h(sh)− γ̇h(0)| < 1
h
(here we use the fact that Γ∗ ⊂ C1,1),

for every h ∈ N. Then, using once more the inclusion Γ∗ ⊂ C1,1, (1)
and (2) above, we conclude that

γ̇(0) = lim
h→∞

γ̇(sh) = lim
h→∞

γ̇h(sh) = lim
h→∞

γ̇h(0) = − lim
h→∞

Dd(xh) = −p.

This completes our proof. �

2.3. Proof of Proposition 1.1 (i). In this proof, we use a construc-
tion inspired by an example given in [19, p.1019].
Let x ∈ S(k0) ∩ ∂O and assume by, contradiction, that d belongs to

SC1(Bδ(x0) \ O) for some δ > 0. Suppose, in addition, that D∗d(x) is
a singleton, that is, D∗d(x) = {p}. This implies no loss of generality
since, as we shall see in what follows, points satisfying such a property
can be found arbitrarily close to any point in S(k0) ∩ ∂O.
Consider the extension E(d) given by Theorem 2.7. By possibly re-

ducing δ > 0, we may assume that E(d) is defined on Bδ(x). Moreover,

D∗E(d)(x) = {p} .

Let C be a linear semiconcavity constant for E(d) on Bδ(x). Then,

(1) p 6= 0 (in fact, |p| = 1 since d is a solution of the eikonal
equation);

(2) E(d)(y) ≤ E(d)(x) + 〈p, y − x〉 + C|y − x|2 , ∀ y ∈ Bδ(x), in
view of (2.21).
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We observe that, by (1) and (2) above,

(2.26) E(d)(y) ≤ E(d)(x) + 〈p, y − x〉+ C|y − x|2

= E(d)(x) + C

Å

∣

∣

∣
y − x+

p

2C

∣

∣

∣

2

− 1

4C2

ã

.

Hence, we have that

(2.27) E(d)(y) ≤ E(d)(x), ∀y ∈ B 1

2C

(

x− p

2C

)

∩ Bδ(x).

Let us consider the curve γ : [0, d(x)] −→ Rn \ O such that γ(0) = x,
γ(d(x)) = k0 and γ̇(0) = −p. We point out that the existence of such
a curve follows from Lemma 2.1, together with the fact that D∗d(γ(t))
reduces to a singleton for all t ∈]0, d(x)[. Moreover,

(2.28) there exists s > 0 such that γ(t) ∈ ∂O ∩ Bδ(x) , ∀t ∈ [0, s[

(because otherwise x ∈ I(k0)) and this justifies our additional assump-
tion D∗d(x) = {p}.

k0

O

γ(s)

x = γ(0)x− p
2C

Now, for every (r, t) ∈ [0, s[×[0, d(x)], we consider the family of
curves Γ(r, ·) defined as

Γ(r, t) =

®

γ(t), if t ∈ [r, d(x)],

γ(r) + γ̇(r)(t− r), if t ∈ [0, r[.

We claim that d(Γ(r, 0)) = d(γ(r)− rγ̇(r)) = d(x) and, consequently,

(2.29) E(d)(Γ(r, 0)) = d(Γ(r, 0)) = d(x) = E(d)(x), ∀r ∈ [0, s[.

Indeed, Γ(r, ·) is obtained by glueing together a part of a length mini-
mizer γ(·) with a straight-line segment, t 7→ γ(r) + γ̇(r)(t− r). More
precisely, since x ∈ S(k0) ∩ ∂O, we have also that Γ(r, 0) ∈ S(k0) (for
our purposes it suffices that Γ(r, 0) ∈ S(k0) for r near 0, and this is
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true by continuity since Γ(0, 0) = x ∈ S(k0)). Then, a length minimizer
with initial point at Γ(r, 0) can be decomposed into three parts

(1) a straight-line segment (tangent to the obstacle) joining the
point Γ(r, 0) with γ(r) ∈ O;

(2) a geodesic on the obstacle, γ(·), joining the tangency point γ(r)
with a point γ(s) ∈ I(k0) (and minimizing the distance on the
obstacle between γ(r) and I(k0));

(3) a straight-line segment joining γ(s) with k0.

Now, let us recall that the obstacle is a ball and that Γ(r, 0) is a point
in the exterior of such a ball. Let us consider the cone with vertex
at Γ(r, 0) and tangent to the sphere; then the length of the parts of
generators joining the vertex with the tangency points is a constant.
Hence, Γ(r, ·) is a length minimizer and (2.29) follows.
We observe that, for simmetry reasons, we may assume that for every

r ∈ [0, s[ the curve Γ(r, ·) lies on the plane of dimension 2 containing
the target k0, the origin (which is the center of the ball O) and the
point x.
Now, we claim that

(2.30) Γ(r, 0) = γ(r)− γ̇(r)r ∈ Rn \
(

O ∪ B 1

2C

(

x− p

2C

))

for every r ∈ [0, s[. Indeed, recalling (2.26) we have that

y ∈ B 1

2C

(

x− p

2C

)

∩ (Rn \ O) =⇒ d(y) < d(x) ,

while we have already noted that, for every r ∈ [0, s[, Γ(r, 0)) belongs
to the level set

Λ(x) :=
{

y ∈ Bδ(x) | E(d)(y) = E(d)(x)
}

.

Incidentally, we note that the nonsmooth implicit function theorem
(see, e.g., [20, Section 7.1]) ensures that Λ(x) is a Lipschitz hypersurface
near x, which is in fact differentiable at x because D∗E(d)(x) = {p}.
Next, we define the curve

[0, s[∋ r 7→ c(r) := γ(r)− γ̇(r)r, with c(0) = x,

and we note that

(A) c(r) ∈ Λ(x), for every r ∈ [0, s[;

(B) c(r) ∈ Rn \
Ä

O ∪ B 1

2C

(

x− p
2C

)

ä

, for every r ∈ [0, s[;

(C) the sphere ∂B 1

2C

(

x− p
2C

)

is tangent to Λ(x) at x.

Hence (A), (B) and (C) above imply that the curve c(·) is tangent to
the sphere ∂B 1

2C

(

x− p
2C

)

at x.
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k0

γ(r)

γ(s)

γ(0) = x

Γ(r, 0) = c(r)

|γ(r)− c(r)| = r

γ(s)

x = γ(0)

x− p
2C

c(.)

γ(r)

γ(r′)

Furthermore, we have that

(2.31) ċ(r) = −γ̈(r)r and c̈(r) = −˙̇γ̇(r)r − γ̈(r).

We observe that, since the curve γ lies on a two dimensional plane, the
curve c(·) lies on such a plane too, say

Π = {O + λ(c(0)− O) + µ(c(s)−O) : λ, µ ∈ R}
where O is the center of the ball O. Notice that r 7→ c(r) = Γ(r, 0)
is a smooth curve. Hence, by a well-known formula and (2.31), the
curvature of c(·) is given by

k(r) =
|ċ(r)× c̈(r)|

|ċ(r)|3 =
|(−γ̈(r)r)× (−˙̇γ̇(r)r − γ̈(r))|

| − γ̈(r)r|3 =
|γ̈(r)× ˙̇γ̇(r)|
r|γ̈(r)|3 ,

for r ∈]0, s[. (Here “×” denotes the vector product in the plane.)
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Moreover, we find that, since γ(r) (r ∈ [0, s[) is a geodesic arc on
the sphere ∂O (it is given by the intersection of the plane Π with the
ball O),

(2.32) k(r) =
1

Rr
, r ∈]0, s[,

here R is the radius of the obstacle O. Indeed, by using in the two
plane a system of coordinates such that γ(0) = (R, 0) and identifying
R2 with C, we have that γ(r) = Reir, γ̈(r) = −Reir and ˙̇γ̇(r) = −iReir,
hence we find that |γ̈(r) × ˙̇γ̇(r)| = R2 and r|γ̈(r)|3 = rR3 and (2.32)
follows.
Finally, recalling that the planar curve c(·) is tangent to the inter-

section of ∂B 1

2C

(

x− p
2C

)

with Π at x, we deduce that k(r) is bounded

above by the curvature of the sphere of radius 1
2C

, which leads to a
contradiction with (2.32). This completes our proof.

2.4. Proof of Proposition 1.1 (ii). Let x = − k0
|k0|

and take γ ∈ Γ∗[x].

Notice that γ consists of two parts: an arc of a maximum circle on
the sphere and a straight-line segment joining the endpoint of the arc
closer to k0 with k0. Then, recalling that γ is of class C1,1 we reduce the
analysis to a subspace of dimension two. Specifically, we assume that
n = 2, k0 = −M(1, 0) (for a suitable M > 1) and x = (1, 0) without
loss of generality. By Lemma 2.1, we have that −γ̇(0) ∈ D∗d(1, 0).
Using the notation of the proof of Proposition 1.1, by (2.21) we have
that3, for all r ∈ [0, s[,

d(c(r)) ≤ d(1, 0) + 〈−γ̇(0), c(r)− (1, 0)〉+ C|c(r)− (1, 0)|1+α.

Then, recalling that d(c(r)) = d(1, 0), by the definition of c(r) we find

〈γ̇(0), γ(r)− (1, 0)− rγ̇(r)〉 ≤ Cr1+α

∣

∣

∣

∣

γ(r)− (1, 0)

r
− γ̇(r)

∣

∣

∣

∣

1+α

.

Now, since γ(r) = (cos r, sin r), we deduce that

1

rα

Å

sin r

r
− cos r

ã

≤ C

∣

∣

∣

∣

Å

cos r − 1

r
+ sin r,

sin r

r
− cos r

ã
∣

∣

∣

∣

1+α

.

Then, up to higher order terms, we find that

1

3
r2−α . r1+α

and taking the limit as r → 0+, we conclude that 1 − 2α ≥ 0. This
completes our proof.

3s is given by (2.28).



18 PAOLO ALBANO, VINCENZO BASCO, AND PIERMARCO CANNARSA

2.5. Proof of Theorem 1.3 (i). Let x0 ∈ Σ(d) ∩ [coO \ O]. Then
Bδ(x0) ∩ O = ∅ for some δ > 0 and, by Theorem 1.1, we have that
d ∈ SC1(Bδ(x0)). Recall that D∗d(x0) ⊂ ∂D+d(x0) (see [16, Proposi-
tion 4.4]). We claim that

(2.33) ∂D+d(x0) \D∗d(x0) 6= ∅.
Indeed, let us assume by contradiction that ∂D+d(x0) = D∗d(x0).
Since D∗d(x0) ⊂ ∂B1(0) and D+d(x0) = coD∗d(x0), we have that
D∗d(x0) = ∂B1(0). Then, denoting by π(x0) the (Euclidean) projec-
tion of x0 on ∂O, we find that

ν(π(x0)) =
x0 − π(x0)

|x0 − π(x0)|
∈ D∗d(x0).

Now, Lemma 2.1 ensures the existence of a length minimizer γ with

γ(t) = x0 − tν(π(x0)) ∀t ∈ [0, |x0 − π(x0)|] .
Then, on the one hand, γ should be tangent to O at π(x0) owing
to Remark 2.9. On the other hand, γ̇(t) = −ν(π(x0)) for all t ∈
[0, |x0 − π(x0)|]. This contradiction proves (2.33).
Hence, by Theorem 2.8, there exists a Lipschitz arc

[0, σ[∋ t 7→ x(t) ∈ Σ(d),

such that x(0) = x0 and x(t) 6= x0, for every t ∈]0, σ[. This completes
our proof of Theorem 1.3(i).

2.6. Proof of Theorem 1.3 (ii). We begin with the following

Lemma 2.2. Under Assumption (O), let k0 ∈ Rn \ O and let d be
given by (1.2). Then, d has no critical points in Rn \ coO, i.e.

(2.34) 0 /∈ D+d(x), ∀x ∈ R
n \ coO .

Consequently, in the presence of a convex obstacle, d has no critical
points outside O.

Proof of Lemma 2.2. We begin with observing that (2.34) is trivial if
x ∈ I(k0). So, we restrict to the case of x ∈ S(k0) that we analyse
arguing by contradiction. Thus, suppose that 0 ∈ D+d(x) for some
x ∈ Rn\coO. Then, by Caratheodory’s Theorem, there exist λj ∈ [0, 1]

with
∑n+1

j=1 λj = 1 and pj ∈ D∗d(x), j = 1, . . . , n+ 1, such that

0 =

n+1
∑

j=1

λjpj.
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Furthermore, by Lemma 2.1, there exist arcs γj ∈ Γ∗[x] touching the
obstacle at points xj ∈ ∂O such that

xj = x− |xj − x|pj, j = 1, . . . , n+ 1,

that is,

(2.35) pj =
x− xj
|xj − x| , j = 1, . . . , n+ 1.

Hence, multiplying both sides of (2.35) by λj and taking the sum over
j = 1, . . . , n+ 1, we deduce the contradiction

coO 6∋ x =

n+1
∑

j=1

tjxj ∈ coO

with

tj =
λj/|xj − x|

∑n+1
ℓ=1 λℓ/|xℓ − x|

, j = 1, . . . , n+ 1,

and (2.34) follows. This completes our proof of Lemma 2.2. �

Let x0 ∈ Σ(d) ∩ (Rn \ (coO ∪ {k0})) and consider the differential
inclusion

(2.36)

®

ẋ(t) ∈ D+d(x(t)), for a.e. t ≥ 0,

x(0) = x0.

By [7] (see also [6]), there exists σ > 0 and a unique Lipschitz contin-
uous solution of (2.36), such that

x(t) ∈ Σ(d), ∀t ∈ [0, σ[.

Furthermore, since t 7→ d(x(t)) is a Lipschitz continuous function, for
σ > t2 > t1 ≥ 0 we have that

(2.37) d(x(t2)) = d(x(t1)) +

∫ t2

t1

d

ds
d(x(s)) ds .

Then, by the semiconcavity of d, for a.e. s ∈ [t1, t2], we have that

(2.38)
d

ds
d(x(s)) = |p(s)|2,

for a suitable p(s) ∈ D+d(x(s)), see [8, Theorem 1]. Hence, by (2.37),
(2.38), and (2.34) we deduce that

(2.39) d(x(t2)) = d(x(t1)) +

∫ t2

t1

|p(s)|2 ds > d(x(t1)),

i.e. [0, σ[∋ t 7→ d(x(t)) is an increasing function.
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Now, by the results in [3], we can take σ = +∞ provided that we
can guarantee that x(t) /∈ O for every t ≥ 0. In fact, we will show that
x(t) /∈ coO for every t ≥ 0. Aiming at this, we observe that ∀t ∈ [0, σ[

(2.40) ẋ+(t) := lim
h→0+

x(t+ h)− x(t)

h
= p(t) ∈ D+d(x(t))

where p(t) is the minimizer of the function

D+d(x(t)) ∋ p 7→ |p|2,
see [17, Corollary 3.4] for the proof of these facts. Let dist (x(t), coO)
be the Euclidean distance of x(t) from the set coO and let π(x(t)) be
the Euclidean projection of x(t) onto coO, i.e.,

|x(t)− π(x(t))| = min
x∈coO

|x(t)− x| .

Then

(2.41) ν(π(x(t))) =
x(t)− π(x(t))

|x(t)− π(x(t))| .

By the chain rule4 and (2.40), we find that

(2.42) lim
h→0+

dist (x(t + h), coO)− dist (x(t), coO)

h
= 〈ν(π(x(t))), p(t)〉.

Now, let us show that the right hand side in (2.42) is nonnegative.
Recalling that x(t) ∈ S(k0) (since x(t) ∈ Σ(d)), we find x1, . . . , xn+1 ∈
coO and λj ∈ [0, 1], with

∑n+1
j=1 λj = 1, such that

(2.43) p(t) =

n+1
∑

j=1

λj
x(t)− xj
|x(t)− xj |

.

Then, since coO is convex, we have that

0 ≥ 〈x(t)− π(x(t)), xj − π(x(t))〉
= 〈x(t)− π(x(t)), xj − x(t)〉+ |x(t)− π(x(t))|2.

So, we find

〈x(t)− π(x(t)), xj − x(t)〉 ≤ 0

and, by (2.43) and (2.41), we deduce that

〈ν(π(x(t))), p(t)〉 ≥ 0.

4We recall that the distance function from a convex set is differentiable in the
complement of such a set.
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In other words,

lim
h→0+

dist (x(t + h), coO)− dist (x(t), coO)

h
≥ 0

for every t ∈ [0, σ[. Hence, since t 7→ dist (x(t), coO) is a Lipschitz
continuous function, we conclude that, for σ > t2 > t1 ≥ 0

dist (x(t2), coO) = dist (x(t1), coO) +

∫ t2

t1

d

dt
dist (x(t), coO) dt

≥ dist (x(t1), coO),

i.e., [0, σ[∋ t 7→ dist (x(t), coO) is a nondecreasing function. As a
consequence, σ = +∞.
In order to complete the proof, it remains to show that {x(t) | t ≥ 0}

is an unbounded set. We argue by contradiction: let us assume that

s := sup{d(x(t)) | t ≥ 0} < +∞.

Then, there exists tj → +∞ and x̄ such that x(tj) → x̄ and s = d(x̄),
as j → +∞. Hence, taking in (2.39) t2 = tj and t1 = 0, we find that

d(x(tj)) = d(x0) +

∫ tj

0

|p(t)|2 dt ≥ d(x0) + tj inf
t∈[0,tj ]

|p(t)|2

and, sending j → ∞, we deduce that

lim sup
j→∞

tj inf
t∈[0,tj ]

|p(t)|2 < +∞.

So, necessarily, we have that limj→∞ inft∈[0,tj ] |p(t)|2 = 0. Now, by
(2.34), |p(t)| > 0 for every t ≥ 0, and we would find a sequence [0, tj] ∋
t∗j → ∞ such that p(t∗j) → 0 as j → ∞. Then, from the fact that
the set valued map x 7→ D+d(x) is upper semicontinuous and takes
compact values, we find the contradiction 0 ∈ D+d(x̄) (we recall that
x̄ /∈ coO and, by (2.34), 0 /∈ D+d(x̄)). It follows that {x(t) | t ≥ 0} is
an unbounded set, and this completes our proof of Theorem 1.3(ii).

2.7. Proof of Theorem 1.4. Theorem 1.4 is proved in two steps:
first, appealing to the abstract propagation result in [4] (see also [1]), we
show that a singularity on the boundary of a convex obstacle lies on a
continuum of singular points which immediately enters the complement
of O. Then, any point of such a continuum is the starting point of a
singular Lipschitz curve owing to Theorem 1.3. So, we consider the
limit curve, as the initial point converges to the singular point on the
boundary of the obstacle, and we show that this curve satisfies all the
requirements in Theorem 1.4.
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Let x0 ∈ ∂O ∩ Σ(d). Then x0 ∈ S(k0) and D∗d(x0) has at least
two elements. So, by Theorem 1.2 above and Theorem 2.7, there exist
δ > 0 and a function E(d) ∈ SC

1

2 (Bδ(x)) such that

(1) E(d)(y) = d(y) for every y ∈ Bδ(x) ∩ Rn \ O;
(2) D∗E(d)(y) = D∗d(y) for every y ∈ Bδ(x) ∩ ∂O.

Moreover,

(2.44) D+E(d)(x0) = coD∗E(d)(x0) (= coD∗d(x0)).

Now, we need an orthogonality property of reachable gradients at x
with respect to the outward unit normal ν(x) to O at x.

Lemma 2.3. Under Assumption (O), let O be a convex set. Then, for
all x ∈ ∂O ∩ S(k0), we have that

〈p, ν(x)〉 = 0 , ∀ p ∈ D∗d(x) .

Proof of Lemma 2.3. Let us first show that, for every x ∈ ∂O ∩ S(k0),
(2.45) 〈p, ν(x)〉 ≤ 0, ∀p ∈ D∗d(x).

Fix x ∈ ∂O ∩ S(k0) and let p ∈ D∗d(x). By Lemma 2.1, there exists
γ ∈ Γ∗[x] such that γ̇(0) = −p. Then, 〈ν(x), γ̇(0)〉 ≥ 0 because γ(t) ∈
Rn \ O for every t ∈ [0, d(γ(0)], and (2.45) follows.
Now, let us show that equality holds in (2.45). We argue by contra-

diction assuming that

〈q, ν(x)〉 < 0, for a suitable q ∈ D∗d(x).

Then, by Lemma 2.1, we find that the curve γ(t) = x − qt is a length
minimizer up to some time t∗ > 0 such that

(2.46)

®

γ(t) /∈ O, ∀t ∈]0, t∗[,
γ(t∗) ∈ O.

Then, by the convexity of O and the fact that γ(t) ∈ O for t = 0, t∗,
we obtain that γ(t) ∈ O for every t ∈]0, t∗[ (in contrast with (2.46)).
Hence, we find that γ(t) /∈ O for every t > 0 (i.e. x ∈ I(k0)), contra-
dicting the fact that x ∈ S(k0). We deduce that 〈p, ν(x)〉 = 0 for every
p ∈ D∗d(x). This completes the proof of Lemma 2.3. �

Remark 2.11. We point out that, in the proof of (2.45), we have made
no use of the convexity of O.

We now continue the proof of Theorem 1.4. Recalling that O is
convex and x0 ∈ ∂O∩S(k0), by Lemma 2.3 and (2.44) we deduce that

(2.47) ∀p ∈ D+E(d)(x0) : 〈ν(x0), p〉 = 0.
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Let p0 be the unique point in D+E(d)(x0) such that

min
p∈D+E(d)(x0)

|p|2 = |p0|2.

Observe that p0 6∈ D∗E(d)(x0) and −ν(x0) belongs to the normal cone
to D+E(d)(x0) at p0, ND+E(d)(x0)(p0). Then, by [4, Theorem 1.5 ] (see
also [1, Theorem 4.2 ]), we deduce that there exist a positive number
σ and a map, [0, σ[∋ s → x(s) ∈ Σ(d), continuous at s = 0, such that
x(0) = x0, x(s) 6= x0, for every s ∈ [0, σ[, and

(2.48) x(s) = x0 + sν(x0) + o(s), as s→ 0+.

This completes the first step of the proof.

Let sj ∈]0, σ[ be a sequence converging to 0 as j → ∞. Then, we
may apply Theorem 1.3 (ii) to each x(sj) ∈ Σ(d) \ O. Then, we find a
sequence of Lipschitz arcs xj : [0,∞[−→ Σ(d), with velocities bounded
by 1, such that xj(0) = x(sj) and d(xj(t1)) < d(xj(t2)), for every
0 ≤ t1 < t2. Therefore, for every T > 0 there exists R > 0 such that,
for every j ∈ N,

(1) xj(t) ∈ BR(x0), for every t ∈ [0, T ],
(2) |xj(t)− xj(s)| ≤ |t− s|, for every t, s ∈ [0, T ].

Then, in view of the compactness of trajectories to a differential in-
clusion (see, e.g., [20, Theorem 3.1.7]), we deduce that there exists
x(t) := limj→∞ xj(t), uniformly on [0, T ], with

x(0) = x0 and ẋ(t) ∈ D+d(x(t)), for a.e. t ∈ [0, T ].

By construction, x(t) ∈ Σ(d) for every t ∈ [0, T ]. Let us assume by
contradiction that x(t0) /∈ Σ(d), for a suitable t0 ∈ [0, T ]. Then, by
[3], we deduce that x(t) /∈ Σ(d) and ẋ(t0 − t) = −Dd

(

x(t0 − t)
)

for all
t ∈]0, t0[. Consequently, for all t ∈]0, t0[

(2.49) d
(

x(t0 − t)
)

− d
(

x(t0)
)

=

∫ t

0

d

ds
d
(

x(t0 − s)
)

ds = −t.

Let γ0 : [0, d(x0)] → Rn be a length minimizer with γ0(0) = x0. By
(2.49)

γ(t) :=

®

x(t0 − t), for t ∈ [0, t0],

γ0(t− t0), for t ∈]t0, t0 + d(x0)].

is in turn a length minimizer on [0, t0 + d(x0)]. On the other hand,
γ(t0) ∈ Σ(d), in contrast with the differentiability of d along length
minimizers (see (2.23) in Lemma 2.1). Therefore, x(t) ∈ Σ(d) for every
t ∈ [0, T ]. Since T is an arbitrary positive number, we conclude that
x(t) ∈ Σ(d), for every t ≥ 0. The assertions concerning the injectivity
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of the map [0,+∞[∋ t 7→ x(t) and the unboundedness of {x(t) | t ≥ 0}
follow arguing as in the proof of Theorem 1.3 (ii).

2.8. Proof of Theorem 1.5. Let x0 ∈ Σ(d) ∩ ∂O. We want to show
that there exists a nonconstant singular arc, starting at x0, and lying in
Rn \ O (except for the initial point). First, suppose 〈p, ν(x0)〉 = 0, for
every p ∈ D∗d(x0). Then, arguing as in the proof of Theorem 1.4 (see
the reasoning leading to (2.48)), we deduce that there exist a positive
number σ and a map, [0, σ[∋ s→ x(s) ∈ Σ(d), such that

(i) x(·) is continuous at 0 and x(0) = x0;
(ii) x(s) 6= x0, for every s ∈ [0, σ[;
(iii) x(s) = x0 + sν(x0) + o(s), as s→ 0+.

Notice that, Condition (iii) above ensures that, possibly reducing σ
and for every s ∈]0, σ], x(s) ∈ Rn \ O.
So, let 〈p1, ν(x0)〉 < 0, for some p1 ∈ D∗d(x0)

5. Then, in order to
apply Theorem 2.10 to d at x0, it remains to show that there exists
p0 ∈ coD∗d(x0) \D∗d(x0) such that

(2.50) p0 − tν(x0) /∈ coD∗d(x0), ∀t > 0.

We argue by contradiction assuming that

(2.51) ∀p ∈ coD∗d(x0)\D∗d(x0) ∃t > 0 : p−tν(x0) ∈ coD∗d(x0).

Since coD∗d(x0) is a compact set, from (2.51) it follows that

(2.52) ∀p ∈ coD∗d(x0) \D∗d(x0) ∃t > 0 : p− tν(x0) ∈ D∗d(x0)

for otherwise, by taking t large enough, one would intersect the bound-
ary of coD∗d(x0) \D∗d(x0) at a point at which (2.51) fails.
Notice that, since x0 ∈ Σ(d), there exists p2 ∈ D∗d(x0)\{p1}. Hence,

by (2.52), we find that for every λ ∈]0, 1[ there exists tλ > 0 such that

(2.53) p(λ) := p1 + λ(p2 − p1)− tλν(x0) ∈ D∗d(x0).

Moreover, recalling that |p(λ)|2 = 1 if p(λ) ∈ D∗d(x0), we have that

t2λ − 2tλ〈ν(x0), p1 + λ(p2 − p1)〉+ |p1 + λ(p2 − p1)|2 − 1 = 0.

Hence,

(2.54) tλ = 〈ν(x0), p1 + λ(p2 − p1)〉
+
»

(〈p1 + λ(p2 − p1), ν(x0)〉)2 + 1− |p1 + λ(p2 − p1)|2,

5Recall that 〈p, ν(x0)〉 ≤ 0 for all p ∈ D∗d(x0) (see Remark 2.11).
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for every λ ∈]0, 1[. Then, we get

〈ν(x0), p(λ)〉 = 〈ν(x0), p1 + λ(p2 − p1)〉 − tλ

= −
»

(〈p1, ν(x0)〉+ λ〈p2 − p1, ν(x0)〉)2 + 1− |p1 + λ(p2 − p1)|2.
Notice that (〈p2− p1, ν(x0)〉)2− |p2− p1|2 < 0. Indeed, we clearly have
that (〈p2−p1, ν(x0)〉)2−|p2−p1|2 ≤ 0. Should equality hold, one would
have that p2 = p1 + cν(x0) for some c 6= 0. Then, since |p2| = 1 = |p1|,
one would deduce that c = −2〈p1, ν(x0)〉. This would in turn yield
〈p2, ν(x0)〉 = −〈p1, ν(x0)〉 > 0, while we know that 〈p2, ν(x0)〉 ≤ 0.
Therefore, the function under the square root above is quadratic

w.r.t. the variable λ. Thus, it is strictly monotone on a suitable con-
nected open interval, I ⊂]0, 1[. Furthermore, we deduce that also the
continuous function,

I ∋ λ 7→ 〈ν(x0), p(λ)〉, is strictly monotone.

In other words, we have found that if (2.52) holds then

(2.55) J := {〈ν(x0), p(λ)〉 | λ ∈ I} ⊂ R has positive measure.

So, the proof reduces to show that (2.55) fails. For this purpose, set

Sn−1
− = {p ∈ R

n | |p| = 1 and 〈p, ν(x0)〉 < 0}
and observe that D∗d(x0) ⊆ Sn−1

− . For δ > 0, we define

Sδ := {p ∈ Sn−1
− | 〈p, ν(x0)〉 < −δ},

and fix δ ∈]0, 1[ such that

p(λ) ∈ Sδ, ∀λ ∈ I,

where p(λ) ∈ D∗d(x0) are the points given in (2.53). Since ∂O ∈ C2,
there exist r > 0 such that the ball Br(x0 + rν(x0)) is tangent (from
the exterior) to ∂O at x0. Observe that, if p ∈ Sδ and x0 − tp ∈ ∂O,
for some t > 0, then we have that x0 − tp /∈ Br(x0 + rν(x0)). This last
condition can be written as |tp+ rν(x0)|2 > r2, i.e., t > −2r〈p, ν(x0)〉.
Hence, we find that if p ∈ Sδ and x0 − tp ∈ ∂O for some t > 0, then

t > 2rδ =: r0.

Let us define

(2.56) X =
{

x ∈ ∂O | u(x) := x0 − x

|x− x0|
∈ Sδ

}

.

We point out that, as a consequence of the above considerations, X is
a nonempty open subset of ∂O \ Br0(x0). Furthermore, u : X −→ Sδ

is a smooth map between manifolds of the same dimension, n− 1. We
shall now use a classical argument of Differential Topology (see, e.g.,
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[23, page 88, Exercise 7]). For p ∈ Sδ, let r(p) = {x0 − tp | t ≥ 0}.
Observe that the ray r(p) is transversal to X if and only if p is a regular
value6 for the smooth map u : X → Sδ defined in (2.56). In order to
show that this is indeed the case, we note that, for every x ∈ X and
every tangent vector, ξ, to X at x,

du(x)(ξ) = − 1

|x− x0|

Å

ξ − 〈x− x0, ξ〉
x− x0
|x− x0|2

ã

= − 1

|x− x0|
(

ξ − 〈u(x), ξ〉 u(x)
)

.

So, u(x) =: p is a critical value for u (i.e., du(x) fails to be injective) if
and only if there is a tangent vector to X at x, say ξ, such that

ξ − 〈p, ξ〉p = 0 .

Therefore, p is a tangent vector to X at x as well. In particular, the set
of the critical values of u contains {p(λ) | λ ∈ I}. Now, let us define
the smooth function

f : X −→ R, f(x) = 〈ν(x0), u(x)〉, (x ∈ X),

and observe that if a point is critical for u then it is so for f . Then,
J is a subset of the critical values of f . Thus, by Sard’s Lemma, we
deduce the contradiction that J ⊂ R is a zero measure set but, due to
(2.55), it is of positive measure too. So, (2.50) follows and the proof of
Theorem 1.5 is completed.

2.9. Proof of Theorem 1.6. We want to show that ∂O ∩ Σ(d) 6= ∅.
First of all, we point out that, by (1.8), d is differentiable on I(k0)\{k0}.
Therefore

(2.57) Σ(d) \ {k0} ⊂ S(k0).

In order to find a point in Σ(d)∩∂O, we take a constrained maximum
point for d on ∂O. Let x0 ∈ ∂O be such a point. We claim that
x0 ∈ S(k0). In order to prove our claim, we argue by contradiction
assuming that x0 ∈ I(k0). Then,

r0 := d(x0) = |k0 − x0|.
Since

|x− k0| ≤ d(x) ≤ d(x0), ∀x ∈ ∂O,
6We recall that a value p is regular for u if for every x ∈ X such that u(x) = p

the differential du(x) is surjective between the tangent space to X at x and the
tangent space to Sδ at u(x). Furthermore, since these tangent spaces have the
same dimension, n− 1, du(x) is surjective if and only if it is injective.
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we deduce that

(2.58) ∂O ⊂ Br0(k0) and, by convexity, O ⊂ Br0(k0).

Since ∂O is of class C2, there exist δ > 0 and ϕ of class C2 such that

∂O ∩ Bδ(x0) = {x ∈ Bδ(x0) | ϕ(x) = 0 and Dϕ(x) 6= 0}
and

O ∩Bδ(x0) = {x ∈ Bδ(x0) | ϕ(x) < 0}.
Since x0 ∈ ∂O ∩ ∂Br0(k0), we have that

x0 − k0
|x0 − k0|

=
Dϕ(x0)

|Dϕ(x0)|
because, by (2.58), ∂O and ∂Br0(k0) have the same tangent plane at
x0. Then, we find that, for ε > 0 suitably small,

x0 − ε
Dϕ(x0)

|Dϕ(x0)|
= x0 − ε

(x0 − k0)

|x0 − k0|

=

Å

1− ε

|x0 − k0|

ã

x0 +
ε

|x0 − k0|
k0 ∈ int O,

where int O denotes the interior ofO. Hence, we find the contradiction
int O ∩ [k0, x0[6= ∅ and x0 ∈ I(k0). Our claim x0 ∈ S(k0) follows.
Next, we proceed to show that x0 ∈ Σ(d). Assume, by contradiction,

that x0 /∈ Σ(d). Then, by the Lagrange multiplier rule in Lipschitz
settings (see, e.g., [20, Theorem 6.1.1]), we find that the unit vector
Dd(x0) is parallel to the outward unit normal to the obstacle O at
x0, ν(x0). Moreover, Lemma 2.1 ensures that Dd(x0) = −ν(x0) and
there exists a length minimizer of the form γ(t) = x0 + tν(x0) for
t ∈ [0, t∗], with either t∗ = d(x0) or t∗ is the first positive time t such
that γ(t) ∈ O. Now, both alternatives are impossible: the first one
because it would imply that x0 ∈ I(k0), the second one because O is
convex. So, x0 ∈ Σ(d). This completes our proof of Theorem 1.6.

Appendix A. Proof of Theorem 1.2

Let K ⊂ Rn be a compact set such that k0 /∈ K and K ∩ ∂O 6= ∅.
For x ∈ K ∩ Rn \ O we define

E(x) = inf
γ

∫ 1

0

〈A(γ(t))γ̇(t), γ̇(t)〉 dt

where the infimum is taken w.r.t. γ ∈ AC([0, 1];Rn \ O) with γ(0) = x
and γ(1) = k0. We recall that

(A.59) d(x) =
»

E(x), x ∈ K ∩ Rn \ O.
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Equation (A.59) describes a well-known property whose proof can be
found, for instance, in [22, page 93]. Now, observe that, since d > 0

on K ∩ Rn \ O, we have that E > 0 on K ∩ Rn \ O. Furthermore, in

[13, Proposition 3.9], it is shown that E ∈ SC
1

2 (K ∩Rn \ O). Then, it
suffices to prove that the square root of a positive semiconcave function
is semiconcave. For this purpose, first we show that

√
E is a Lipschitz

function on K ∩ Rn \ O. Indeed, the existence of a constant L such
that

|E(x)− E(y)| ≤ L|x− y|, ∀x, y ∈ K ∩ Rn \ O

implies that, for every x, y ∈ K ∩ Rn \ O,

|
»

E(x)−
»

E(y)| ≤ L
√

E(x) +
√

E(y)
|x− y| ≤ L′|x− y|,

with

L′ =
L

2minx∈K∩Rn\O

√

E(x)
.

Furthermore, the fact that E ∈ SC
1

2 (K ∩ Rn \ O) implies that, for

every x ∈ K ∩ Rn \ O, we have that

E(y)− E(x) ≤ 〈p, y − x〉+ C|y − x|3/2

for every y ∈ K ∩ Rn \ O such that [x, y] ⊂ K ∩ Rn \ O and for every
p ∈ D+E(x). Then,

(A.60)
»

E(y) ≤
»

E(x) +
1

√

E(x) +
√

E(y)
(〈p, y − x〉 + C|y − x|3/2)

≤
»

E(x)+
1

2
√

E(x)
〈p, y−x〉+

Ç

1
√

E(x) +
√

E(y)
− 1

2
√

E(x)

å

〈p, y−x〉

+
C

√

E(x) +
√

E(y)
|y − x|3/2

≤
»

E(x) +
1

2
√

E(x)
〈p, y − x〉+ C ′|y − x|3/2

with

C ′ = max
x,y∈K∩Rn\O

Ç

C
√

E(x) +
√

E(y)
+

LL′
√

|y − x|
2
√

E(x)[
√

E(x) +
√

E(y)]

å

,
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i.e. for every x, y ∈ K ∩ Rn \ O such that [x, y] ⊂ K ∩ Rn \ O and for
every p ∈ D+E(x)

(A.61)
»

E(y) ≤
»

E(x) +
1

2
√

E(x)
〈p, y − x〉 + C ′|y − x|3/2.

Now, let x, y ∈ K ∩ Rn \ O such that [x, y] ⊂ K ∩ Rn \ O and let
λ ∈ [0, 1]. Then, by (A.61), with x replaced with λx+(1−λ)y, we find

(A.62)
»

E(y) ≤
»

E(λx+ (1− λ)y)

+
1

2
√

E(λx+ (1− λ)y)
λ〈p, x− y〉+ C ′λ3/2|y − x|3/2,

with p ∈ D+d(λx+ (1− λ)y). Analogoulsy, we find that

(A.63)
»

E(x) ≤
»

E(λx+ (1− λ)y)

+
1

2
√

E(λx+ (1− λ)y)
(1− λ)〈p, y − x〉+ C ′(1− λ)3/2|y − x|3/2.

Taking the convex combination of (A.62) with (A.63), we find that

λ
»

E(x) + (1− λ)
»

E(y)−
»

E(λx+ (1− λ)y)

≤ C ′((1− λ)λ3/2 + λ(1− λ)3/2)|y − x|3/2 ≤ C ′(1− λ)λ|y − x|3/2.
This completes our proof.

Remark A.12. The above proof is based on the property that the square
root of the positive function E ∈ SC

1

2 (K ∩Rn \ O) is itself fractionally
semiconcave of order 1/2. We note that, here, known results deal-
ing with the semiconcavity of a composition (see, e.g., [15, Proposi-
tion 2.1.12 (i)]) cannot be applied for two reasons. First, they do not
address semiconcave functions on a closed domain and, second, they
do not provide a control of the fractional semiconcavity modulus.
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