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Network design, a cornerstone of mathematical optimization, is about defining the main characteristics of a

network satisfying requirements on connectivity, capacity, and level-of-service. It finds applications in logis-

tics and transportation, telecommunications, data sharing, energy distribution, and distributed computing. In

multi-commodity network design, one is required to design a network minimizing the installation cost of its

arcs and the operational cost to serve a set of point-to-point connections. The definition of this prototypical

problem was recently enriched by additional constraints imposing that each origin-destination of a connec-

tion is served by a single path satisfying one or more level-of-service requirements, thus defining the Network

Design with Service Requirements. These constraints are crucial, e.g., in telecommunications and computer net-

works, in order to ensure reliable and low-latency communication. In this paper we provide a new formulation

for the problem, where variables are associated with paths satisfying the end-to-end service requirements.

We present a fast algorithm for enumerating all the exponentially-many feasible paths and, when this is not

viable, we provide a column generation scheme that is embedded into a branch-and-cut-and-price algorithm.

Extensive computational experiments on a large set of instances show that our approach is able to move a

step further in the solution of the Network Design with Service Requirements, compared with the current

state-of-the-art.

Key words : network design; multi-commodity flow; service requirements; branch-and-cut-and-price

algorithm; budget-constrained shortest path; labeling algorithm

1. Introduction1

Network design is a cornerstone of mathematical optimization, as witnessed by the large amount2

of literature on this topic. Indeed, historically it finds applications in logistics and transportation3

of goods and persons (Magnanti and Wong [1984]) and, more recently, in telecommunications,4

data sharing, energy distribution, and distributed computing (Gendron et al. [1999]).5

1
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Network design is about defining the main characteristics of a network satisfying requirements6

on connectivity, capacity, and level-of-service. Setting up the network induces some installation7

cost, while additional costs are incurred when operating the service. It is quite common that a8

larger cost in the first term yields to a reduction in the latter, and vice-versa. Thus, the problem9

requires to find an equilibrium in the trade-offs between the installation and the operational costs.10

A prototypical network design problem is the multi-commodity network design, in which one11

is required to design a network minimizing the installation cost of its arcs and the operational12

cost to serve a set of point-to-point connections, denoted as commodities. The solutions to this13

problem, however, can results in networks for which some commodities experience a low-quality14

connection with respect to some metric, e.g., distance or number of intermediate network nodes15

(hops) between origin and destination. In some applications, this is a critical issue: for example16

in telecommunications, a common requirement consists of limiting the number of hops between17

origin and destination of any connection, as this has a direct effect on the latency of the communi-18

cation. Similarly, in transportation networks, it is common to limit the distance traveled between19

origin-destination pairs, in particular when dealing with a public transport service or when trans-20

porting perishable goods.21

Recently, Balakrishnan et al. [2017] filled this gap and introduced the Network Design with Ser-22

vice Requirements (NDSR), a network design problem in which additional constraints impose that23

each origin-destination is served by a single path satisfying one or more level-of-service require-24

ments. More specifically, each path must satisfy a maximum length with respect to a number of25

specified metrics. The problem asks to select some arcs to include in the network and to define,26

for each commodity, a path on the selected arcs and taking into account the mentioned level-27

of-service requirements. The objective is to minimize a cost function consists of minimizing the28

total installation cost of the network arcs and of the operational cost of the selected paths. In that29

paper, the authors show that a model based on arc-flow variables can be hard to solve even for30

moderate-sized networks. Hence, through a wide polyhedral analysis they derive several families31

of valid inequalities, which can be exploited to strengthen the formulation. The resulting model,32

combined with an effective heuristic algorithm, allows to tackle larger instances of the problem.33

In this manuscript, we propose a new model where variables are associated with paths sat-34

isfying the end-to-end service requirements. This way, many of the weaknesses of the arc-flow35

formulation are naturally overtaken without the need to recur to cut separation techniques. This36

desirable property comes at the cost of a formulation which is much larger, involving an expo-37

nential number of path variables. However, we show that for all the instances considered by38

Balakrishnan et al. [2017], we are indeed capable of quickly enumerating all the variables of the39

new formulation, thanks to an effective labelling algorithm, and to solve to proven optimality40



Gudapati, Malaguti, Monaci: Network Design with Service Requirements

Article submitted to ; manuscript no. (Please, provide the manuscript number!) 3

a much larger set of instances using a general-purpose ILP solver. In particular, our approach41

allows to solve a relevant fraction of the large instances introduced by Balakrishnan et al. [2017],42

and to compute near-optimal solutions in the remaining cases, showing that the algorithm scales43

efficiently to larger size of the network. In addition, we provide a new set of instances for which44

enumerating all the paths is not viable; for solving these large instances, we present a column45

generation scheme that is embedded into a full branch-and-cut-and-price algorithm.46

The paper is organized as follows. In the remainder of this section, we review some literature47

related to the problem at hand. Section 2 formally describes the problem, reviews a mathematical48

formulation from the literature, introduces a novel formulation, and compares the two models.49

Section 3 presents a solution approach based on branch-and-cut-and-price, describing column50

generation and the addition of valid inequalities. Section 4 computationally compares the per-51

formances of the proposed algorithms with state-of-the-art approach on test instances from the52

literature. Finally, in Section 5 we present some conclusions.53

Literature Review: There is a wide literature on network design problems, and many surveys54

have been published on these topics, see, e.g., Magnanti and Wong [1984], Crainic [2000], and55

Wieberneit [2007]. Depending on the specific application, different variants of these problems56

were considered. A notable field of research involves the design of reliable and survivable net-57

works, that has become a major objective for telecommunication operators (see, Kerivin and58

Mahjoub [2005]). In this context, one is required to define a robust network preserving a given con-59

nectivity level under possible failure of certain network components. There exist several ways to60

express the network robustness. Under a stochastic paradigm, the network is required to remain61

operative either with a large probability (Song and Luedtke [2013], Barrera et al. [2015]) or after62

some recourse action has been implemented (Ljubić et al. [2017]). Alternatively, more conservative63

approaches, imposing explicit redundancy in the definition of the network, have been considered64

in the literature; typically, one is required to design a network having two (edge) disjoint paths65

for each commodity (Magnanti and Raghavan [2005], Andreas and Smith [2008], Andreas et al.66

[2008], and Balakrishnan et al. [2009]), while Grötschel et al. [1995] considered the case in which67

higher connectivity requirements are imposed.68

Another class of related problems arises in applications where explicit constraints are imposed69

on the characteristics of each path. A common requirement to guarantee the required quality of70

service is to limit the number of hops of each path; this problem has been introduced by Bal-71

akrishnan and Altinkemer [1992], while Gouveia [1998] presented a strong flow formulation that72

has been later adopted for many hop-constrained network design problems. In some cases, the73

resulting network is required to have a special structure (typically, a tree), or survivability con-74

siderations have been added to the problem definition; see, e.g., Botton et al. [2013] and Gouveia75

et al. [2015].76
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Our problem is closely related to the class of multi-commodity flow problems (Kennington77

[1978]) in which the network is given and commodities compete for the use of the arcs, which have78

a limited capacity. A branch-and-cut-and-price approach using path variables has been proposed79

by Barnhart et al. [2000]. Another relevant special case of NDSR arises when network design has80

to be defined for a unique commodity, and a single metric has to be considered. The resulting81

budget constrained shortest path problem, introduced by Joksch [1966], is an NP-hard problem,82

and turns out to be a simplified version of a subproblem that we have to solve for generating83

columns, which takes more than one metric into consideration.84

Finally, on the applications side, end-to-end service requirements have been considered by85

Barnhart and Schneur [1996], Kim et al. [1999], and Armacost et al. [2002], where express deliv-86

ery of parcels is optimized. Though service time is a key aspect in these applications, the special87

structure of the networks allows to avoid to explicitly impose these constraints.88

2. Problem description and formulation89

We now give a formal definition of the problem addressed in this paper. We are given a directed90

graph G= (V,A) where V is the node set and A is the arc set, and a set K of commodities. Each91

commodity k 2 K has associated a source node sk and a sink node tk. For each arc a 2 A there92

is an activation cost Fa; in addition, using an arc a for a commodity k induces a flow cost cka.93

The problem asks to send, for each commodity k, one unit of flow on a single path pk from the94

source to the sink, by determining a set of arcs and the routing of the flows so that the sum of the95

activation and flow costs is a minimum. In addition, there is a set M of metrics, that determines96

the feasibility of the path associated with a given commodity k: for each metric m2M, we denote97

by wkm
a the weight of arc a with respect to the metric, and require that the sum of the weights on98

arcs in pk does not exceed a given upper limit W km. We denote by wk
a and Wk the corresponding99

m-dimensional vectors. For example, in a transportation context, one could consider two metrics:100

the first one counts the number of arcs, each one associated with a certain transportation mode,101

whereas the second measures the total transit time associated with the path. By bounding the102

weight of the path used by each commodity between its origin and destination with respect to103

both metrics, one may limit the maximum number of transhipments and maximum transit time.104

Throughout the paper, we assume that the graph includes no multiple arcs. This assumption is105

without loss of generality, as multiple arcs with different costs or service consumption for a given106

pair of nodes can be handled by the addition of dummy nodes. In addition, we assume that, for107

each commodity, at least one feasible path exists, since otherwise the problem is clearly infeasible.108

The problem reduces to the NP-hard budget-constrained shortest path (see, Garey and Johnson109

[1979]) when there is a single commodity and a single metric. This shows that the problem is110

NP-hard.111
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The next section reports a descriptive formulation that has been proposed in the literature,112

whereas Section 2.2 introduces a novel formulation that will be used in our solution scheme.113

2.1. Arc-flow formulation114

The following formulation has been proposed by Balakrishnan et al. [2017] and makes use of115

activation variables and flow variables. All variables are binary and have the following meaning:116

za =

(
1 if arc a is selected
0 otherwise

(a2A)117

118

yk
a =

(
1 if commodity k is routed on arc a

0 otherwise
(a2A, k 2K)119

Then, the NDSR can be modelled using the following Integer Linear Programming (ILP) for-120

mulation:121

min
X

a2A

Faza +
X

k2K

X

a2A

ckay
k
a (1a)

subject to
X

a2�+(v)

yk
a �

X

a2��(v)

yk
a =

8
<

:

+1 v= sk

�1 v= tk

0 v 2 V \ {sk, tk}
k 2K (1b)

X

a2A

wkm
a yk

a W km k 2K,m2M (1c)

yk
a  za a2A, k 2K (1d)

za 2 {0,1} a2A (1e)

yk
a 2 {0,1} a2A, k 2K. (1f)

The objective function minimizes the sum of the activation and flow costs. Constraints (1b)122

impose flow conservation for each commodity and node, whereas (1c) concern feasibility of the123

paths with respect to the metrics, and inequalities (1d) force the activation of arcs that are used124

for routing a positive flow. Finally (1e) and (1f) define the domain of the variables. The arc-flow125

formulation has a polynomial size, as it includes (|K|+ 1) |A| variables and |K| (|V|+ |A|+ |M|)126

constraints.127

2.2. Path-based formulation128

The novel ILP formulation that we propose includes the same binary activation variables of model129

(1a)–(1f), that select the arcs to be activated, whereas flow variables are replaced by path variables130

that are defined as follows. Let Pk be the set of all feasible paths for commodity k. For each131
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commodity k and each path p 2 Pk, let us introduce a binary path variable xp with the following132

meaning:133

xp =

(
1, if commodity k is routed along path p

0 otherwise
(k 2K, p2Pk)134

Let cp be the flow cost of the path p for commodity k, defined as the sum of the flow costs of all135

the arcs in p. The problem can thus be modelled as follows:136

min
X

a2A

Faza +
X

k2K

X

p2Pk

cpxp (2a)

subject to za �
X

p2Pk:a2p

xp � 0 a2A, k 2K (2b)

X

p2Pk

xp = 1 k 2K (2c)

za 2 {0,1} a2A (2d)

xp 2 {0,1} p2Pk, k 2K. (2e)

The objective function minimizes activation costs and flow costs, which are here expressed in137

terms of path variables. Constraints (2b) are the counterpart of (1d), enforcing activation of arcs138

that are used by a path. Constraints (2c) ensure that, for every commodity, one feasible path is139

selected. Finally, (2d) and (2e) define the domain of the variables.140

As it typically happens in path-based models, constraints defining the feasibility of the paths for141

a given commodity k are implicitly included in the definition of set Pk, and hence the formulation142

does not include a direct counterpart of constraints (1c).143

Observation 1 The model obtained by relaxing integrality requirement (2e) admits an optimal integer144

solution.145

Proof: Assume that an optimal solution for the relaxation is given. For a given choice of the z146

variables, the x variables associated with a commodity do not interact with those of a different147

commodity. Thus, we concentrate on a single commodity, say k, and assume that more than one148

path is selected for that commodity, the sum of the values of the associated path variables being149

1. By optimality of the initial solution, all the selected paths must have the same cost. Hence, by150

increasing the value of one path variable to 1 and setting to 0 all the remaining ones, we obtain a151

solution that has the same cost as the original one. ⇤152
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Variable enumeration: We first observe that the path-based formulation has O(2|V|) variables and153

(|A|+1) |K| constraints, i.e., its size can be exponential in the size of the instance. We now intro-154

duce an algorithm for enumerating all path variables; however, for large graphs, enumerating all155

paths can be challenging, and one may have to resort to column generation techniques, that will156

be discussed in Section 3.157

There is a vast body of literature addressing the problem of enumerating all paths (and the158

closely related problem of enumerating all cycles) in a given graph. According to Mateti and159

Deo [1976], existing approaches can be classified into search space algorithms, backtrack algo-160

rithms, and algorithms based on the power of the adjacency matrix. Our enumeration Algorithm161

1 belongs to the second category, and considers one commodity k at a time and defines all simple162

paths from sk to tk that satisfy resource constraints under all metrics. The algorithm is inspired163

by the labelling method proposed by Dumitrescu and Boland [2003] for the budget-constrained164

shortest path problem. In our algorithm, each label ` = {u, c,w} represents a path from sk to u165

having cost c and using wm units of resources under each metric m. Each label is generated as166

unmarked, meaning that it has to be expanded, and then it is marked when considered for expan-167

sion. Expansion of a label ` associated with a node u consists in appending an arc a= (u, v) to the168

current path. To this aim, we consider all the outgoing arcs from u and, for each neighbor node169

v not yet belonging to path `, we check whether using the current label for reaching v preserves170

feasibility with respect to the metrics. In this case, we define a new label `0 = {v, c+ cka,w+wk
a},171

i.e., we update the path cost and resource usage when using the current label for reaching v. Even-172

tually, node v is inserted in set T , that includes all nodes associated with unmarked labels. The173

algorithm terminates when T = ;, meaning that no label can be further expanded, and returns all174

labels associated with node tk. Although a node can be inserted in and removed from T more than175

once, the convergence of the algorithm is ensured by requiring simple paths, which is checked in176

line 9.177

The above algorithm can be improved by pre-computing, for each metric m 2M, the shortest178

path from each node to tk when the cost of each arc a is given by wkm
a . This figure can be used179

when checking feasibility of the new label in line 9: by adding this term to the left-hand-side of180

the inequality, we avoid generating labels that could not be feasibly expanded to node tk.181

2.3. Models comparison182

In this section we compare the two formulations in terms of their linear relaxations.183

Observation 2 Any feasible solution for the linear relaxation of the path-based formulation can be mapped184

to a feasible solution of the same cost of the linear relaxation of the arc-based formulation, whereas the185

opposite does not hold.186
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Algorithm 1: Compute all feasible paths for a fixed commodity
Input : k

1 s := sk, t := tk, T := {s}, c := 0,w := 0

2 Define an unmarked label ` := {s, c,w} for node s

3 while T 6= ; do
4 pick any u2 T

5 T := T \ {u}

6 foreach unmarked label `= {u, c,w} associated with node u
7 mark label `

8 foreach a= (u, v)2 �+(u)
9 if (v /2 path `) and (w+wk

a Wk)
10 define an unmarked label `0 = {v, c+ cka,w+wk

a}

11 if (v 6= t)
12 T := T [ {v}

13 return all labels associated with node t

Proof: Let z⇤, x⇤ be a feasible solution of the linear relaxation of the path-based formulation.

We now define a solution ez, ey that is feasible for the linear relaxation of the arc-based formulation

and has the same cost. First, we set ez = z⇤. Then, for each arc a2A and commodity k 2K, we set

eyk
a =

X

p2Pk:a2p

x⇤
p.

It is straightforward to check that flow conservation constraints (1b) and feasibility requirements187

(1c) with respect to the metrics are satisfied as y variables are obtained as combination of feasible188

paths, whereas constraints (1d) are implied by (2c) and by the definition of eyk
a . The equivalence of189

the costs follows from the definition of the cost of each path.190

Figure 1 gives a small numerical example showing that the counterpart does not hold. The191

instance has no flow costs, a single commodity, and a single metric, for which the capacity is192

W = 2. For each arc we report the activation cost and the weight with respect to the metric. While193

there is a unique feasible path p= {(s, t)} having cost 1, an optimal solution to the linear relaxation194

of the arc-based formulation is given by ys1 = y1t = yst = 1/2 having cost 1/2. ⇤195

The observation shows that the path-based formulation dominates the arc-based one in terms196

of tightness of the associated linear relaxations.197

The structure of feasible solutions for the linear relaxation of the arc-based formulations was198

analyzed by Balakrishnan et al. [2017], showing that fractional solutions may arise for two main199

reasons:200
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s

1

t

[0,2]

[1,1]

[0,1]

Figure 1 Simple example for which the path-based formulation dominates the arc-flow formulation.

• for a given commodity, the model may route part of the flow on a path that is less expensive201

but infeasible with respect to the metric requirements (see again Figure 1);202

• arc activation variables can be set at a fractional value to allow sharing the activation cost of203

some arcs among different paths associated with different commodities.204

Accordingly, Balakrishnan et al. [2017] introduced different families of valid inequalities to cut205

some of these solutions. The first type of fractionalities do not appear in the path-based formula-206

tion, in which feasibility of the paths is enforced when defining the variables; thus, adding similar207

inequalities would be useless. On the other hand, the second type of fractionality may affect the208

path-based formulation as well, as shown in Figure 2. In this example, there are three commodi-209

ties, no flow costs and activation costs equal to one for arcs (3,6), (4,7), (5,8) and zero for the210

remaining arcs. The figure shows an optimal solution of the linear relaxation of the path-based211

formulation, where the flow of each commodity is split into two paths, the costly arcs are acti-212

vated at value 0.5 and the resulting cost is 3/2. On the other hand, any integer feasible solution213

has a cost at least equal to 2. For this reason, in our approach we consider the possibility to add214

some classes of valid inequalities of the second type.215

3. Branch-and-cut-and-price approach216

In this section, we introduce an exact algorithm based on the path-formulation that can be used217

when enumerating all paths is unpractical. The algorithm adopts a branch-and-bound strategy218

and solves, at each node, the linear relaxation of the model by means of column generation tech-219

niques. The basic scheme is possibly enriched by the addition of valid inequalities, that do not220

change the structure of the method, thus resulting in a robust branch-and-cut-and-price algo-221

rithm.222
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s1

s2

s3

3

4

5

6

7

8

t2

t3

t1

x2
1 = 0.5

x1
1 = 0.5

x2
2 = 0.5

x1
2 = 0.5

x1
3 = 0.5

x2
3 = 0.5

z36 = 0.5

z47 = 0.5

z58 = 0.5

Figure 2 Fractional solution of the linear relaxation of the path-based formulation.

3.1. Column generation and labelling223

Column generation is an iterative scheme used for solving linear models with an exponentially224

large number of variables. At each iteration, a restricted master problem including a subset of the225

variables is solved, and its dual solution is used to determine new variables (if any) that have226

a negative reduced cost and can be added to the formulation in order to converge to an opti-227

mal solution. The absence of variables with negative reduced cost is a certificate that the current228

restricted master problem, though having a limited number of variables, includes an optimal solu-229

tion to the complete formulation. The reader is referred to Desrosiers and Lübbecke [2005] for a230

comprehensive discussion about this technique.231

In our setting we assume without loss of generality that constraints (2c) are rewritten as inequal-

ities. At each iteration, the restricted master includes all the z variables, and a non-empty subset
fPk ✓Pk of path variables for each commodity k (notice that by construction the restricted master

always includes a feasible solution). Assume that the restricted master has been solved to opti-

mality, and let �k
a and ⇢k be optimal non-negative dual variables associated with constraints (2b)

and (2c), respectively. The reduced cost for a path variable xp for a commodity k is given by

cp = cp +
X

a2p

�k
a � ⇢k =

X

a2p

�
cka + �k

a

�
� ⇢k =

X

a2p

ecka � ⇢k,

where the arc costs are ecka = cka + �k
a . Thus, the pricing problem for a given commodity k is to find a232

feasible path whose reduced cost is negative, and can be formulated as a budget-constrained shortest233

path problem under costs ecka and resources defined by the metrics. If the cost of this shortest path is234

strictly smaller than ⇢k, the corresponding path variable is added to the restricted master, and the235
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process is iterated; if no path variable is generated for any commodity, the optimal solution of the236

current restricted master is an optimal solution for the linear relaxation of the problem.237

Solution of the budget-constrained shortest path problem: Enumeration Algorithm 1 can be modified238

to compute the shortest path under resource constraints for a given commodity k, a problem239

which is NP-hard even if the graph is acyclic and |M| = 1 (see, Garey and Johnson [1979]). The240

resulting Algorithm 2 differs from the enumeration one starting from line 11, where a dominance241

check aimed at avoiding expansion of suboptimal paths is introduced. More precisely, label `0 is242

dominated by another label `00 associated with the same node if its cost and its resource usage243

are larger then or equal to the cost and usage of `00. In this case `0 is marked. Vice-versa, it may244

also happen that `0 dominates `00, in which case we mark `00. Node v is inserted in set T only if245

label `0 remains unmarked. The algorithm returns a unique path, corresponding to the label with246

minimum cost among all those associated with node tk.247

Algorithm 2: Compute a constrained shortest path for a fixed commodity
Input : k

1 s := sk, t := tk, T := {s}, c := 0,w := 0

2 Define an unmarked label ` := {s, c,w} for node s

3 while T 6= ; do
4 pick any u2 T

5 T := T \ {u}

6 foreach unmarked label `= {u, c,w} associated with node u
7 mark label `

8 foreach a= (u, v)2 �+(u)
9 if (v /2 path `) and (w+wk

a Wk)
10 define an unmarked label `0 = {v, c+ecka,w+wk

a}

11 if (`0 is dominated by a label `00 associated with node v)

12 mark label `0

13 if (`0 dominates a label `00 associated with node v)

14 mark label `00

15 if (v 6= t) and (`0 is unmarked)

16 T := T [ {v}

17 return the unmarked label with minimum cost c associated with node t

3.2. Branching scheme248

In our branching scheme we always select a z variable for branching. According to Observation249

1, at each node where all the z variables attain integer values, there exists an optimal solution in250
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which all the x variables are integer as well. Notice that this is the solution returned by solving251

the restricted master problem by means of the simplex algorithm.252

A positive effect of this branching strategy is that it does not affect the structure of the pricing253

subproblem. This is a crucial property for designing an effective branch-and-price algorithm, as254

it allows to solve the column generation subproblem throughout all the branching tree by means255

of the same effective labelling algorithm used at the root node. Clearly, imposing za = 1 for some256

a 2 A has no direct effect in the pricing. Conversely, when imposing za = 0, in the pricing sub-257

problem we simply forbid the use of arc a when generating new path variables, which can be258

easily handled by setting A=A\{a}.259

3.3. Adding valid inequalities260

In order to tighten the formulation and increase the dual bound at each node, we can add valid261

inequalities that cut fractional solutions in which arc activation variables are set at a fractional262

value to allow sharing the activation cost of some arcs among different paths.263

To this aim, we adapt to our model some of the inequalities introduced by Balakrishnan et al.264

[2017] for the arc-flow formulation. These inequalities are obtained by analyzing the structure of265

the graph G and by deriving relationships between pairs of arcs (a, b) when routing the flow of a266

commodity k, namely:267

• OR relationships, occurring when no more than one arc of pair (a, b) can be used to route268

flow from sk to tk;269

• IF relationships, occurring when the flow through arc a must also be routed through b; and270

• CUT relationship, occurring when at least one between a and b must be used to route the271

flow.272

These relationships are then used to derive conditions that link the activation variable of an arc

with the flow variables associated with the same arc and different commodities. By using the

arc-flow variables, all these inequalities have the following general structure

X

(a,k)2C

za �
X

(a,k)2C

yk
a � q,

where C is a set of arc-commodity pairs and q is a scalar number.273

By translating these conditions in terms of the path variables, we obtain

X

(a,k)2C

za �
X

(a,k)2C

X

p2Pk:a2p

xp � q (3)

which can be enforced in the path-based formulation. For example, the following

x0,0 +x0,1 +x1,0 +x1,1 +x2,0 +x2,1 <= z36 + z47 + z58 +1
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is a valid inequality for the graph depicted in Figure 2. This constraint has been obtained by274

mapping an OR relationship (in particular, a 3-OR inequality, see Balakrishnan et al. [2017]) in275

terms of the path variables. It is easy to see that such an inequality is violated by the fractional276

solution depicted in the example.277

As it happens for the branching conditions, the addition of the inequalities above does not affect278

the structure of the pricing problem at a generic node of the branching tree. Indeed, for a given279

commodity k, constraint (3) only affects those paths that contain an arc a such that pair (a, k)2C.280

For each such path, the reduced cost of the associated variable is thus cp =
P

a2p

�
cka+�k

a

�
+�C�⇢k281

where �C is the dual variable associated with constraint (3). More in general, given a collection C282

of inequalities, the reduced cost of a path associated with commodity k is283

cp =
X

a2p

�
cka + �k

a +
X

C2C:(a,k)2C

�C
�
� ⇢k

Hence, the only effect of additional inequalities on the shortest path computation is on the284

definition of arc costs ecka, which now include the dual variables of these constraints as well.285

This allows us to solve the column generation subproblem with no modification of the labelling286

algorithm even after the addition of valid inequalities. The resulting algorithm is then a robust287

branch-and-cut-and-price.288

4. Computational experiments289

In our computational experiments we explore three directions. First, we compare the computa-290

tional performance of the path-based formulation with the arc-based formulation. Our second291

order of business is to determine the features of the instances for which full enumeration of all292

feasible paths is possible, and when instead one has to resort to column generation. In this case,293

the solver cannot be used as a black box, and the addition of valid inequalities may be an effec-294

tive option for accelerating the solution process. Finally, we evaluate the effect of adding valid295

inequalities to the path-based formulation, in terms of bound given by the linear relaxation and296

overall performance of the algorithm.297

4.1. Instances from the literature and state-of-the-art298

We now describe a benchmark of instances that has recently been introduced by Balakrishnan299

et al. [2017], who kindly provided us the code for generating the numerical data. Each instance300

is characterized by the following parameters: the number of nodes |V|, number of arcs |A|, and301

number of commodities |K|. Nodes are randomly located on a rectangular grid and are connected302

by a spanning arborescence; then, |A| � |V| + 1 arcs are added to the arc set, making sure that303
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the resulting network contains one directed path for each pair of nodes. The source and terminal304

node for each commodity are randomly selected in V . The activation cost of each arc depends on305

the euclidean distance between the two endpoints and on a random parameter. A parameter �306

governs the ratio between flow costs and activation costs. Coefficients wk
a for a given arc a 2 A307

are negatively correlated to the activation cost Fa through a parameter � and a random term. All308

instances consider |M|= 2 metrics. Weight limits for each commodity k and each metric equal the309

length (using arc weights as lengths) of the q-th shortest path from sk to tk, where q is a random310

parameter having uniform distribution in an interval of size �Q centered in Qavg. A particular311

combination of network size (|V|, |A|, and |K|), cost structure and service requirements (�, �, Qavg,312

and �Q) is referred to as a scenario. Overall, Balakrishnan et al. [2017] defined 18 scenarios: the313

first seven scenarios share the same default values of the parameters for cost structure and service314

requirements, while considering varying network sizes ranging from 30 nodes, 120 arcs, and 90315

commodities to 50 nodes, 250 arcs, and 150 commodities. Scenarios 8-15 are all defined with a316

fixed network size (|V| = 50, |A| = 200, and |K| = 150) and different cost structure and service317

requirements. Finally, the last 3 scenarios have the default values of the parameters defining cost318

structure and service requirements and are characterized by larger size of the network, up to 80319

nodes, 320 arcs, and 240 commodities. For each scenario, five instances were generated, for a total320

of 90 instances. In the rest of the paper, we will refer to each scenario as |V|/|A|/|K|/� �Qavg �Q321

where the last four parameters take values in {L,M,H} to denote low, medium and high figures,322

respectively.323

Table 1 reports the state-of-the-art results for what concerns the optimal solution of NDSR,324

obtained by the best-performing algorithm proposed by Balakrishnan et al. [2017], denoted as325

composite in what follows. This algorithm implements a branch-and-cut scheme built on top of326

the general-purpose ILP solver CPLEX 12.5.1 for solving the arc-flow formulation. These results327

refer to the 90 instances derived from the 18 scenarios described above; instances are grouped by328

scenario, i.e., every row reports aggregate results for five instances and provides the number of329

instances solved to proven optimality, the average percentage gap, and the average computing330

time (in seconds, with respect to instances that are solved to optimality only). For a given instance331

of the problem, denoting by L and U be the best lower and upper bound, respectively, the result-332

ing percentage gap is computed as 100U�L
U

. All these figures are taken from Balakrishnan et al.333

[2017], and correspond to experiments executed on a Intel core i5 using an integrality gap for early334

termination equal to 0.1%. As a consequence of this tolerance, for some scenarios the algorithm335

solves all the associated 5 instances to optimality though returning a strictly positive percentage336

gap. Detailed computational results are available for the instances of the first 7 scenarios, whereas337

only aggregated results are reported for the remaining scenarios.338
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composite
scenario # opt % gap time

1 30/120/90/MMMM 5 0.02 175
2 40/160/120/MMMM 4 0.18 133
3 50/150/150/MMMM 5 0.08 230
4 50/200/100/MMMM 4 0.43 1055
5 50/200/150/MMMM 2 1.33 350
6 50/200/200/MMMM 3 0.45 735
7 50/250/150/MMMM 1 2.61 2631
8 50/200/150/LMMM 0.50
9 50/200/150/HMMM 2.00

10 50/200/150/MLMM 0.90
11 50/200/150/MHMM 0.10
12 50/200/150/MMLM 0.10
13 50/200/150/MMHM 1.90
14 50/200/150/MMML 0.70
15 50/200/150/MMMH 0.70
16 60/240/180/MMMM 0.70
17 70/280/210/MMMM 2.50
18 80/320/240/MMMM 2.40

summary 45⇤ 0.98
Table 1 State-of-the-art for the exact solution of NDSR.

The results in Table 1 show that composite is able to solve 24 instances out of 35 in the first339

7 scenarios, with average percentage gap equal to 0.73. For only two scenarios, this approach340

is able to solve all the corresponding 5 instances to optimality. Overall, the algorithm solves 45341

instances out of 90, with an average percentage gap around 1%, showing that this benchmark is342

quite challenging for the state-of-the-art computational approach.343

4.2. Results of the path-based formulation344

Although the original benchmark is not available, we generated 90 instances (5 for each scenario)345

having the same parameters used by Balakrishnan et al. [2017] by running their instance genera-346

tor. All our algorithms were implemented in C++ and were run on an AMD Ryzen Threadripper347

3960X running at 3.8 GHz in single-thread mode, with a time limit of 1 hour per instance. Both the348

arc-flow and the path-based formulations were solved using Gurobi version 9.1.1 as ILP solver,349

whereas the branch-and-cut-and-price was implemented on top of the SCIP optimization suite350

(version 7.0.1 with its default SoPlex solver), which allows to embed a column generation scheme351

within the enumeration process (see Gamrath et al. [2020]). Our source code and instances are352

publicy available at https://github.com/CGudapati/NDSR-Code.353

Table 2 gives the results of our experiments and compares the following approaches:354

• base-model corresponds to the direct application of general-purpose ILP solver Gurobi to355

the arc-flow formulation;356

• all-path denotes the algorithm obtained by enumerating all feasible paths through Algo-357

rithm 1 and solving the resulting path-based formulation using the Gurobi ILP solver. This358

https://github.com/CGudapati/NDSR-Code
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approach does not include cut separation nor column generation, allowing us to use the solver as359

a black box, so as to exploit its full capabilities.360

Table 2 gives the same information as Table 1. In addition, for algorithm all-path we report361

the number of path variables enumerated by the labelling algorithm. The enumeration time is362

always very small (at most 0.5 seconds) and it is included in the computing time of the algorithm.363

364

base-model all-path

scenario # opt % gap time # opt % gap time # path
1 30/120/90/MMMM 5 0.00 446.75 5 0.00 1.41 895
2 40/160/120/MMMM 4 0.21 1352.68 5 0.00 7.66 1098
3 50/150/150/MMMM 5 0.00 776.90 5 0.00 3.24 1409
4 50/200/100/MMMM 2 1.36 2953.33 5 0.00 41.71 956
5 50/200/150/MMMM 1 5.93 2817.12 5 0.00 478.80 1455
6 50/200/200/MMMM 0 3.81 – 5 0.00 324.22 1898
7 50/250/150/MMMM 0 9.20 – 4 0.38 171.85 1388
8 50/200/150/LMMM 2 3.09 2455.09 5 0.00 32.90 1249
9 50/200/150/HMMM 0 12.02 – 3 1.64 365.97 1795

10 50/200/150/MLMM 0 9.02 – 5 0.00 639.56 1455
11 50/200/150/MHMM 1 6.60 3557.67 5 0.00 782.21 1455
12 50/200/150/MMLM 5 0.00 1009.59 5 0.00 1.51 804
13 50/200/150/MMHM 0 10.68 – 4 0.64 345.37 2085
14 50/200/150/MMML 0 6.26 – 5 0.00 305.79 1421
15 50/200/150/MMMH 1 2.79 1902.54 5 0.00 100.74 1153
16 60/240/180/MMMM 0 10.68 – 5 0.00 603.16 1711
17 70/280/210/MMMM 0 11.91 – 2 0.54 686.22 1961
18 80/320/240/MMMM 0 15.86 – 2 1.25 951.94 2307

summary 26 6.08 1371.97 80 0.25 288.22 1472
Table 2 Results on generated benchmark.

Although a one-to-one comparison with Table 1 is not possible, these results confirm the365

outcome of the computational experiments reported by Balakrishnan et al. [2017] for the first366

seven scenarios, i.e., that composite outperforms the base-model, which can solve only small367

instances and has large percentage gaps for most unsolved scenarios. On the other hand, algo-368

rithm all-path solves all but one instance in the first seven scenarios, and has a percentage369

gap equal to 0.38 for the remaining instance. This is due to the fact that the formulation is tight370

and that, for these instances, the number of path variables does not grow up: this number is371

always smaller than 2000, which makes the model solvable with a limited computational effort.372

The performances of algorithm all-path remain satisfactory for instances in scenarios 8-15: the373

algorithm solves 37 of the 40 associated instances, and has an average gap equal to 0.28%. Finally,374

for very large instances (scenarios 16 to 18), the algorithm solves 9 instances out of 15 and has an375

average gap equal to 0.60%. Overall, our algorithm solves to proven optimality almost 90% of the376

instances with an average gap of 0.25%, thus considerably improving over the state-of-the-art.377
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4.3. Results on additional instances378

The results in Table 2 show that, for those instances, the number of feasible paths is quite small.379

Thus, not surprisingly, the all-path approach is always the most performing approach. Our380

second set of experiments is aimed at evaluating the limits of applicability of explicit enumeration381

of all path variables, and the alternative use of the branch-and-price algorithm described in Sec-382

tion 3 when enumeration is unpractical. Hence, we generated additional instances derived from383

the instances in scenarios 1–7, in which the number of feasible paths is increasing. To minimize384

the number of parameters for defining the additional instances, we simply introduce a parameter385

↵ � 1 that is used to scale each upper limit W km for a commodity k and metric m. This has the386

effect to make less binding the constraints defining the feasibility of a path with respect to the387

metrics.388

Table 3 reports aggregated results, summarizing 35 instances per line, obtained with different389

values of ↵ ranging from 1.00 to 3.00. We compare the base-model, the all-path approach,390

and the branch-and-price algorithm and report, for each solution method, the number of optimal391

solutions, the average percentage gap and the average computing time (with respect to instances392

solved to optimality only). For all-path we also report the total number of feasible paths; this393

figure is averaged over all the 35 instances of a line, provided that enumeration of all paths was394

completed within the time limit for all the instances. Finally, for branch-and-price we give the395

average number of path variables that have been generated during the execution of the algorithm396

(with respect to instances solved to optimality only).397

The results in Table 3 show that, for values of ↵< 2, the total number of paths is still manage-398

able (below 200,000) and all-path remains the best option. Conversely, for larger values of ↵,399

in many cases enumerating all path variables within the time limit is not possible or the path-400

based formulation has too many variables, and hence a method based on column generation is401

advisable. Indeed, for ↵= 2, branch-and-price solves 21 instances compared to the 17 solved by402

base-model all-path branch-and-price
↵ # opt % gap time # opt % gap time # path # opt % gap time # path

1.00 17 2.93 1191.34 34 0.05 146.25 1300 31 0.38 401.20 1116
1.25 3 8.45 1680.47 21 1.45 410.74 6428 16 2.65 816.47 5896
1.50 6 6.01 976.83 20 1.72 514.40 33,178 14 2.64 667.09 10,816
1.75 9 3.97 903.57 19 1.71 480.65 169,286 17 2.15 539.52 11,209
2.00 14 2.40 798.33 17 1.97 449.87 855,441 21 1.55 830.85 10,110
2.25 18 1.53 613.12 14 – 673.01 – 23 1.19 522.94 9115
2.50 22 0.91 654.06 9 – 957.18 – 26 0.80 475.83 7743
2.75 23 0.70 554.46 5 – 998.54 – 27 0.68 577.48 7479
3.00 25 0.61 470.26 3 – 1627.80 – 28 0.58 628.28 7048

Table 3 Results on additional instances.
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all-path, and this gap increases for larger values of ↵. Finally, we observe that the performances403

of the base-model as well improve for increasing ↵, which suggests that the problem is easier404

when feasibility constraints are not too demanding. This confirms the outcome of some observa-405

tions by Balakrishnan et al. [2017] about the structure of optimal solutions of the linear relaxation406

of this formulation, as these solutions are allowed to use infeasible paths at a fractional level.407

4.4. Strengthening the model408

As already mentioned, the composite approach is based on a branch-and-cut algorithm in which409

the arc-flow formulation is iteratively strengthened by means of valid inequalities, designed to410

cut off infeasible solutions of the linear relaxation. Balakrishnan et al. [2017] showed that adding411

these inequalities is beneficial to the algorithm, in terms of value of the dual bound at the root412

node and number of instances that can be solved to optimality.413

Our third set of experiments is thus aimed at evaluating the impact of adding valid inequalities414

to the path-based formulation. Table 4 gives the outcome of our experiments on instances in sce-415

narios 1–7 for the branch-and-price approach without and with the addition of valid inequalities416

(branch-and-cut-and-price).417

The table is organized in two parts. In the first one, we report the average percentage gap of418

the linear relaxation in the two configurations, and the associated computing time reported by419

SCIP. For the version of the algorithm with cuts, we borrowed from Balakrishnan et al. [2017] the420

following families of inequalities: 3OR, 1CUT-IF and 1OR-IF, obtained by combining three OR421

conditions, one CUT with one or more IF conditions, and one OR with one or more IF condi-422

tions, respectively. The reader is referred to Balakrishnan et al. [2017] for the definition of these423

inequalities as well as to their separation; additional inequalities from this paper showed to have424

a very marginal effect in our preliminary computational experiments. Separation is carried out at425

the root node until no violated cut is found, according to SCIP tolerance. The results in Table 4426

confirm that the addition of valid inequalities produces a tighter formulation for which the dual427

linear relaxation exact solution
without cuts with cuts branch-and-price branch-and-cut-and-price

scenario % gap time % gap time # opt % gap time # opt % gap time
1 5.38 0.26 3.22 31.39 5 0.00 17.90 5 0.00 52.00
2 4.77 0.48 2.43 102.27 5 0.00 63.27 5 0.00 164.91
3 2.79 0.49 1.24 102.82 5 0.00 46.46 5 0.00 146.63
4 6.11 0.70 3.79 186.62 5 0.00 380.83 5 0.00 454.94
5 6.58 1.52 4.00 286.55 3 1.11 220.35 3 0.98 419.83
6 5.02 1.60 2.64 357.34 4 0.58 250.27 4 0.48 549.92
7 7.31 2.25 4.37 600.73 4 0.99 2058.17 4 0.78 1702.62

summary 5.42 1.04 3.10 238.25 31 0.38 401.20 31 0.32 463.29
Table 4 Results on the addition of valid inequalities.
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gap with respect to the optimum value is quite small, and reduced by 42% with respect to the428

formulation without cuts (from 5.42% to 3.10%). However, separating these inequalities is time429

consuming in practice, which prevents the exhaustive separation of the cuts in an enumerative430

approach.431

For this reason, in the rightmost part of the table we consider a branch-and-cut-and-price algo-432

rithm, in which separation is embedded into the branch-and-price in a heuristic way as follows:433

cuts are added at the root node only, and at most 25 rounds of separation are performed. At each434

separation round, we consider in order 3OR, 1CUT-IF and 1OR-IF, and we stop the separation as435

soon as a valid inequality is obtained. The inequality is added to the restricted master problem436

which is then re-optimized. This heuristic approach is justified by some preliminary experiments437

on each family of inequalities, where we evaluated the computational effort required for deriving438

a valid inequality and the relative effect of the inequality on the dual bound. Remind that a nice439

property of our approach is that the addition of new cuts does not affect the structure of the pric-440

ing subproblem, yielding a robust branch-and-cut-and-price approach. For both branch-and-price441

and branch-and-cut-and-price we report the number of optimal solutions, the average percentage442

gap and the average computing time.443

The results on the exact methods show that branch-and-cut-and-price solves the same num-444

ber of instances as branch-and-price, and produces slightly better gaps for unsolved instances.445

Indeed, both algorithms solve 31 instances, the average percentage gaps being 0.38 (for branch-446

and-price) and 0.32 (for branch-and-cut-and-price). Despite adding valid cuts seems to be very447

effective in closing the gap at the root node, its limited contribution within an enumerative scheme448

is due to the computational overhead required for separating cuts and for solving larger models449

at each decision node.450

5. Conclusions451

We considered an NP-hard network design problem with end-to-end service requirements that452

play a fundamental role in many contexts, including telecommunications and transportation.453

From a modelling viewpoint, we proposed a novel ILP formulation in which variables are asso-454

ciated with feasible paths, and discussed alternative ways for handling the exponential number455

of variables in the model. From a methodological perspective, we showed how a column gener-456

ation algorithm can be embedded into a branch-and-cut-and-price scheme, that is robust in the457

sense that the structure of the subproblems is not altered by the branching conditions nor by458

the addition of valid inequalities. Finally, we gave a comprehensive computational analysis of459

the performances of the proposed algorithm, which is compared with a state-of-the-art approach460

proposed in the recent literature. Our computational experiments showed that the proposed algo-461

rithm outperforms its competitor and scales efficiently to larger size of the network.462
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The introduced path-based formulation is quite general, as all the nasty constraints appear463

in the definition of feasible paths only. For this reason, it may be worthy to use this modelling464

approach for other multi-commodity network design problems arising in different contexts.465
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I. Ljubić, P. Mutzel, and B. Zey. Stochastic survivable network design problems: Theory and526

practice. European Journal of Operational Research, 256(2):333–348, 2017.527

T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with connec-528

tivity requirements. Networks, 45(2):61–79, 2005.529

T. L. Magnanti and R. T. Wong. Network design and transportation planning: Models and algo-530

rithms. Transportation Science, 18(1):1–55, 1984.531



Gudapati, Malaguti, Monaci: Network Design with Service Requirements

22 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

P. Mateti and N. Deo. On algorithms for enumeratingall circuits of a graph. SIAM Journal on532

Computing, 5(1):90–99, 1976.533

Y. Song and J. R. Luedtke. Branch-and-cut approaches for chance-constrained formulations of534

reliable network design problems. Mathematical Programming Computation, 5(4):397–432, 2013.535

N. Wieberneit. Service network design for freight transportation: a review. OR Spectrum, 30(1):536

77–112, 2007.537


	Introduction
	Problem description and formulation
	Arc-flow formulation
	Path-based formulation
	Models comparison

	Branch-and-cut-and-price approach
	Column generation and labelling
	Branching scheme
	Adding valid inequalities

	Computational experiments
	Instances from the literature and state-of-the-art
	Results of the path-based formulation
	Results on additional instances
	Strengthening the model

	Conclusions
	Acknowledgments

