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A B S T R A C T   

Background: Cutaneous malignant melanoma (CMM) accounts for the highest mortality rate among all skin 
cancers. Traditional histopathologic diagnosis may be limited by the pathologists’ subjectivity. Second-opinion 
strategies and multidisciplinary consultations are usually performed to overcome this issue. An available solu
tion in the future could be the use of automated solutions based on a computational algorithm that could help the 
pathologist in everyday practice. The aim of this pilot study was to investigate the potential diagnostic aid of a 
machine-based algorithm in the histopathologic diagnosis of CMM. 
Methods: We retrospectively examined excisional biopsies of 50 CMM and 20 benign congenital compound nevi. 
Hematoxylin and eosin (H&E) stained WSI were reviewed independently by two expert dermatopathologists. A 
fully automated pipeline for WSI processing to support the estimation and prioritization of the melanoma areas 
was developed. 
Results: The spatial distribution of the nuclei in the sample provided a multi-scale overview of the tumor. A global 
overview of the lesion’s silhouette was achieved and, by increasing the magnification, the topological distri
bution of the nuclei and the most informative areas of interest for the CMM diagnosis were identified and 
highlighted. These silhouettes allow the histopathologist to discriminate between nevus and CMM with an ac
curacy of 96% without any extra information. 
Conclusion: In this study we proposed an easy-to-use model that produces segmentations of CMM silhouettes at 
fine detail level.   

1. Introduction 

Cutaneous malignant melanoma (CMM) accounts for the highest 
mortality rate among all skin cancers and has seen an important increase 
in incidence in the past few decades (approximately of 3–4% per year) 
[1,2]. The gold standard for melanoma diagnosis is histopathological 
examination, which is necessary for the correct staging of the tumor and 
for clinical and therapeutic decision-making [3]. Regarding the histo
pathologic examination, dermatopathologists or pathologists usually 
start the evaluation by observing the so-called “silhouette” of the lesion 
[4,5]. This term, introduced by Ackerman in 1985, describes the 

morphologic aspects of tumor extension [4–6]. He further asserted that 
the importance of silhouette delineation, at first glance, could be supe
rior to that of other cytological details in determining the benign or 
malignant nature of a neoplasm [4–6]. Ackerman first proposed these 
criteria for the histopathological diagnosis of melanoma in defining his 
pattern analyses method and for many dermatopathologists little has 
changed since then [4–6]. Estimates of the diagnostic accuracy of pa
thologists’ interpretations of melanocytic lesions have been reported by 
several studies and interobserver evaluation discrepancy may range 
from 8 to 25–26% [7–10,25]. These discrepancies are higher for chal
lenging melanocytic lesions and in particular in CMM diagnosis could 
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lead to the over- or undertreatment of patients [9]. Multidisciplinary 
consultancies are usually performed, whereby clinicians may add 
pertinent clinical information and send dermatoscopic images to the 
pathologists [11,12]. Second opinion policies are also frequently used by 
university-based institutions in Italy. A recent study from the US re
ported that in the absence of a second opinion for pathologic interpre
tation of melanocytic skin lesions, 16.8% of cases would receive a 
reference-disconcordant diagnosis, resulting in 16,850 disconcordant 
diagnoses per 100,000 biopsies in the US each year with health care 
costs during the subsequent year estimated at $132,301,000 (95% CI, 
$130,992,000-$133,625,000) [12]. However, second opinion patho
logic consultancies are not free of cost and may sometimes cause an 
increase in the time of diagnostic decision making. [12] Therefore, novel 
advances in technology could direct second opinions for cancer patho
logic diagnosis towards the emerging automated or semi-automated 
computer-based systems [13]. 

The introduction of whole slide imaging (WSI), defined as the 
scanning/digitization of traditional glass slides, along with machine 
learning and deep learning techniques, has proved to be an important 
step in this direction [14–16]. Such automation and digitalization 
significantly decreases the s sample processing time and lowers costs, 
allowing a more efficient and standardized diagnostic process. 
Currently, most of the promising computer-aided diagnostic softwares 
are limited to dermoscopic image analysis, and few of them are able to 
analyze histological images [15]. The difficulty in creating a 
computer-aided analysis of WSI is due to the large dimensions of the 
samples involved, which require complex, ad-hoc algorithms and tech
niques [14–16]. In fact, in order to develop a robust processing algo
rithm, it is necessary to take into account multiple variables, such as 
sample preparation and staining, the type of image acquisition software, 
and the resolution of the acquired image [14–16]. These obstacles 
therefore need to be overcome in order to allow Computer-aided Diag
nosis (CAD) systems to become a feasible option as an automated second 
opinion. This would increase the objectivity in histopathological eval
uations by decreasing the amount of interobserver variability [17–20]. 
One aspect that could especially benefit from these systems is the 
detection of the above-cited tumor silhouette. As one of the first steps in 
the melanoma diagnostic process, an increase in objectivity and stan
dardization of silhouette detection could provide an important advan
tage in terms of time and reproducibility. 

2. Materials and methods 

This study was performed in collaboration with the eDIMESLab and 
the Melanoma Unit of the Dermatology Department of the IRCCS San
t’Orsola-Malpighi Hospital, University of Bologna (Italy). The study was 
approved by the local medical ethics committee and was conducted from 
March 2020 to April 2021 (completion of data analysis and manuscript 
approval by all authors). The histologic glass slides of 50 CMM and 20 
benign congenital compound nevi were collected by the Laboratory of 
dermatopathology of the Dermatology Department of Sant’Orsola-Mal
pighi Hospital. The WSI were subsequently acquired using a Nano
Zoomer 2.0-RS Hamamatsu scanner with a 40x (0.23 µm/pixel) 
magnification and autofocusing. All the examined samples were ob
tained from deep excisional biopsies or wide excisions. The hematoxylin 
and eosin (H&E) stained WSI were then reviewed independently by two 
expert dermatopathologists (C.M. and C.R.), both with > 5 years of 
experience in dermato-oncology. Histological evaluation for CMM cases 
included Breslow thickness, mitotic rate, presence of ulceration, 
inflammation, and tumor regression. Clinical data were evaluated for 
each case, including gender, age at diagnosis, tumor location, and 
macroscopic diameter of the lesion. A fully automated pipeline for the 
estimation of the melanoma areas and the detection of the lesion 
silhouette was developed. Finally, the results of the automated silhou
ettes were compared with the silhouettes drawn manually by the 
dermatopathologists. 

2.1. Computer-aided diagnosis system pipeline 

We developed a novel fully automated pipeline for WSI processing 
that allows the estimation of the area defined as melanocytic lesion. The 
processing steps of this novel pipeline (Fig. 1) are as follows: (i) Auto
mated identification of the sections in the WSI field of view and removal 
of possible confounders (such as bubbles, dirt, and pen marks); (ii) 
Automated identification of the epidermal surface through a thresh
olding algorithm; (iii) Rotation of the section: using the epidermal sur
face as a reference to introduce a measurement of depth; (iv) 
Automated, non-supervised nucleus identification, and the evaluation of 
morphological features in relation to their shape and the characteristics 
of their surroundings; (v) Automated selection of the nuclei according to 
their morphological features, guaranteeing a multi-level overview of the 
section. In this system, the cells unrelated to the melanocytic lesion, such 
as inflammatory cells, are filtered out; (vi) Automated spatial statistical 
analysis of the cells’ distribution. A detailed analysis of the software will 
be presented in a future work. The full pipeline was developed using the 
C+ + programming language to guarantee a fast elaboration of the 
images. 

2.2. Heatmap elaboration 

The proposed pipeline was applied to the entire set of available 
sections using a workstation machine (64 GB RAM memory and 1 CPU 
i9–9900 K, with 8 cores) with an average computational time of less 
than 5 min per section. Each WSI includes several consecutive sections 
of a single sample, each of which was independently analyzed following 
all the pipeline steps, collecting the spatial distribution of the detected 
cells.The resulting spatial distribution highlights the density map of the 
cells in the section. Superimposing this distribution on the original 
image allows its spatial registration on the WSI. We further organized 
these distributions into levels of intensity according to nuclei density, 
with each level being associated to a range of density scores and 
assigning a different (incremental) color for the clinical visualization 
(Figs. 1 and 2). In this work, a range of 10 density levels were used, and 
the distributions taken from each WSI were standardized according to 
the available sections. The shapes of the resulting density map act as a 
silhouette approximation of the neoplastic area. For the visualization of 
the results and the management of the estimated silhouettes, a dedicated 
plug-in on the Sedeen Viewer software was developed. The Sedeen 
Viewer software is supported by the Pathology Image Informatics Plat
form (PIIP) designed by Martel et al. [17] and provides an easy inte
gration of our pipeline into other WSI programs. In our application, we 
additionally provided the clinician with the possibility to turn on/off 
each level of the density distribution, thereby guaranteeing an incre
mental accuracy of the density score and providing the expert with the 
option of choosing the desired level. 

3. Results 

We included 50 patients (28 males and 22 females, mean age 67 and 
64 years, respectively) with a diagnosis of superficial spreading CMM 
and 20 benign congenital compound nevi (11 males and 9 females, mean 
age 42.2 years). Clinical and histopathological results are summarized in  
Table 1. 

3.1. Automated silhouette definition 

The spatial distribution of cells allows a multi-scale overview of the 
sample at different resolution levels, which are represented by a heat
map overlayed on the WSI. A global overview of the lesion silhouette can 
be achieved using the low-resolution levels of the WSI. This highlights 
the spatial distribution of melanocytes in both the epidermis and dermis 
areas, guaranteeing the detection of a possible melanocyte invasion of 
the upper epidermis in a pagetoid growth. The qualitative measurement 
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of the melanocytes’ structural disorder within the tissue allows a first 
fast evaluation of the section. A symmetrical, vertically oriented, wedge- 
shaped silhouette with a smooth, well-defined edge is associated with a 
benign lesion; an asymmetrical silhouette with a jagged and poorly 
defined edge is defined as a malignant lesion. The heatmap is an easy-to- 
use visualization for assessing the level of clustering of detected cells. 

3.1.1. Comparison of the automated silhouette with the one drawn 
manually by board-certified dermatopathologists 

The WSI were evaluated by the two dermatopathologists as follows: 
(i) the first expert manually annotated each WSI, outlining the mela
noma and nevus silhouettes; (ii) the second expert blindly estimated the 
agreement between the areas identified by his colleague and the result of 
the automated algorithm. In 94% (47/50) of melanomas and 100% (20/ 
20) of nevi analyzed, the automated silhouette identified by our method 
is compatible with those manually contoured by the expert dermato
pathologist, with a qualitative superiority to the manual scheme in 
identifying melanocytes. Furthermore, the two pathologists confirmed 
that the areas with the highest intensities of malignant melanocytes 

identified by our method correspond to the region of interest for mela
noma diagnosis related to the presence of high nuclear density, nuclear 
atypia, and neo-angiogenesis. This evaluation is a crucial step in testing 
the robustness of our method, but is even more important for the iden
tification of possible issues and misleading detections. 

3.2. Diagnostic power of the lesion silhouette 

The validated automated silhouettes were submitted to the derma
topathologists involved in this study. Each silhouette was overlayed on 
the original WSI, and the opacity of the resulting image was adjusted to 
partially obscure the underlying histological source. During the blind 
evaluation, the expert was asked to determine the potential malignancy 
of the underlying lesion in relation to the silhouette shape (Fig. 3). The 
opacity of the original histological image was reduced to focus the 
attention of the expert as much as possible on the outlined area. We 
decided not to completely obscure the histological image source since 
the spatial localization of the silhouette is a critical indicator for diag
nosis, together with its relative position with respect to the epidermis. In 

Fig. 1. Heatmap elaboration. a: WSI comprises multiple consecutive sections of a single sample, each of which was analyzed independently; b: Sample extraction 
with the removal of possible confounding factors, identification of the epidermal surface and the rotation of the section; c: Automated and unsupervised cell 
identification and classification based on their morphological characteristics; d1-d2: The resulting spatial distribution highlights the density map of the cells in the 
section and the superimposition of this distribution on the original image allows its spatial registration with the WSI with silhouette delineation. 

Fig. 2. The silhouette identified by our method is defined by a range of density scores. We used incremental colors (from yellow to red) to represent those levels for 
the clinical visualization. The method is comparable with the silhouette manually contoured by the expert histopathologist (blue line), and in some cases qualitatively 
superior in the identification of tumoral areas. 
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this way we determined the informative power of the cell distribution 
for the expert diagnosis. The expert evaluated all the available sections 
independently, without time limits, and using an HD computer monitor 
(HP Z27 UHD 4 K, 27′′, 3840 ×2160 resolution). Each section was 
labeled as “melanoma” or “nevus”, and the results of the blind evalua
tion were compared to the ground truth diagnosis. Considering the total 
section-by-section analysis (156), 18% of the silhouettes led the expert 
to an incorrect diagnosis (melanoma-like silhouette vs. a diagnosis of 
benign nevus and nevus-like silhouette vs. a diagnosis of melanoma). 
This non-negligible error rate can be reduced by considering multiple (at 
least 2 to a maximum of 6) sections for each patient in order to incre
ment the statistical population, which adds robustness to this analysis. 
After adjusting for this consideration by grouping together the sections 
belonging to each patient, only 1 patient (4% of error rate) was 

incorrectly classified by the expert. 

4. Discussion and conclusion 

In the diagnosis of melanocytic skin tumors, the assessment of the 
overall architectural pattern, the silhouette of the lesion, is fundamental 
[4,6,10]. The most promising advances in histopathologic diagnosis are 
supported by new technologies and are based on image processing 
techniques [10,20–22]. Most published studies attempt to exploit deep 
neural networks in order to assess histomorphological features in H&E 
slides [24]. However, deep neural network models require extensive 
training and multiple validation sets. Hekler et al. [23] applied a deep 
learning algorithm for the first time in histopathological melanoma 
classification, showing a discrepancy between a convolutional neural 
network and the histopathologist in 19% of the images. These results 
were comparable to the pathologist interobserver variability described 
in the literature [7–10]. The goal of our model is to overcome the lim
itations of supervised approaches, thus allowing it to be applied without 
relying on manually labeled samples. In the literature, several deep 
learning models have been proposed to automate the processing of WSI 
that require manually annotated sets of images in order to obtain 
reproducible training of the parameters [16,19]. This step is normally 
difficult and time-consuming to perform at the accuracy level required 
for a precise segmentation model. 

Many authors have already proposed automated pipelines for the 
segmentation of histological samples, mostly focusing on the analysis of 
small patches of each section, usually at lower resolution than the one 
allowed by the WSI [17,20–22]. This approach guarantees a fast eval
uation of the section, but leads to a rough segmentation of the under
lying physiological structures. The proposed method performs the 
analysis on the entire WSI without the need for a subdivision in patches. 
Therefore, it is possible to obtain segmentations and silhouettes at high 
resolution that are easy to use and validate by the experts. The devel
oped pipeline requires an elaboration time compatible with clinical 
application (an average of about 10 min per section). The most 
time-consuming step (87% of the time) concerns the segmentation and 
classification of the cells, which requires a high-resolution analysis of 
the WSI. The pipeline can be further optimized using computation ac
celerators, such as graphic processing units (GPU). In accordance with 
Dall’Olio et al. [18], the use of distributed computing for high 
memory-consuming data should be discouraged, since the best compu
tational performances are reached by a concurrent parallelization 
framework. 

In conclusion, we have shown that the proposed method allows for a 
quick identification of the most informative regions of interest for 
diagnosis. The agreement between the human-drawn silhouette and the 
areas identified by the automated algorithm in our study ranged from 
94% in melanomas to 100% in nevi and the diagnostic power of these 

Table 1 
Clinical and histopathological data of the enrolled patients.  

Patients n % n %  

melanomas nevi 
Age  
< 50 19 38 15 75 
50–59 6 12 3 15 
60–69 8 16 2 10 
> 70 17 34 0 0 
Gender  
Female 22 44 9 45 
Male 28 56 11 55 
Location  
Trunk 28 56 15 75 
Head and neck 3 6 0 0 
Limbs 19 38 5 25 
Ulceration  
Absent 49 98 
Present 1 2 
Mitosis (x mm2) 
< 1 45 90 
> 1 5 10 
Breslow (mm) Average 0,4 
< 0,8 44 88 
> = 0,8 6 12 
Regression 
Present 23 46 
Absent 27 54 
Inflammation 
Absent 9 18 
Present:  
– Brisk  
– Not-brisk 

11 
30 

22 
60 

Stage 
pTIS 2 4 
pT1a 42 84 
pT1b 3 6 
pT2a 3 6  

Fig. 3. Examples of benign (left) and malignant (right) lesions in relation to the silhouette shape. The silhouette contour was filled to obtain a dense heatmap of the 
segmented area and the underlying histological source was partially obscured to focus the attention of the expert on the segmented area. In the case of nevus 
silhouette, the shapes are symmetrical, vertically oriented, wedge-shaped, and sharply circumscribed with smooth borders and flat base. An asymmetrical silhouette 
with a jagged and poorly defined edge is defined as a malignant lesion. 
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silhouettes was validated by two dermatopathologists. This result shows 
the importance of the lesion silhouette for the formulation of the der
matopathological diagnosis and the importance of an accurate detection 
of the lesion area for the discrimination between benign and malignant 
skin lesions. 

Even with these promising results, numerous challenges remain. 
Among the principal limitations, we noticed that in some cases the 
automated identification classified tissue characterized by visible 
inflammation or skin appendages, such as glands and hair follicles, as 
melanoma-like regions. Both biological structures are characterized by a 
high level of cellular density and, without a subsequent classification of 
the nuclei, are difficult to discard by the described method. However, we 
wish to point out that with further improvements in the WSI processing 
pipeline, these sources of misclassification can be automatically 
removed, avoiding false positive detection. Furthermore, the failure to 
include an estimation of the level of maturation of melanocytes through 
the lesion depth is a problem that will certainly need to be addressed. 
Maturation with depth is a known important parameter in lesion clas
sification, and will definitely be included in future models, but it was 
excluded from the one presented here in order to focus on the predictive 
capability of the density-based heatmap. Finally, the proposed algorithm 
will need to be tested on samples from different laboratories to assess the 
real clinical reliability of the method. 

We aim to extend and improve this method for other histological 
applications involving difficult diagnoses such as dysplastic nevi and 
different subtypes of melanomas. The use of AI techniques in the future 
will not aim to reduce the importance of pathologists, but could prob
ably offer “an automated second opinion” that may be used to formulate 
the final diagnostic decision in a time-efficient and homogeneous 
manner. 
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