

Supporting Information

Synthesis of Atropisomeric Hydrazides by One-Pot Sequential Enantio- and Diastereoselective Catalysis

C. Portolani, G. Centonze, S. Luciani, A. Pellegrini, P. Righi, A. Mazzanti, A. Ciogli, A. Sorato, G. Bencivenni*

Synthesis of Atropisomeric Hydrazides by One-Pot Sequential Enantio- and Diastereoselective Catalysis

Chiara Portolani, §,† Giovanni Centonze, §,† Sara Luciani, § Andrea Pellegrini, §,† Paolo Righi, §,† Andrea Mazzanti, §,† Alessia Ciogli, † Andrea Sorato and Giorgio Bencivenni*, §,†

§Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale del Risorgimento 4, 40136, Bologna – Italy.

[†]Center for Chemical Catalysis – C³, University of Bologna, Viale del Risorgimento 4, 40136, Bologna — Italy.

[#]Department of Chemistry and technologies of drug, Nuovo Edificio di Chimica, NEC- CU032, 3rd floor, room N° 1 Sapienza University of Rome piazzale A. Moro 5, 00185 Rome – Italy.

Contents

General	3
Optimization of the reaction conditions	4
First step	4
Second step	5
One-pot Sequential Reaction	6
Final optimization	8
Role of the catalyst in the control of stereoselectivity	9
Tests with different catalyst combinations	9
Synthesis of 5k	10
Elucidations on ¹ H NMR spectra	11
Determination of the rotational energy barrier	14
Determination of the d.r. of 5a – HPLC peaks attribution	17
Determination of absolute configuration	22
Computational details	30
Synthesis of starting materials	38
Experimental procedures	39
General procedure for the sequential catalysis one-pot reactions	39
General procedure for reduction reactions	40
Oxidation reaction - 5ao	40
Three-step reaction process synthesis of 10ekr	41
Large scale reaction for 5a and 6k	41
Stereodivergent synthesis	41
Experimental details	43
NMR traces	72
HPCL traces	108
IR traces	

General

All the NMR spectra were recorded on Inova 300 MHz, Gemini 400 MHz or Mercury 600 MHz Varian spectrometers for ¹H, 101 MHz for ¹³C. The chemical shifts (δ) for ¹H, ¹³C are given in ppm relative to internal standard TMS (0.0 ppm) or residual signals of CHCl₃ (7.26 ppm). The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal. Purification of reaction products was carried out by flash chromatography (FC) on silica gel (230-400 mesh). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. X-ray data were acquired on a Bruker APEX-2 diffractometer. High Resolution Mass spectra were obtained from the Mass Facility of the Department of Chemistry and Drug Technology of the University of Rome on a Orbitrap Exactive, source: ESI (+): capillary temp: 250°C, spray voltage: 4.0 (kV), capillary voltage: 65 V, tube lens: 125 V. HPLC analysis on chiral stationary phase was performed on an Agilent 1100-series instrumentation. HPLC chromatograms of enantioenriched products were compared to racemic ones obtained with achiral catalysts. Optical rotations have not been determined since a mixture of diastereoisomers has been obtained in all cases. Infrared (ATR) spectra were recorded on a Perkin Elmer Spectrum Two FT-IR spectrometer equipped with an ATR probe. Signals are reported as strong (s), medium (m), and weak (w). Melting points (uncorrected) were determined with a Stuart Scientific SMP3 apparatus. All reactions were carried out in air; all evaporations were performed without heating to avoid rotation of the chiral axis. Starting materials 1a, 2a-b, 4a, 4e-h, 4j, 4k, 4l, a and chiral catalyst D were purchased from suppliers. Aldehydes 1b-j¹ and electrophiles 4b, 24c, 24d, 24i, 24m, b, 3 that are all commercially available, were prepared following literature procedures and their ¹H-NMR spectra were consistent with those previously reported. Primary amine catalysts A and ent-A,⁴ and phase-transfer catalysts B-O⁵ were obtained following the reported literature procedures. Catalyst G was prepared following the described procedure⁶ and ¹H-NMR spectrum was consistent with literature. The off-column HPLC experiments were made to determine the energy barrier of N-N rotation. The pure 5a (peak 4) or 5a' (peak 1) were dissolved in decalin and heated in oven at 88 °C. The diastereomerization process has been studied over time by HPLC on chiral stationary phase. Analytical conditions: Chiralpak IC 5µm

_

¹ T. Baumann, H. Vogt, S. Bräse, Eur. J. Org. Chem., **2007**, 266 – 282.

² E. Doni, B. Mondal, S. O'Sullivan, T. Tuttle, J. A. Murphy J. Am. Chem. Soc. **2013**, 135, 10934 – 10937.

³ a) A. Varela, L. K. B. Garve, D. Leonori, V. K. Aggarwal, *Angew. Chem. Int. Ed.* **2017**, *56*, 2127 – 2131. b) X. H. Yang, J. P. Li, D. C. Wang, M. S. Xie, G. R. Qu, H. M. Guo *Chem. Commun.* **2019**, *55*, 9144 – 9147.

⁴ C. Cassani, R. Martín-Rapún, E. Arceo, F. Bravo, P. Melchiorre Nat. Protoc. 2013, 8, 325 – 344.

⁵ a) S.-S. Jew, M.-S. Yoo, B.-S. Jeong, I.-Y. Park, H.-G. Park *Org. Lett.* **2002**, *4*, 4245. b) M. Lian, Z. Li, J. Du, Q. Meng, Z. Gao, *Eur. J. Org. Chem.* **2010**, 6525 – 653. c) For catalysts P and Q: Chinchilla, R., Mazón, P., Nájera, C., & Ortega, F. J. *Tetrahedron Asymmetry.* **2004**, *15*, 2603 – 2607.

⁶ Y.-C. Chan, X. Wang, Y.-P. Lam, J. Wong, Y.-L. S. Tse, Y.-Y. Yeung J. Am. Chem. Soc. **2021**, 143, 12745 – 12754.

(150x4.6mm); Flow rate: 1.00 mL/min; Eluent: 98/2 hexane/i-PrOH, UV 267 nm (corresponding to an isosbestic point).

Optimization of the reaction conditions

The two steps were first studied separately. 2-Phenyl-propional dehyde **1a**, di-*tert*-butyl azodicarboxylate **2a** and benzyl bromide **4a** were used as reagents for the optimization of the reaction conditions.

First step

L-Proline catalysis was first tested for the amination reaction following Bräse's procedure¹ (Table S1, entry 1); better results were obtained exploiting an amino quinine catalysis using the protocol reported by Greck,⁷ with 9-epi-deoxy-amino-quinine (**A**) as catalyst, TFA as additive and chloroform as solvent (entry 2). The racemic product was obtained using benzylamine as catalyst (entry 3).

Table S1 – First step optimization.

Entry	Cat (mol%)	Additive	Solvent (M)	Yield ^c (time)	e.e. ^d
1 ^a	L-Proline (50 mol%)	-	CH ₂ Cl ₂ (0.1M)	61% (5 days)	88% (R)
2^b	A (5 mol%)	TFA	CHCl ₃ (0.6M)	90% (6 h)	94% (S)
3 ^b	BnNH ₂ (10 mol%)	TFA	CHCl ₃ (0.6M)	90% (1 day)	rac

^aThe reaction was performed with 1 mmol of **1a**, 1.5 eq of **2a**, 50 mol% of catalyst in 10 mL of solvent. ^bThe reaction was performed using 3 mmol of **2a**, 1.2 eq of **1a**, 5 mol% of catalyst, 0.15 eq of TFA and 6 mL of solvent. ^cIsolated yield. ^dDetermined by HPLC using chiral stationary phase; absolute configuration known from literature.

⁷ A. Desmarchelier, H. Yalgin, V. Coeffard, X. Moreau, C. Greck, *Tetrahedron Lett.* **2011**, *52*, 4430-4432.

Second step

Alkylation of the trisubstituted hydrazide **3a** (94% ee) was attempted exploiting a phase transfer catalysis using benzyl bromide **4a** with 10% mol of PTC catalyst, an aqueous solution of KOH (50% w/w) and toluene 0.05 M, as described in many PTC procedures⁸.

Table S2 – Screening of PTC catalysts.^a

Entry	Cat	Yield ^b	d.r.(5a:5a') ^c	e.e. (major) ^c
1	В	63%	1:3.4	98%
2	C	61%	6:1	98%
3	D	60%	1:6.3	99%
4	E	60%	1:4.5	99%
5	F	42%	3:1	97%
6	G	70%	2.6:1	90%

⁸ a) K. Maruoka, T. Ooi *Chem. Rev.* **2003**, *103*, 3013–3028. b) K. Maruoka *Org. Process. Res. Dev.* **2006**, *12*, 679-697. c) S. S. Jew, H. G. Park, *Chem. Commun.* **2009**, *46*, 7090-7103.

7	Н	42%	1.6:1	96%
8	Ι	18%	1:2.5	97%
9	L	38%	1:3.6	80%
10	M	21%	1:2.3	98%
11	TBABr	63%	1:1	94% ^d

^aThe reactions were performed using 0.1 mmol of **3a**, 1.0 eq of **4a**, 10% mol of catalyst, 4 mL of an aqueous solution of KOH (50% w/w) and 2 mL of toluene. ^bIsolated yield as mixture of diastereoisomers. ^cDetermined by HPLC using chiral stationary phase. ^dThe ee% of the minor diastereoisomer is 94.

Quinidinium and quininium chloride C and D gave the best results, showing a similar behavior in terms of yield and atroposelectivity (with opposite d.r.); further tests were carried out using commercially available catalyst D.

One-pot Sequential Reaction

The two steps were carried out in sequence, without the isolation and purification of the intermediate. A first attempt was carried out directly adding the reagents for the second step to the flask, after the amination step was completed (Table S3- entry 1), but modest results were obtained. Evaporating chloroform before adding toluene led to the formation of 5a + 5a' with a yield and d.r. that are perfectly consistent with those obtained when the second step was performed separately, starting from 3a (Table S3 - entry 2 vs Table S2 - entry 3); this suggests that the different conditions of the two steps are compatible when put together, except for the solvent: when traces of chloroform are present, lower yield and stereoselectivity are obtained. This was confirmed when, trying to use a common solvent for both steps, the whole reaction was run in chloroform (Table S3- entry 3). Promising results were obtained using 0.6 M toluene for the first step (entry 4) since it afforded the isolated trisubstituted hydrazide 3a in 96% yield and 94% ee. In this case however it is necessary to change the reaction flask when switching from the first to the second step, as a higher volume is necessary. To bypass the problem, the first step was diluted to 0.1 M, surprisingly enhancing the enantioselectivity of the amination to 98%, with a 80% yield on 3a obtained using 1,1 eq of 2a; on the other hand, concentrating the second step to 0.1 M led to a lower d.r. (entry 5). Hence solvent concentrations were set as reported in entry 6.

Table S3 – Optimization of one-pot conditions.^a

Entry	Solvent I	Solvent II	Yield ^e	d.r. $(5a:5a')^f$	e.e. (major) ^f
1	CHCl ₃ (0.6M)	Toluene (0.05M)	53%	1:5.4	97%
2^b	CHCl ₃ (0.6M)	Toluene (0.05M)	65%	1:6.2	99%
3	CHCl ₃ (0.6M)	CHCl ₃ (0.05M)	35%	1:1.2	96%
4 ^c	Toluene (0.6M)	Toluene (0.05M)	60%	1:6.5	97%
5 ^d	Toluene (0.1M)	Toluene (0.1M)	62%	1:5.5	98%
6^d	Toluene (0.1M)	Toluene (0.05M)	65%	1:6.5	99%

^aThe reactions were performed using 0.1 mmol 1a, 1.0 eq of 2a, 5 mol% of catalyst A, 0.15 eq of TFA and solvent I; after 24 h, 1.0 eq of 4a was added together with 10 mol% of catalyst D, 4 mL of an aqueous solutions of KOH (50% w/w) and solvent II. ^bThe solution was concentrated before adding the reagents for the second step. ^cIntermediate 3a was isolated with a yield of 96% and 94% ee. ^dFirst step conducted with 1.1 eq of 2a; intermediate 3a was isolated with a yield of 80% and 98% ee. ^eIsolated yield as mixture of diastereoisomers. ^fDetermined by HPLC using chiral stationary phase.

Final optimization

Table S4 – Counterion screening.^a

Entry	Catalyst	Yield ^b	d.r. (5a:5a') ^c	e.e. (major) ^c
1	N	80%	9:1	99%
2	0	49%	1:6	>99%
3	P	53%	7.5:1	98%
4	Q	50%	1:6	99%

^aThe reactions were performed using 0.1 mmol of **3a**, 1.0 eq of **4a**, 10% mol of catalyst, 4 mL of an aqueous solution of KOH (50% w/w) and 2 mL of toluene. ^bIsolated yield as mixture of diastereoisomers. ^cDetermined by HPLC using chiral stationary phase.

Br⁻ and PF6⁻ quininium and quinidinium catalysts were investigated instead of the chlorine correspondent **C** and **D**, obtaining equal to better results. Differences between quinine and quinidine scaffold were found in this case, leading to the choice of **N** as catalyst.

Table S5 – Screening of temperature.^a

Entry	Cat	T (°C)	Yield ^b	d.r. (5a:5a') ^c	e.e. (major) ^c
1	N	0	64%	11:1	99%
2	N	-5	81%	13:1	98%
3	N	-20	63%	13:1	98%

^aThe reactions were performed using 0.1 mmol of **3a**, 1.0 eq of **4a**, 10% mol of catalyst, 4 mL of an aqueous solution of KOH (50% w/w) and 2 mL of toluene. ^bIsolated yield as mixture of diastereoisomers. ^c Determined by HPLC using chiral stationary phase.

Role of the catalyst in the control of stereoselectivity

Tests with different catalyst combinations

Some tests were carried out to verify how the stereoselectivity is controlled, expecially in the second step, and if the substrate has any role in that. Different combinations of achiral catalysts **BnNH**₂ and **TBABr**, and chiral ones **A** and **D** were used (Table S6).

Table S6 – Tests with different combination of racemic or chiral catalysts.^a

Entry	Cat I step	e.e. (3a)	Cat II step	d.r. $(5a:5a')^b$	e.e. $(5a)^b$	e.e. $(5a')^b$
1	BnNH ₂	0%	TBABr	1:1	0%	0%
2	BnNH ₂	0%	D	1:1	75%	77%
3	A	94%	TBABr	1:1	94%	94%
4	A	94%	D	1:6.3	73%	99%

"The first step was performed using 0.1 mmol 1a, 1.0 eq of 2a, 5 mol% of catalyst, 0.15 eq of TFA and toluene 0.1M; after 24 h, the reaction was stopped and 3a isolated by column chromatography. The second step was performed using 0.1 mmol of 3a, 1.0 eq of 4a, 10% mol of catalyst, 4 mL of an aqueous solution of KOH (50% w/w) and 2 mL of toluene. ^bDetermined by HPLC using chiral stationary phase.

When catalyst **D** was used in the second step starting from racemic 3a (entry 2), a 1:1 d.r was obtained, with both diastereoisomers having the same enantiomeric excess (small differences – 75%/77% - are due to imprecisions during HPLC peaks integration, as the first three peaks can not be perfectly separated). This result shows how catalyst **D** is able to control the formation of a specific axis configuration in the same way starting from (R)-3a and (S)-3a, independently by the chiral center.

When **TBABr** was employed for the alkylation of **3a** (94% e.e.), a 1:1 mixture of diastereoisomers was obtained (entry 3). This test confirmed that the stereogenic center on the trisubstituted hydrazide does not influence the choice of the chiral axis. Finally, using the two chiral catalysts (entry 4), a 1:6,3 d.r. was obtained, with a significant increase of the e.e. of the major diastereoisomer.

Synthesis of 5k

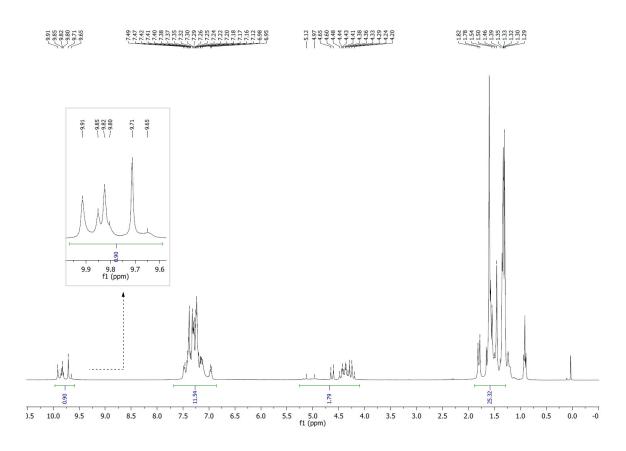
To better clarify this aspect, the enantioselective synthesis of 11 was carried out; the only stereogenic element in this case is the N-N axis, and catalyst **D** gave a 54% e.e., using the same reaction conditions as for the synthesis of 5a. With no other stereogenic elements that could interfere, this result demonstrates that the catalyst is the only responsible of the stereoselectivity.

(R_a)-di-tert-butyl 1-benzyl-2-(2-methyl-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (5k)

The reaction was performed starting from 0.3 mmol of 1k. The crude mixture was purified by flash column chromatography (hexane: $Et_2O = 8:2$).

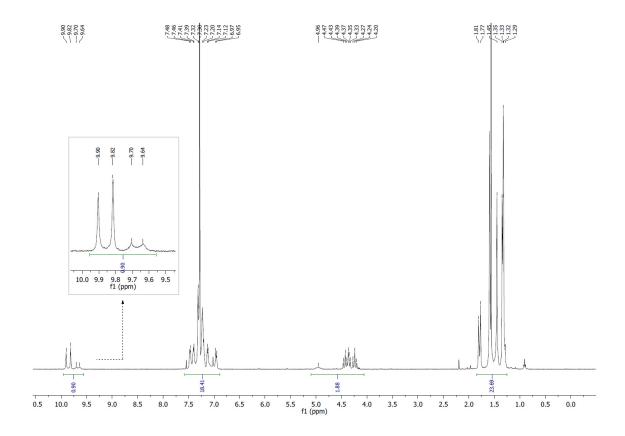
Yield= 40% (47 mg).

The e.e. was determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 11 min, t_2 = 12 min.

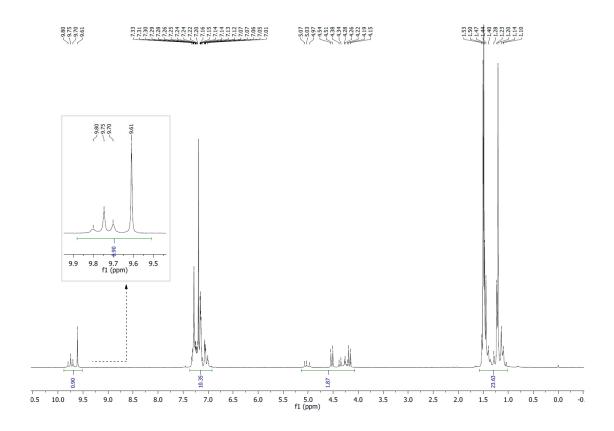

¹**H NMR** (400 MHz, CDCl₃): δ 9.64 – 9.25 (m, 1H), 7.34 (m, 5H), 5.18 – 4.14 (m, 2H), 1.56 – 1.49 (m, 9H), 1.43 (s, 3H), 1.34 (s, 9H), 1.05 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.09, 200.26, 200.17, 199.31, 156.90, 156.43, 155.70, 155.50, 154.70, 153.98, 153.06, 152.68, 136.61, 136.47, 136.39, 136.34, 130.38, 130.28, 129.96, 129.89, 128.50, 128.46, 128.43, 128.32, 128.03, 83.37, 82.11, 82.07, 82.00, 81.98, 81.91, 67.18, 67.12, 66.83, 66.69, 56.39, 55.59, 54.97, 54.64, 53.40, 30.30, 29.67, 28.32, 28.28, 28.25, 28.10, 28.07, 27.99, 27.97, 26.36, 21.33, 21.24, 21.11, 20.95, 20.77, 20.23, 20.07.

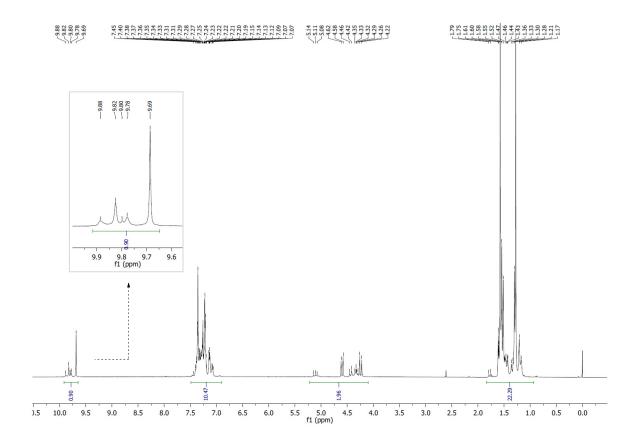
Elucidations on ¹H NMR spectra

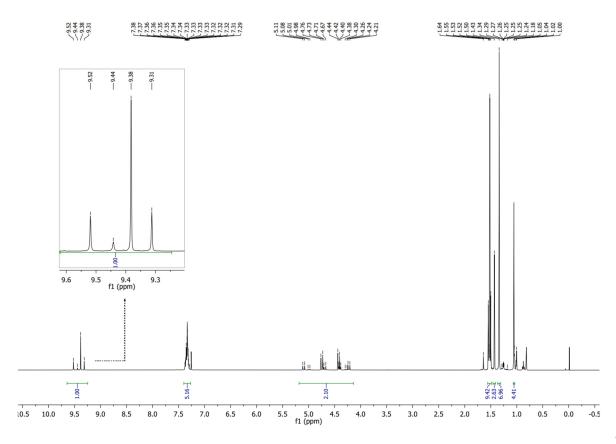

A certain complexity of ${}^{1}H$ NMR spectra was found for every pure product: beyond the peaks of the two diastereoisomers and those correspondent to diastereotopic protons, other peaks appear in every spectrum. We attributed this phenomenon to different conformations arising from the rotation of the amidic single bonds of NBoc groups. This behavior has been well described by Rinaldi on tetrasubstituted hydrazides. We indeed calculated a $\Delta G_{rot}^{\ddagger}$ of 18 kcal/mol for NBoc groups on 5a, a value making new visible rotamers for the NMR acquisition times. A representative peak of the ${}^{1}H$ NMR spectrum is the proton of the aldehyde at around 9-10 ppm: it corresponds to a single proton that does not have any coupling and it is not diastereotopic. For these reasons more than two diastereomeric peaks are present in each case, and it is not possible to calculate the d.r. Some examples are reported to clarify the problem, highlighting the 9-10 ppm area in each case. Remarkably, also the ${}^{1}H$ NMR of product 5k, that is a mixture of enantiomers, shows the presence of at least four conformations due to the NBoc groups rotamers (Spectrum 5).

Spectrum 1 - ¹H NMR of racemic 5a+5a'.

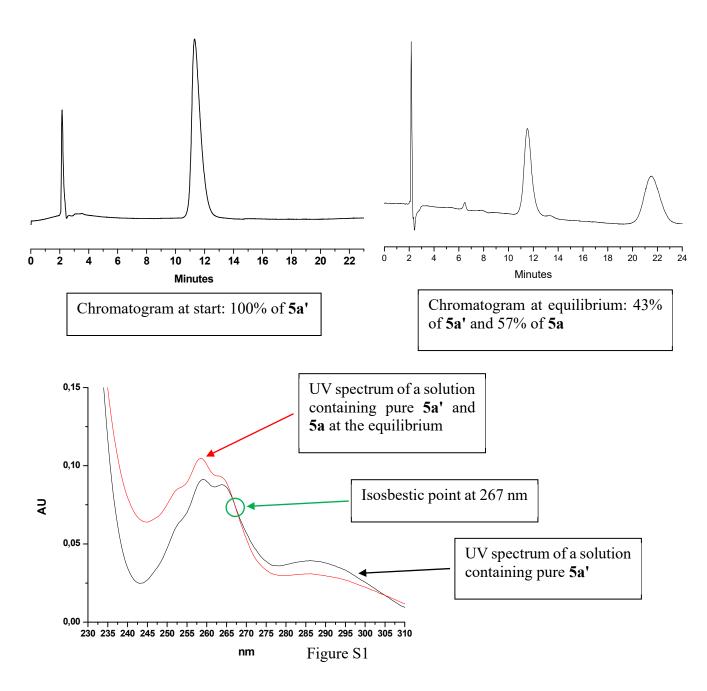


⁹ P. Amabili, A. Amici, G. Campisi, G. Guerra, M. Monari, M. Orena, F. Piccinelli, S. Rinaldi, A. Tolomelli *Eur. J. Org. Chem.* **2018**, 6524.

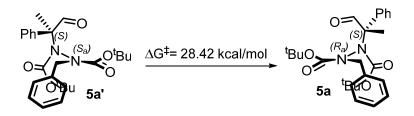

Spectrum 2 - 1 H NMR of pure **5a'** (S,S_a).


Spectrum 3 - 1 H NMR of pure **5a** (S, R_a).

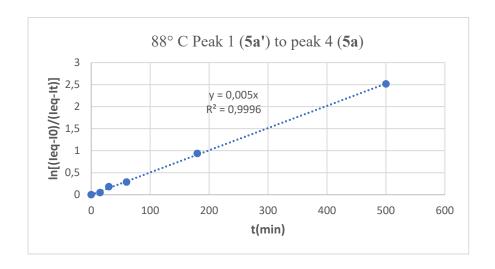
Spectrum 4 - ¹H NMR of product mixture **5a:5a'** with a 13:1 d.r.



Spectrum 5 - ¹H NMR of product **5k** (racemic mixture).



Determination of the rotational energy barrier


The pure **5a'** (peak 1) or **5a** (peak 4) were dissolved in decalin in a close vial and heated in oven at 88 °C. The diastereomerization process has been studied over time by HPLC on chiral stationary phase. Analytical conditions: Chiralpak IC 5μm (150x4.6mm); Flow rate: 1.00 mL/min; Eluent: 98/2 hexane/i-PrOH, UV 267 nm (corresponding to an isosbestic point) (Figure S1). Column temperature: 25 °C. From equations, rate constants were 0.0028 min⁻¹ for the interconversion of **5a'** to **5a** (Figure S2) and 0.0033 min⁻¹ for the interconversion of **5a** to **5a'** (Figure S3).

Peak 1 (5a') to peak 4 (5a)

Temp.(°C)	Keq	k+k ₋₁ (min ⁻¹)	k(min ⁻¹)	k ₋₁	ΔG ₁₋₄ (Kcal/mol)	ΔG ₁₋₄ (KJ/mol)
88	1,31	0,0050	0,00284	0,00216	28,42	118,82

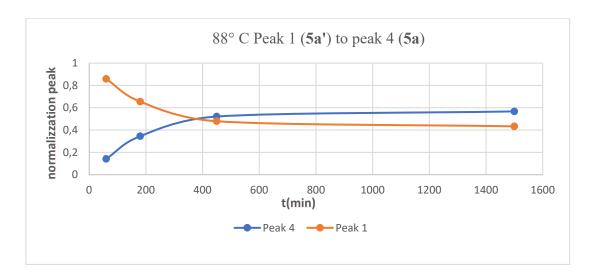
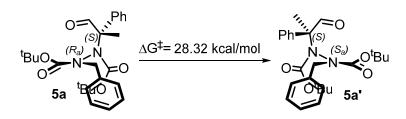
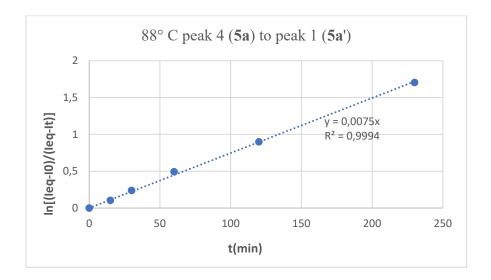




Figure S2: determination of the rotational energy barrier for the interconversion of 5a' to 5a.

Peak 4 (5a) to peak 1 (5a')

Temp. (°C)	Keq	k+k ₋₁ (min ⁻¹)	k (min ⁻¹)	k ₋₁	ΔG ₄₋₁ (Kcal/mol)	ΔG ₄₋₁ (KJ/mol)
88	0.78	0,0075	0,0033	0,0042	28,32	118,49

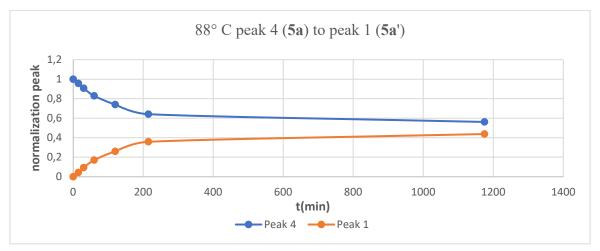


Figure S3: determination of the rotational energy barrier for the interconversion of 5a to 5a'.

Determination of the d.r. of 5a – HPLC peaks attribution

Racemic product 5a + 5a' was obtained with benzylamine and tetrabutylammonium bromide as catalysts for the first and second step, respectively. HPLC chromatogram is reported, showing the peaks of the four diastereoisomers (IC column.: hexane/*i*-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm. t_1 = 14 min, t_2 = 15 min, t_3 = 16 min, t_4 = 26 min). (Figure S4).

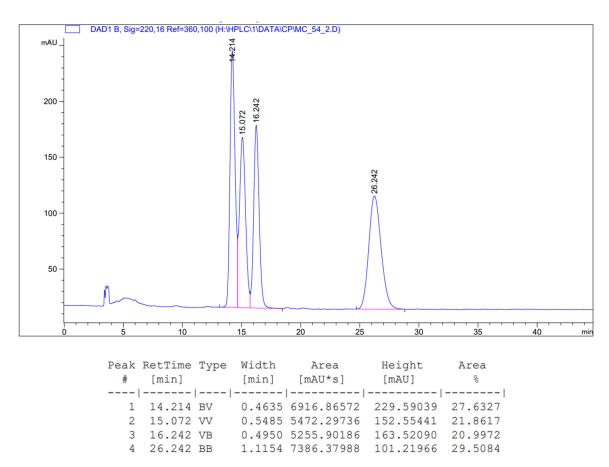


Figure S4 – HPLC chromatogram of racemic product 5a + 5a'.

Catalyst **D** was tested with racemic trisubstituted hydrazide **3a**. Major peaks 1 and 2 were assigned as a diastereomeric couple of **5a** and **5a'** with same axis and different stereocenter (Figure S5).

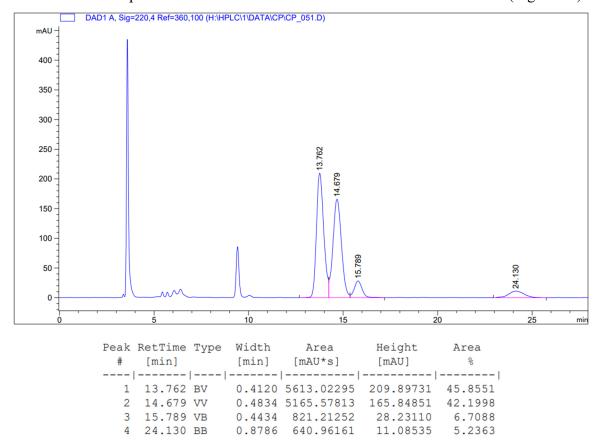


Figure S5 – HPLC chromatogram of 5a + 5a' obtained with benzylamine and **D**.

Catalyst **D** was tested with enantioenriched **3a** (94% ee); the third peak is absent and the second is minimal (Figure S6).

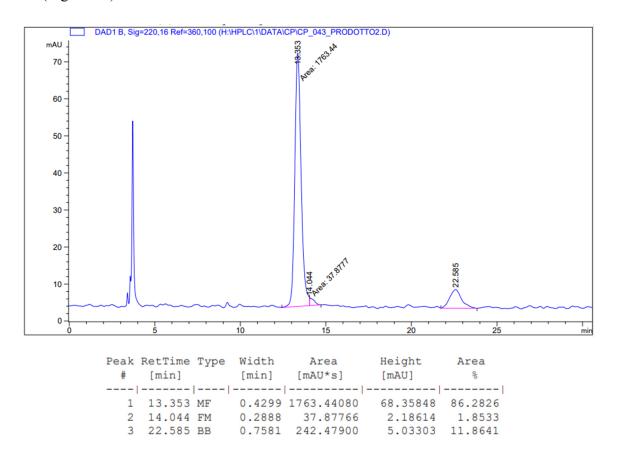


Figure S6 – HPLC chromatogram of 5a + 5a' obtained with A and D at r.t.

Catalyst C was tested with enantioenriched **3a** (94% ee). The second peak is absent and the third is minimal (Figure S7). Peaks 1 and 4 are thus assigned as a diastereomeric couple of **5a** and **5a'** with same stereocenter and different chiral axis.

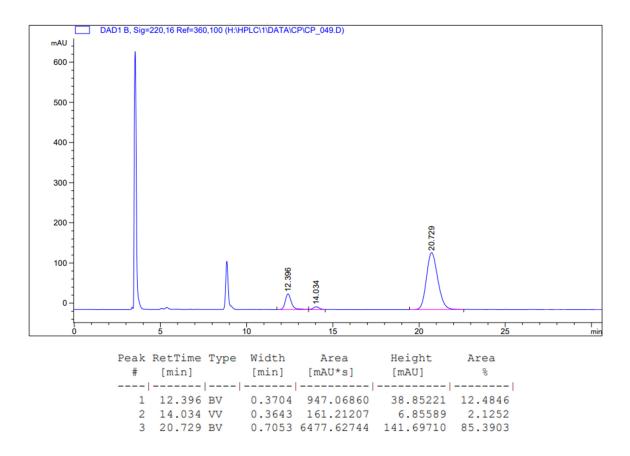


Figure S7 – HPLC chromatogram of **5a** + **5a'** obtained with **A** and **C** at r.t.

The two couples of enantiomers are peaks 1-3 and 2-4, confirmed also by analysis of UV spectra and by experimental ECD. From the kinetic experiments, it can be observed that, under heating, peak 1 converts into peak 4 thus showing that 1 and 4 are diastereoisomers possessing the chiral center with the same absolute configuration and the chiral axis with opposite absolute configuration. The same holds also for peak 2 and peak 3 which interconvert into one another upon heating. Moreover, it is known from literature^{7, 10} that the starting trisubstituted hydrazide **3a**, obtained under the same conditions, predominantly has the (*S*) configuration at the chiral center. Therefore, the major product of the two-step sequence, peak 4, must have the (*S*) configuration at the chiral center and then also peak 1 must have the same absolute configuration at the chiral center.

¹⁰ C. Liu, Q. Zhu, K.-W. Huang, Y. Lu Org. Lett. 2011, 13, 2638-2641.

Having established that peaks 1 and 4 are axial epimers, the enantiomer of 1 must be either peak 2 or peak 3. Chiral HPLC (Chiralpak IC column.: hexane/i-PrOH 98/2, flow rate 1 mL/min) with CD detection at 285 nm does not help since both peaks 2 and 3 have opposite CD sign with respect to that of peak 1 (Figure S8).

Figure S8: Chiral HPLC (Chiralpak I IC column.: hexane/i-PrOH 98/2, flow rate 1 mL/min) with CD detection at 285 nm.

The experimental ECD spectra of isolated peaks 1 and 3 show a nearly perfect inverted trend (below left) thus confirming that 1 (5a') and 3 (ent-5a') are enantiomers. The experimental ECD spectra of the two axial diastereoisomers [peak 1 (5a') and peak 4 (5a), below right] are quite similar showing that the configuration at the chiral center is mainly responsible for the observed absorptions. However, it is possible to observe two main differences: a small peak around 250 nm present only in peak 4 (black circle), and a shoulder on the right at about 350 nm of only peak 1 (red circle) (Figure S9). Kinetic measurements in any case confirm that 1 and 4 are axial diastereoisomers.

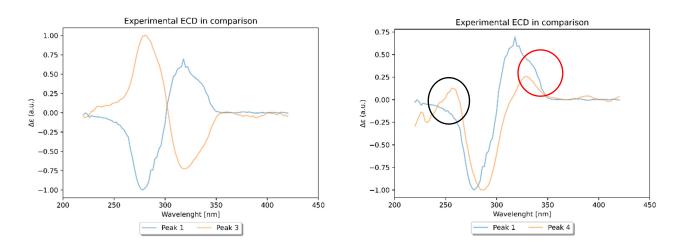
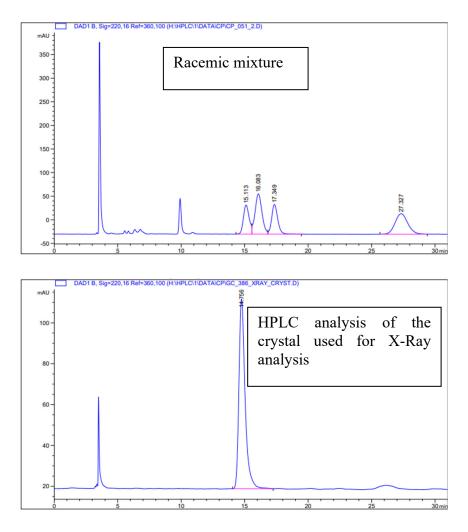
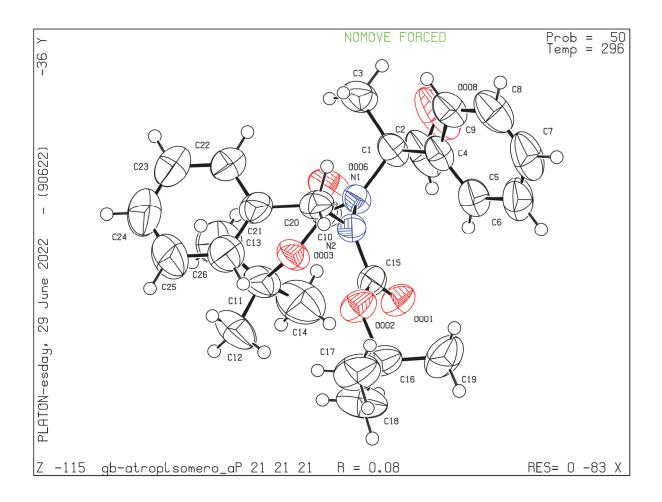



Figure S9. Experimental ECD comparison.

Determination of absolute configuration


A sample containing a mixture of **5a** and **5a'** in a d.r. of 1:6, obtained from the reaction of **3a** with **4a** using catalyst **D** (see reaction below), was dissolved in tert-butyl alcohol and let to slowly evaporate at r.t. Suitable crystals for X-Ray diffraction analysis were obtained.

From X-Ray diffraction analysis the relative configuration of the crystalline compound was assigned as (S^* , S_a^*). The subsequent HPLC analysis on the analyzed crystal (IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm) associate the crystal to the first peak of the chromatogram. This peak is the axial-epimer of compound **5a** as revealed by kinetic epimerization studies.

Because the absolute configuration of the quaternary stereocenter on 3a is known to be (S) from literature, 7,9 when hydrazide 3a is prepared using catalyst A, the absolute configuration on compound 5a can be assigned to (S,S_a) . Consequently, the absolute configuration of S,R_a can be assigned to 5a.

Crystal data for compound 5a'

A specimen of $C_{26}H_{34}N_{2}O_{5}$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 0.71073$ Å). The total exposure time was 27.11 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 31101reflections to a maximum θ angle of 25.00° (0.84 Å resolution), of which 4455 were independent (average redundancy 6.981, completeness = 97.9%, $R_{int} = 5.37\%$, $R_{sig} = 3.90\%$) and 3740 (83.95%) were greater than $2\sigma(F^2)$. The final cell constants of $\underline{a} = 10.3138(8)$ Å, $\underline{b} = 12.6890(12)$ Å, $\underline{c} = 20.1061(18)$ Å, volume = 2631.3(4) ų, are based upon the refinement of the XYZ-centroids of 9929 reflections above 20 $\sigma(I)$ with 5.097° < 20 < 54.28°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.924. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 21 21 21, with Z = 4 for the

formula unit, $C_{26}H_{34}N_{2}O_{5}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 305 variables converged at R1 = 7.65%, for the observed data and wR2 = 14.59% for all data. The goodness-of-fit was 1.283. The largest peak in the final difference electron density synthesis was $0.220 \text{ e}^{-}/\text{Å}^{3}$ and the largest hole was $-0.154 \text{ e}^{-}/\text{Å}^{3}$ with an RMS deviation of $0.029 \text{ e}^{-}/\text{Å}^{3}$. On the basis of the final model, the calculated density was 1.147 g/cm^{3} and F(000), 976 e^{-} .

Table 1. Sample and crystal data

Identification codegb2201Chemical formulaC26H34N2O5Formula weight454.55 g/molTemperature296(2) KWavelength0.71073 ÅCrystal systemorthorhombicSpace groupP 21 21 21

Unit cell dimensions a = 10.3138(8) Å $\alpha = 90^{\circ}$

b = 12.6890(12) Å $\beta = 90^{\circ}$

c = 20.1061(18) Å $\gamma = 90^{\circ}$

Volume 2631.3(4) $Å^3$

Z 4

Density (calculated) 1.147 g/cm³ **Absorption coefficient** 0.079 mm⁻¹

F(000) 976

Table 2. Data collection and structure refinement.

Theta range for data collection $1.90 \text{ to } 25.00^{\circ}$

Index ranges -12<=h<=12, -14<=k<=15, -23<=l<=23

Reflections collected 31101

Independent reflections 4455 [R(int) = 0.0537]

Coverage of independent reflections97.9%Absorption correctionMulti-ScanStructure solution techniquedirect methods

Structure solution programSHELXT 2014/5 (Sheldrick, 2014)Refinement methodFull-matrix least-squares on F2Refinement programSHELXL-2017/1 (Sheldrick, 2017)

Function minimized $\Sigma \text{ w}(F_o^2 - F_c^2)^2$ Data / restraints / parameters 4455 / 0 / 305

Goodness-of-fit on F² 1.283

Final R indices 3740 data; $I > 2\sigma(I)$ R1 = 0.0765, wR2 = 0.1416

all data R1 = 0.0970, wR2 = 0.1459

Weighting schome	$w=1/[\sigma^2(F_0^2)+(0.0347P)^2+1.0412P]$
Weighting scheme	where $P = (E_1^2 + 2E_2^2)/3$

where $P = (F_0^2 + 2F_c^2)/3$

Absolute structure parameter 0.4(4)

0.220 and -0.154 eÅ⁻³ Largest diff. peak and hole

 0.029 eÅ^{-3} R.M.S. deviation from mean

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters ($Å^2$).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x/a	y/b	z/c	U(eq)
O001	0.5134(3)	0.4471(3)	0.75160(18)	0.0637(9)
O002	0.6083(3)	0.2958(3)	0.78701(18)	0.0680(9)
O003	0.2892(3)	0.4072(3)	0.84172(15)	0.0666(9)
N1	0.2902(3)	0.3437(3)	0.73848(16)	0.0503(9)
N2	0.4037(3)	0.2916(3)	0.75475(17)	0.0493(9)
O006	0.1284(4)	0.4503(4)	0.77075(18)	0.0884(13)
C15	0.5108(5)	0.3542(4)	0.7638(2)	0.0527(11)
O008	0.0912(5)	0.4471(5)	0.6134(2)	0.129(2)
C4	0.3298(5)	0.2956(4)	0.6206(2)	0.0613(13)
C20	0.3942(5)	0.1802(4)	0.7730(2)	0.0632(13)
C9	0.3103(6)	0.2089(5)	0.5804(2)	0.0725(15)
C1	0.2293(5)	0.3279(4)	0.6721(2)	0.0616(13)
C10	0.2281(5)	0.4050(4)	0.7840(2)	0.0612(13)
C21	0.3342(5)	0.1613(4)	0.8402(3)	0.0700(15)
C5	0.4376(6)	0.3570(5)	0.6090(3)	0.0747(16)
C2	0.1857(7)	0.4349(6)	0.6483(3)	0.094(2)
C22	0.2046(6)	0.1393(5)	0.8475(3)	0.0926(19)
C11	0.2496(6)	0.4807(5)	0.8956(3)	0.0831(18)
C16	0.7403(5)	0.3408(5)	0.7922(3)	0.0759(15)
C7	0.5044(8)	0.2447(7)	0.5208(3)	0.103(2)
C3	0.1130(5)	0.2523(6)	0.6775(3)	0.0871(19)
C8	0.3987(8)	0.1837(6)	0.5307(3)	0.093(2)
C26	0.4070(7)	0.1658(6)	0.8974(3)	0.106(2)
C6	0.5247(6)	0.3309(6)	0.5592(3)	0.093(2)
C23	0.1485(8)	0.1222(7)	0.9087(4)	0.123(3)
C12	0.3542(8)	0.4591(7)	0.9468(3)	0.120(3)
C17	0.8168(6)	0.2485(6)	0.8182(4)	0.104(2)
C19	0.7849(6)	0.3751(6)	0.7239(3)	0.104(2)
C18	0.7379(7)	0.4312(6)	0.8419(4)	0.112(2)
C25	0.3508(10)	0.1495(8)	0.9593(4)	0.140(4)
C13	0.1188(8)	0.4485(9)	0.9208(4)	0.154(4)

	x/a	y/b	z/c	U(eq)
C24	0.2222(10)	0.1274(8)	0.9634(4)	0.149(4)
C14	0.2566(9)	0.5917(6)	0.8712(4)	0.125(3)
Table 4.	. Bond length	ns (Å)		
O001-C1:	9	1.204(5)	O002-C15	1.334(6)
O002-C10		1.480(6)	O003-C10	1.320(5)
O003-C1		1.486(6)	N1-C10	1.362(6)
N1-N2		1.383(5)	N1-C1	1.489(6)
N2-C15		1.372(6)	N2-C20	1.464(6)
O006-C10	0	1.209(6)	O008-C2	1.211(7)
C4-C5		1.378(7)	C4-C9	1.379(7)
C4-C1		1.521(6)	C20-C21	1.505(7)
C20-H20	A	0.97	C20-H20B	0.97
C9-C8		1.391(8)	С9-Н9	0.93
C1-C2		1.507(8)	C1-C3	1.540(8)
C21-C22		1.373(8)	C21-C26	1.374(8)
C5-C6		1.384(8)	C5-H5	0.93
C2-H2		0.93	C22-C23	1.377(9)
C22-H22		0.93	C11-C14	1.493(9)
C11-C13		1.498(9)	C11-C12	1.517(9)
C16-C17		1.506(8)	C16-C19	1.512(8)
C16-C18		1.522(8)	C7-C8	1.351(10)
C7-C6		1.356(10)	C7-H7	0.93
С3-Н3А		0.96	С3-Н3В	0.96
С3-Н3С		0.96	C8-H8	0.93
C26-C25		1.389(10)	C26-H26	0.93
C6-H6		0.93	C23-C24	1.339(11)
C23-H23		0.93	C12-H12A	0.96
C12-H12	В	0.96	C12-H12C	0.96
C17-H17	A	0.96	C17-H17B	0.96
C17-H170		0.96	C19-H19A	0.96
C19-H19	В	0.96	C19-H19C	0.96
C18-H18		0.96	C18-H18B	0.96
C18-H180	C	0.96	C25-C24	1.358(11)
C25-H25		0.93	C13-H13A	0.96
C13-H13	В	0.96	C13-H13C	0.96
C24-H24		0.93	C14-H14A	0.96
C14-H14	В	0.96	C14-H14C	0.96

Table 5.	Bond	angles	(°).
----------	------	--------	------

10010 00 20110 0115100 ()0			
C15-O002-C16	120.3(4)	C10-O003-C11	121.5(4)
C10-N1-N2	120.8(4)	C10-N1-C1	118.8(4)
N2-N1-C1	120.3(3)	C15-N2-N1	115.9(4)
C15-N2-C20	125.4(4)	N1-N2-C20	117.6(4)
O001-C15-O002	126.7(5)	O001-C15-N2	123.9(4)
O002-C15-N2	109.4(4)	C5-C4-C9	118.0(5)
C5-C4-C1	120.8(5)	C9-C4-C1	120.9(5)
N2-C20-C21	114.0(4)	N2-C20-H20A	108.8
C21-C20-H20A	108.8	N2-C20-H20B	108.8
C21-C20-H20B	108.8	H20A-C20-H20B	107.7
C4-C9-C8	120.5(6)	C4-C9-H9	119.7
C8-C9-H9	119.7	N1-C1-C2	106.8(4)
N1-C1-C4	111.0(4)	C2-C1-C4	103.3(4)
N1-C1-C3	110.4(4)	C2-C1-C3	110.5(5)
C4-C1-C3	114.2(4)	O006-C10-O003	126.2(5)
O006-C10-N1	121.6(4)	O003-C10-N1	112.3(4)
C22-C21-C26	116.8(6)	C22-C21-C20	122.0(5)
C26-C21-C20	121.2(5)	C4-C5-C6	120.7(6)
C4-C5-H5	119.6	C6-C5-H5	119.6
O008-C2-C1	122.7(7)	O008-C2-H2	118.7
C1-C2-H2	118.7	C21-C22-C23	122.4(6)
C21-C22-H22	118.8	C23-C22-H22	118.8
O003-C11-C14	109.9(5)	O003-C11-C13	108.8(5)
C14-C11-C13	114.3(7)	O003-C11-C12	100.8(5)
C14-C11-C12	111.0(6)	C13-C11-C12	111.2(6)
O002-C16-C17	101.9(4)	O002-C16-C19	109.1(5)
C17-C16-C19	112.3(5)	O002-C16-C18	108.8(5)
C17-C16-C18	111.5(5)	C19-C16-C18	112.6(6)
C8-C7-C6	120.2(6)	C8-C7-H7	119.9
C6-C7-H7	119.9	C1-C3-H3A	109.5
C1-C3-H3B	109.5	Н3А-С3-Н3В	109.5
C1-C3-H3C	109.5	Н3А-С3-Н3С	109.5
НЗВ-СЗ-НЗС	109.5	C7-C8-C9	120.3(6)
C7-C8-H8	119.9	С9-С8-Н8	119.9
C21-C26-C25	121.0(7)	C21-C26-H26	119.5
C25-C26-H26	119.5	C7-C6-C5	120.3(7)
C7-C6-H6	119.9	C5-C6-H6	119.9
C24-C23-C22	119.2(8)	C24-C23-H23	120.4
C22-C23-H23	120.4	C11-C12-H12A	109.5
C11-C12-H12B	109.5	H12A-C12-H12B	109.5

C11-C12-H12C	109.5	H12A-C12-H12C	109.5
H12B-C12-H12C	109.5	C16-C17-H17A	109.5
C16-C17-H17B	109.5	H17A-C17-H17B	109.5
C16-C17-H17C	109.5	H17A-C17-H17C	109.5
H17B-C17-H17C	109.5	C16-C19-H19A	109.5
C16-C19-H19B	109.5	H19A-C19-H19B	109.5
C16-C19-H19C	109.5	H19A-C19-H19C	109.5
H19B-C19-H19C	109.5	C16-C18-H18A	109.5
C16-C18-H18B	109.5	H18A-C18-H18B	109.5
C16-C18-H18C	109.5	H18A-C18-H18C	109.5
H18B-C18-H18C	109.5	C24-C25-C26	119.6(7)
C24-C25-H25	120.2	C26-C25-H25	120.2
C11-C13-H13A	109.5	C11-C13-H13B	109.5
H13A-C13-H13B	109.5	C11-C13-H13C	109.5
H13A-C13-H13C	109.5	H13B-C13-H13C	109.5
C23-C24-C25	121.0(8)	C23-C24-H24	119.5
C25-C24-H24	119.5	C11-C14-H14A	109.5
C11-C14-H14B	109.5	H14A-C14-H14B	109.5
C11-C14-H14C	109.5	H14A-C14-H14C	109.5
H14B-C14-H14C	109.5		

Table 6. Anisotropic atomic displacement parameters (\mathring{A}^2)

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U_{11}	$\mathbf{U_{22}}$	U_{33}	U_{23}	U_{13}	U_{12}
O001	0.0559(19)	0.054(2)	0.081(2)	0.0068(19)	-0.0008(17)	-0.0033(17)
O002	0.0448(19)	0.065(2)	0.094(2)	0.0134(19)	-0.0063(18)	0.0031(18)
O003	0.061(2)	0.089(3)	0.0499(18)	-0.0156(17)	-0.0001(16)	0.002(2)
N1	0.041(2)	0.065(2)	0.0448(18)	-0.0062(18)	0.0026(16)	0.0060(18)
N2	0.043(2)	0.055(2)	0.0509(19)	0.0023(18)	-0.0018(17)	0.0015(19)
O006	0.059(2)	0.130(4)	0.076(2)	-0.033(2)	-0.0056(19)	0.036(2)
C15	0.047(3)	0.055(3)	0.056(3)	0.000(2)	0.006(2)	0.001(3)
O008	0.129(4)	0.177(5)	0.080(3)	0.002(3)	-0.023(3)	0.083(4)
C4	0.062(3)	0.078(4)	0.043(2)	0.003(3)	-0.002(2)	0.017(3)
C20	0.067(3)	0.050(3)	0.073(3)	-0.002(2)	-0.010(3)	-0.008(3)
C9	0.073(4)	0.088(4)	0.057(3)	-0.006(3)	-0.006(3)	0.019(3)
C1	0.051(3)	0.087(4)	0.047(2)	-0.005(2)	-0.001(2)	0.015(3)
C10	0.049(3)	0.083(4)	0.052(3)	-0.011(3)	0.003(2)	-0.005(3)
C21	0.074(4)	0.057(3)	0.079(3)	0.017(3)	-0.012(3)	-0.016(3)
C5	0.080(4)	0.086(4)	0.058(3)	0.004(3)	0.005(3)	0.009(3)
C2	0.097(5)	0.134(6)	0.050(3)	-0.001(3)	-0.003(3)	0.056(4)

	$\mathbf{U_{11}}$	$\mathbf{U_{22}}$	U_{33}	U_{23}	U_{13}	U_{12}
C22	0.090(5)	0.101(5)	0.088(4)	0.014(4)	-0.008(4)	-0.035(4)
C11	0.080(4)	0.106(5)	0.064(3)	-0.037(3)	0.007(3)	-0.011(4)
C16	0.044(3)	0.078(4)	0.105(4)	0.004(3)	-0.015(3)	0.001(3)
C7	0.099(5)	0.151(7)	0.057(4)	0.002(4)	0.021(4)	0.043(6)
C3	0.055(3)	0.139(6)	0.067(3)	-0.022(4)	0.000(3)	-0.008(4)
C8	0.107(5)	0.107(5)	0.064(3)	-0.022(3)	-0.003(4)	0.040(5)
C26	0.097(5)	0.126(6)	0.094(5)	0.039(4)	-0.027(4)	-0.025(4)
C6	0.082(4)	0.132(6)	0.067(4)	0.020(4)	0.018(3)	0.009(4)
C23	0.111(6)	0.146(7)	0.114(6)	0.032(5)	0.008(5)	-0.051(5)
C12	0.145(7)	0.156(7)	0.060(3)	-0.024(4)	-0.017(4)	-0.012(6)
C17	0.057(4)	0.111(5)	0.142(6)	0.014(5)	-0.024(4)	0.007(4)
C19	0.057(3)	0.124(6)	0.132(6)	0.024(5)	0.022(4)	-0.001(4)
C18	0.099(5)	0.109(5)	0.128(5)	-0.019(5)	-0.050(5)	0.000(5)
C25	0.134(7)	0.200(10)	0.087(5)	0.061(6)	-0.034(5)	-0.022(7)
C13	0.110(6)	0.239(11)	0.112(6)	-0.079(7)	0.061(5)	-0.036(7)
C24	0.151(9)	0.191(10)	0.105(6)	0.062(6)	0.000(6)	-0.052(8)
C14	0.162(8)	0.095(5)	0.118(6)	-0.036(4)	-0.011(6)	0.010(6)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\mathring{A}^2).

	x/a	y/b	z/c	U(eq)
H20A	0.4805	0.1497	0.7727	0.076
H20B	0.3432	0.1439	0.7397	0.076
Н9	0.2373	0.1670	0.5866	0.087
H5	0.4519	0.4167	0.6348	0.09
H2	0.2332	0.4938	0.6610	0.113
H22	0.1527	0.1359	0.8097	0.111
H7	0.5633	0.2275	0.4875	0.123
Н3А	0.1435	0.1825	0.6871	0.131
Н3В	0.0664	0.2518	0.6361	0.131
Н3С	0.0565	0.2755	0.7125	0.131
Н8	0.3851	0.1247	0.5042	0.111
H26	0.4953	0.1799	0.8945	0.127
Н6	0.5975	0.3727	0.5522	0.112
H23	0.0605	0.1072	0.9120	0.148
H12A	0.3496	0.3868	0.9606	0.18
H12B	0.3415	0.5042	0.9846	0.18
H12C	0.4378	0.4728	0.9277	0.18
H17A	0.7786	0.2239	0.8589	0.155
H17B	0.9046	0.2699	0.8264	0.155

	x/a	y/b	z/c	U(eq)
H17C	0.8160	0.1928	0.7860	0.155
H19A	0.7771	0.3172	0.6935	0.156
H19B	0.8738	0.3973	0.7261	0.156
H19C	0.7321	0.4327	0.7088	0.156
H18A	0.6895	0.4890	0.8237	0.168
H18B	0.8250	0.4537	0.8510	0.168
H18C	0.6977	0.4081	0.8824	0.168
H25	0.4009	0.1537	0.9977	0.168
H13A	0.0534	0.4706	0.8898	0.23
H13B	0.1033	0.4809	0.9632	0.23
H13C	0.1159	0.3732	0.9255	0.23
H24	0.1848	0.1158	1.0049	0.179
H14A	0.3388	0.6034	0.8501	0.188
H14B	0.2473	0.6391	0.9082	0.188
H14C	0.1881	0.6040	0.8399	0.188

Computational details

Structure of (*R*,*R*_a)-ent-5a' was subjected to conformational search, which was carried out using the recent CREST program. 11,12 at the GFN2-xTB^{13,14} level of theory with the GBSA implicit solvation model. The conformational ensemble obtained from this search was visually inspected and it was noted that the ensemble contained members possessing an opposite axial configuration with respect to that of the input structure. Clearly, this axial rotation was induced by the metadynamic sampling performed by CREST. All the members of the ensemble presenting an inverted chiral axis were manually sorted out before the following step. Conformer ensemble obtained in the first step (457 conformers) was refined and sorted at the DFT level using the CENSO algorithm¹⁵ interfaced with the ORCA quantum chemistry program package. The refinement was performed in three parts with default thresholds. After each part, conformers lying outside the given threshold were discarded.

• Part0: cheap prescreening: single point energy at the B97-D3/def2-SV(P)//GFNn-xTB level

¹¹ P. Pracht, S. Grimme Chem. Sci., 2021, 12, 6551–6568.

¹² P. Pracht , F. Bohle, S. Grimme Phys. Chem. Chem. Phys., **2020**, 22 , 7169–7192

¹³ C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme *WIREs Comput. Mol. Sci.*, **2020**, *11*, e01493.

¹⁴ Bannwarth, C.; Ehlert, S.; Grimme, S. J. Chem. Theory Comput. **2019**, 15, 1652–1671.

¹⁵ Grimme, S.; Bohle, F.; Hansen, A.; Pracht, P.; Spicher, S.; Stahn, M. J. Phys. Chem. A 2021, 125, 4039–4054.

¹⁶ Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J. Chem. Phys., 2020, 152, 224108.

- Part1: prescreening: single point energy at the r2SCAN-3c/def2-mTZVPP/CPCM[toluene] + GmRRHO(GFN2[alpb]-bhess)//GFNn-xTB
- Part2: geometry optimization and free energy calculation at the r2SCAN -3c/def2-mTZVPP
 + CPCM[toluene] + GmRRHO(GFN2[alpb]-bhess) // r2SCAN -3c[SMD] /def2-mTZVPP

This gave final refined and optimized conformers ensembles (67 cumulative conformers). Part2 was also repeated at the ω b97x-d4/6-31g(d) + CPCM[hexane] + GmRRHO(GFN2[alpb]-bhess) // ω b97x-d4/6-31g(d)[SMD], with the aim to preoptimize the final ensemble for the following higher level DFT optimizations. Vibrational frequencies were computed at the same level with the default mRRHO approximation.¹⁷

Computation of the N-N rotational barriers of 5a and 3a

To determine the rotational barrier of 5a, the lower energy conformer resulting from the conformational search already performed at the $\omega b97x$ -d4 level, has been used to explore the PES by using a relaxed scan about the N–N bond. This scan has been carried out at $\omega b97x$ -d4/3-21g + CPCM[toluene] level, taking 36 steps of 10°. Results are represented in Figure S10

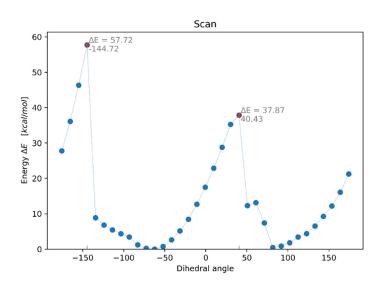
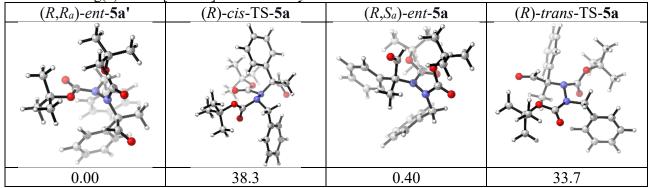


Figure S10. Clockwise N-N dihedral relaxed scan of (R,R_a) -ent-**5a'** at the ω B97x-d4/3-21g level.


31

¹⁷ Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chemistry – A European Journal* **2012**, *18* (32), 9955–9964.

Initial crude geometry of two TS - here called *cis* and *trans*, 40.34° and -144.72° respectively- have been pre-optimized by freezing the dihedral angle C-N-N-C (where carbon atoms are the Boc's ones), and then further optimized at the final ωB97x-d4/6-31g(d) level of theory, following the mode that represents the distortion on the bond. The same protocol has been followed to find the barrier of the tri-substituted hydrazide 3a. Vibrational frequency calculations were performed at the same level of theory to characterize all structures as either minima (no negative imaginary vibrational frequency) or saddle points (single negative imaginary frequency). Results for (R,Ra)-ent-5a' are shown in Table S9 and graphed in Figure S11, for molecule 3a in Table S10 and Figure S12.

Table S9. Optimized geometries¹⁸ and rotational barriers [ΔG (kcal/mol)] calculated for (R,R_a) -ent-5a' at the

ωb97x-d4/6-31g(d) CPCM[toluene] level of theory

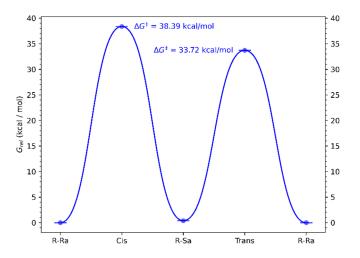
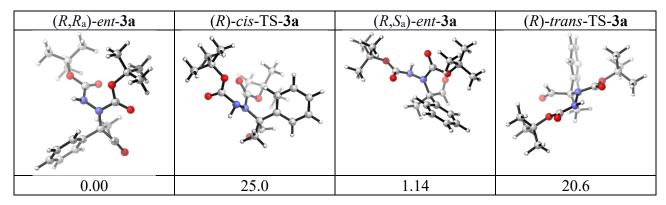



Figure S11. Rotational barriers of ent-5a.

The rotational barrier found is 33.7 kcal/mol, which is in fair agreement with the experimental one (28.32 kcal/mol). The energy separation between diastereomeric axial epimers of *ent-5a* was calculated to be 0.40 kcal/mol which corresponds to a Boltzmann population ratio of about 57:43 (*ent-5a:ent-5a'*). This value is in very good agreement with the experimental value found during the kinetic equilibration experiments.

¹⁸ CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)

Table S10. Optimized geometries¹⁸ and rotational barriers [ΔG (kcal/mol)] calculated for *ent-3a* at the ω b97x-d4/6-31g(d) CPCM[toluene] level of theory.

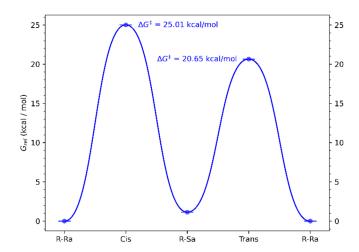


Figure S12. Rotational barrier of ent-3a.

The calculated rotational barrier of the trisubstituted hydrazide (*R*)-3a is of 20.6 kcal/mol, which corresponds to a half-life time of about two minutes at room temperature. This cannot be compared to any experimental value; however, it can be supported by two observations: the first is that the ¹H NMR spectrum shows two broadened peaks (Figure S13) for the aldehyde proton signal.

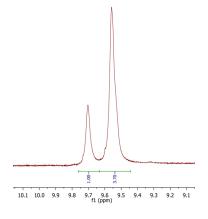


Figure S13. Broadened ¹H-NMR peaks attributed to the aldehyde's proton

(R,R_a) -ent-5a	nt-5a	-en	$R_{\rm a}$	(R,	(
-------------------	-------	-----	-------------	-----	---

(R,R_a))- <i>ent-5a'</i>				cis-TS- 5a		
Zero E	Point Energy (Ha	rtree):	0.5733011231	Zero	Point Energy (Ha	rtree):	0.5735042962
Inner	Energy (Hartree) : -14	196.9537316631	Inne	r Energy (Hartree	: -1	496.8953271407
	lpy (Hartree)	: -14	196.9527874541		alpy (Hartree)	: -1	496.8943829316
	lonal entropy	:	0.0171981631		tional entropy	:	0.0172875208
	cional entropy	:	0.0533263995		ational entropy	:	0.0504665181
	lational entropy		0.0171981631		slational entropy		0.0172875208
Entrop	-	:	0.0915402877	Entr		:	0.0887697639
Gibbs	Energy (Hartree) : -14	197.0443277418		s Energy (Hartree		196.9831526956
	0 566505		0.045506	Imag	inary frequency	(cm ⁻¹) :	-12.609945
N	-0.566527	0.791838	0.017796	27	0 422124	0 406750	0 005071
N	-0.111998	-0.341807	-0.616904	N N	-0.433124	-0.496758	0.885971
С	-1.876725 0.374478	1.184706	-0.168293	N C	-1.103802	-0.707396	-0.382509 0.821292
C C	-0.509027	1.756617 -1.580106	0.632045 -0.150541	C	0.532892 -1.324173	0.524174 -0.274211	2.080300
C	0.365671	-0.226645	-1.999455	C	-0.184165	-0.532655	-1.506328
0	-2.327189	2.188345	0.363884	C	-1.604517	-2.106289	-0.584024
0	-0.246996	-2.607902	-0.754131	0	0.792497	1.179440	-0.168874
0	-2.530511	0.338880	-0.964272	0	0.902841	-1.049429	-1.596811
C	-3.966314	0.509909	-1.222913	Ō	1.100609	0.675417	2.019262
C	-4.745344	0.428049	0.088950	C	2.004544	1.809350	2.289764
C	-4.205285	1.821247	-1.969419	C	3.276568	1.645514	1.460023
С	-4.281413	-0.688703	-2.115535	С	1.290984	3.134861	2.027885
Н	-3.679062	-0.654388	-3.029982	С	2.301335	1.647354	3.778998
Н	-4.067069	-1.625967	-1.590548	Н	3.030436	2.402315	4.091485
Н	-5.340804	-0.675986	-2.393116	Н	1.389537	1.782037	4.371614
Н	-3.989270	2.683458	-1.335448	Н	2.714779	0.653854	3.983484
Н	-3.573173	1.865315	-2.863937	Н	1.944287	3.951310	2.356576
Н	-5.253238	1.869086	-2.286385	Н	1.068442	3.270911	0.968249
Н	-4.543778	1.291031	0.726560	Н	0.357857	3.187006	2.598565
Н	-5.818011	0.394579	-0.132713	Н	4.002742	2.408157	1.763322
Н	-4.476373	-0.486826	0.629478	Н	3.717608	0.658119	1.636684
0	-1.180487	-1.484547	1.000537	Н	3.070675	1.757733	0.393884
C	-1.608268	-2.692184	1.715738	0	-0.841280	0.134098	-2.450398
C	-2.631571	-3.456995	0.877719	C	-0.224656	0.333885	-3.769720
C	-0.395438	-3.546669	2.085410	C	-1.287959	1.142199	-4.510964
C	-2.262209	-2.113939	2.969525	C	1.064335	1.142243	-3.625131
H	0.339908	-2.945646	2.632308	C	-0.001979	-1.017052	-4.450079
H H	-0.720082 0.079708	-4.365095 -3.969951	2.737807 1.198539	H H	1.420305 0.872384	1.428480 2.052735	-4.621446 -3.047373
Н	-2.643454	-2.925652	3.598164	Н	1.842245	0.564829	-3.122493
H	-1.536504	-1.533864	3.550619	H	-0.938497	-1.587080	-4.471500
Н	-3.096894	-1.457787	2.699018	H	0.320317	-0.849687	-5.484117
Н	-3.038857	-4.283107	1.471584	H	0.761053	-1.603932	-3.935015
Н	-3.458427	-2.794641	0.596734	H	-0.947829	1.357577	-5.529535
Н	-2.176343	-3.863493	-0.027407	H	-2.227738	0.581667	-4.566231
С	-0.268243	2.260899	1.939044	Н	-1.475108	2.090577	-3.995578
С	0.635457	2.936784	-0.304561	С	-0.473463	-0.712112	3.301821
0	-0.096866	3.374367	2.375196	С	-2.576419	-1.161982	2.140316
Н	-0.833698	1.489329	2.496948	0	-0.095386	-1.851523	3.446521
Н	1.219417	3.704854	0.207895	Н	-0.276490	0.051913	4.070131
Н	1.173754	2.610576	-1.198130	Н	-3.268197	-0.918283	1.330584
Н	-0.318939	3.381578	-0.597791	H	-2.323499	-2.224396	2.139266
С	2.674551	-0.727427	2.401569	Н	-3.086200	-0.940459	3.084310
С	1.535110	-0.076951	1.936927	C	-2.568202	3.044262	3.547042
C	1.641509	1.032945	1.089241	C	-2.118957	1.728227	3.440451
C	2.911103	1.489393	0.733351	C	-1.797805	1.179061	2.193338
C	4.052765	0.840258	1.201520	C	-1.995311	1.958421	1.047813
C	3.940382	-0.270219	2.033993	C	-2.448932	3.272142	1.154813
H	2.572458	-1.591684	3.054639	C	-2.725078	3.826098	2.403682
H H	0.554873	-0.445372 2.343967	2.221136	Н	-2.800631	3.454072	4.527343
н Н	3.026574 5.033363	1.201700	0.075943 0.902018	H H	-2.038561 -1.798960	1.134463 1.540941	4.347845 0.066273
н	4.832385	-0.777409	2.394628	Н	-2.588946	3.863106	0.086273
С	1.875525	-0.161433	-2.102691	Н	-3.073326	4.853120	2.485047
Н	-0.014303	-1.093533	-2.547424	C	-0.608940	-3.248802	-0.557612
H	-0.091587	0.671022	-2.426293	Н	-2.408505	-2.290622	0.120347
С	2.495370	0.857644	-2.826250	Н	-2.408303	-2.060463	-1.571962
C	3.887494	0.837644	-2.924400	C	0.037164	-3.639304	0.619556
Н	1.886767	1.615998	-3.317038	C	0.917020	-4.721057	0.611548
C	4.668548	-0.054134	-2.298673	Н	-0.127216	-3.092475	1.542655
Н	5.753187	-0.011609	-2.370573	C	1.153001	-5.433376	-0.564688
C	4.052093	-1.080849	-1.579371	Н	1.837209	-6.279181	-0.565009
Н	4.357983	1.717143	-3.488541	C	0.504336	-5.055267	-1.739822
С	2.665612	-1.135161	-1.482810	Н	1.417613	-5.010993	1.533033
Н	2.187578	-1.931740	-0.919337	С	-0.368724	-3.968591	-1.731642
Н	4.656861	-1.838627	-1.086193	Н	-0.868081	-3.671934	-2.652895

H 0.678800 -5.603660 -2.663057 H 2.877494 -0.110251 -2.884828 H 4.992580 0.699240 -1.877589

((R,	$S_{\rm a}$)-ent	-5a
(κ,	\mathbf{J}_{a})-ent	-3

(R,S_a) -ent	-5a						
	Energy (Har	tree):	0.5736208847	(D)	4 TC #2		
	gy (Hartree)		-1496.9529116618		trans-TS- 5a		
Enthalpy (-1496.9519674528		Point Energy (H		0.5730411347
Rotational		:	0.0171658528		r Energy (Hartre		496.9024024746
Vibrationa	nal entropy	:	0.0535404647 0.0171658528		alpy (Hartree) tional entropy	: -1: :	496.9014582656 0.0173334465
Entropy	mai entropy	:	0.0171636326		ational entropy	:	0.0507819683
	gy (Hartree)		-1497.0436894953		slational entropy		0.0173334465
	51 (•		Entr	-	:	0.0891311398
N -	0.041205	-0.17858	-0.384461	Gibb	s Energy (Hartre	e) : -1	496.9905894054
N -	0.079704	-0.98494	47 -1.506379	Imag	inary frequency	(cm ⁻¹) :	-5.464991
	0.314588	-0.84153					
	0.217308	1.28613		N	-0.716408	0.089342	0.446511
	1.306625	-1.45349		N	-0.584704	-0.996839	-0.514436
	1.075144	-1.85603 -2.05656		C	0.551240 -0.891752	0.086531 1.478279	1.189590 -0.090936
	1.396658	-2.31373		C	-1.390098	-1.225213	-1.610140
	0.478618	0.02797		C	-0.108872	-2.241148	0.116564
	0.466724	-0.40201		0	1.635656	0.227483	0.678108
	1.706635	-1.24693		0	-1.333361	-2.300270	-2.189523
	0.837942	-1.13853	3.505187	0	0.295530	-0.119615	2.471574
	0.518793	0.92883		C	1.382848	-0.084045	3.468561
	0.517000	0.74616		C	2.331551	-1.256506	3.226172
	0.347963	1.54699		C	2.093561	1.268417	3.430802
	1.429646 0.908014	1.47947 -1.31613		C H	0.621421 1.325684	-0.257596 -0.260497	4.780654 5.619374
	0.881812	-2.10004		H	-0.089587	0.563980	4.920307
	1.693158	-0.52545		H	0.070946	-1.204859	4.782855
	1.770860	-1.44598		Н	2.787799	1.321183	4.277337
н -	2.608918	-0.70349	95 3.185348	Н	2.660710	1.400250	2.507340
	1.667133	-2.19811		Н	1.369050	2.082955	3.526363
	2.314982	-0.81696		Н	3.079362	-1.280293	4.026976
	3.711003 4.503491	-1.13648 -0.27183		H H	1.780204 2.846606	-2.203258 -1.164197	3.244028 2.267739
	3.988541	-0.27163		п О	-2.165350	-0.198536	-1.980845
	3.987512	-2.61804		C	-2.950652	-0.326936	-3.233816
	5.055862	-0.84283		C	-3.646295	1.023711	-3.377770
Н -	3.727960	0.33701		С	-2.008343	-0.554245	-4.416780
	3.415449	-1.32667		С	-3.990585	-1.435665	-3.073003
	3.662779	-2.88824		Н	-2.587129	-0.489248	-5.344983
	5.066021 3.471711	-2.79690 -3.25456		H H	-1.240905 -1.525026	0.228372 -1.530666	-4.439935 -4.370033
	5.574762	-0.45397		Н	-4.586031	-1.258827	-2.169742
	4.236121	-0.52667		H	-4.665608	-1.416425	-3.936258
	4.304757	0.79110		Н	-3.524513	-2.419628	-3.009720
C -	1.699047	1.62895	-0.342708	Н	-4.245486	1.010474	-4.294764
	0.174450	1.68547		Н	-4.308731	1.222719	-2.530856
	2.319836	2.39817		Н	-2.918765	1.837362	-3.443971
	2.165235 1.214900	1.14548		C C	-2.377995 -0.019694	1.729485 1.836072	-0.386943 -1.294793
	0.470669	1.21528		0	-2.759685	2.691409	-1.294793
H	0.072433	2.76961		Н	-3.075853	1.030409	0.110673
	1.060976	4.11229		H	1.036731	1.857241	-1.023228
C	0.249096	3.35711	19 0.822439	Н	-0.157953	1.107983	-2.094854
	0.652394	2.08866		Н	-0.325253	2.815004	-1.672929
C	1.889671	1.59588		С	-1.325053	3.087542	3.357198
С	2.701670	2.34988		C	-1.427507	2.210798	2.281791
C H	2.287928 0.728990	3.61044 5.09629		C	-0.685099 0.154050	2.423997 3.536667	1.110961 1.039106
	0.728990	3.77304		C C	0.258342	4.415388	2.118385
H	2.213220	0.61366		C	-0.480537	4.196175	3.278802
Н	3.661855	1.9464		Н	-1.906925	2.904371	4.257659
	2.920209	4.19826		Н	-2.070412	1.339152	2.359770
С	2.365528	-1.36822		Н	0.734214	3.732031	0.143672
H	0.854474	-2.86933		Н	0.920528	5.274980	2.046218
H C	1.157848 2.778465	-1.88898 -1.83965		H C	-0.400147 1.282967	4.884063 -2.669640	4.117294 -0.302417
C	3.973228	-1.39443		Н	-0.163044	-2.116070	1.201211
Н	2.152892	-2.55142		H	-0.814177	-3.035862	-0.138818
C	4.770071	-0.47408		C	1.938259	-3.645162	0.453495
Н	5.702501	-0.12677		С	3.199897	-4.105375	0.079658
C	4.371152	-0.00936		Н	1.456445	-4.048686	1.343529
Н	4.282651	-1.76824		C	3.819693	-3.591435	-1.059861
С	3.178511	-0.46075	54 -1. 899358	Н	4.804267	-3.947108	-1.355202

С	3.168199	-2.617793	-1.816862	Vibrat:	ional entropy	:	0.0415536106			
H	3.699388	-4.863214	0.679371		ational entropy	:	0.0167435930			
С	1.905872	-2.159995	-1.440751	Entropy		:	0.0789999641			
H	1.405354	-1.395471	-2.027126		Energy (Hartree)		-1226.6018940989			
Н	3.644717	-2.211716	-2.706565	Imagina	ary frequency (c	:m ⁻¹) :	-58.657851			
(PP)	-ent- 3a			N	0.084483	-1.0348	305 1.383626			
<u> </u>			0.4640000000	N	-0.583171	-1.5630	0.219085			
Zero Point Energy (Hartree): 0.4618930274			С	1.057937	-0.0887					
	Energy (Hartree) py (Hartree)		26.5618766876 26.5609324786	C	-0.805880	-0.8571				
	onal entropy	:	0.0168393109	C	0.323963	-1.7847				
	ional entropy	:	0.0432792945	H O	-0.805389 1.566076	-2.5185 0.1108				
Translational entropy : 0.0168393109		0	1.180441	-2.6377						
Entrop	-	:	0.0808213659	Ö	1.360278	0.5395				
Gibbs :	Energy (Hartree)	: -12	26.6417538445	С	2.314415	1.6576				
NT.	0 (12020	0 (151(7	0 170106	С	3.704418	1.1590				
N N	0.612038 0.030999	0.615167 -0.577121	0.172126 0.550319	C	1.816042	2.7875				
C	-0.175292	1.755416	0.089328	C	2.270789	2.0766				
C	1.797973	0.527016	-0.702217	H H	2.951002 1.256399	2.9188				
С	-1.090622	-1.019084	-0.130058	Н	2.577583	1.2460				
0	0.180422	2.730016	-0.553615	H	2.459584	3.6636				
0	-1.465546	-0.558313	-1.190627	Н	1.840936	2.4985				
0	-1.278306	1.640453	0.824014	Н	0.790931	3.0632	1.696380			
C C	-2.333773 -1.821089	2.662229 3.991316	0.738407 1.291713	Н	4.430548	1.9654				
C	-2.827330	2.770127	-0.703963	Н	3.990322	0.3106				
C	-3.423459	2.086142	1.640491	H O	3.735412 -0.083687	0.8508				
Н	-3.760053	1.114544	1.263086	C	0.613641	-1.1036				
Н	-3.049321	1.957327	2.662125	C	-0.137721	-0.0621				
Н	-4.279958	2.768100	1.666003	C	2.078986	-0.7043				
H	-2.071740	3.219263	-1.351959	С	0.450932	-2.4972	268 -3.826342			
H H	-3.078696	1.775517 3.394139	-1.087830	Н	2.536636	-0.6210				
н	-3.727697 -2.655536	4.699335	-0.729283 1.352371	H	2.151637	0.2633				
Н	-1.416850	3.849813	2.300702	Н	2.630864	-1.4456				
Н	-1.044541	4.414418	0.651932	H H	-0.609838 0.844228	-2.7705 -2.4907				
0	-1.638817	-2.023630	0.562031	H	0.992276	-3.2485				
С	-2.790741	-2.757285	0.021400	Н	0.283917	-0.0157				
С	-3.048995	-3.812073	1.095945	Н	-1.199038	-0.3235				
С	-3.990717	-1.820717	-0.113813	Н	-0.051510	0.9273				
C H	-2.411409 -3.819789	-3.419383 -1.063451	-1.302827 -0.881699	C	0.092292	-0.9557				
Н	-4.875215	-2.407589	-0.386492	C	-1.790003	-2.0366				
H	-4.189390	-1.324251	0.843045	O H	0.749620 0.050647	-1.9397 -0.0964				
Н	-2.231115	-2.676234	-2.082071	Н	-2.509987	-2.0204				
Н	-1.510680	-4.030225	-1.173209	Н	-1.241192	-2.9843				
Н	-3.228426	-4.075447	-1.623425	Н	-2.347462	-1.9520				
H	-3.900018	-4.436845	0.804691	С	-2.952210	2.1052				
H H	-2.170406 -3.277255	-4.453941 -3.336188	1.221911 2.055953	С	-2.241205	0.9054				
C	1.421252	0.224974	-2.149789	C	-1.574615	0.4617				
C	2.560117	1.861466	-0.607951	C C	-1.657793 -2.368946	1.2285				
0	3.195180	2.325037	-1.525505	C	-3.013845	2.8744				
С	3.936137	-1.298621	1.889088	Н	-3.458478	2.4362				
С	2.998535	-0.450143	1.305971	Н	-2.215778	0.3139				
C	2.778600	-0.469411	-0.077794	H	-1.180335	0.8908	0.426558			
C C	3.529357 4.468947	-1.343463 -2.194298	-0.866154 -0.282563	H	-2.420081	3.0129				
C	4.675758	-2.176196	1.095282	Н	-3.566664	3.8109	2.478964			
Н	4.090248	-1.273193	2.965486	(D, C)	. 2					
Н	2.425618	0.229849	1.932743	(/ /	-ent- 3a					
Н	3.387160	-1.371392	-1.941687		oint Energy (Har		0.4616586453			
Н	5.040926	-2.872449	-0.911771				-1226.5592501814			
H	5.408155	-2.840130	1.548645		py (Hartree)		-1226.5583059724			
H H	2.580087 0.665142	2.306683 0.941547	0.405610 -2.478496		onal entropy ional entropy	:	0.0167780746 0.0441492896			
н Н	1.013202	-0.784836	-2.241557		ational entropy		0.0441492896			
Н	2.295220	0.330379		Entropy		:	0.0816301246			
Н	0.103461	-0.816123	1.530408		Energy (Hartree)					
(R)-cis	s-TS-3a			N	0.093184	0.0866				
	oint Energy (Har	tree):	0.4617151138	N C	-0.716205 -0.573634	-0.7253 1.1045				
Inner	Energy (Hartree)			C	1.529998	0.1126				
	py (Hartree)		26.5228941348	C	-1.359771	-1.7507				
Rotati	onal entropy	:	0.0167435930	0	-1.787546	1.1224				

0 0 C	-0.973652 0.289724 -0.139641	-2.208742 1.994772 3.018311	0.245700 0.420941 1.379198	Gibbs E Imagina	nergy (Hartree ry frequency ((-122) cm ⁻¹) : (-32)	6.6088414376 36.116356
C	-1.105102	3.990746	0.702720	N	-0.491419	-0.068636	0.349666
C	-0.743568	2.346822	2.611456	N	-0.412398	-0.916346	-0.808172
C	1.175891	3.708385	1.735644	C	0.597573	-0.414018	1.166411
Н	1.641907	4.130286	0.838106	C	-0.926547	1.334277	0.194012
Н	0.987126	4.520144	2.446674	C	-1.346867	-1.162875	-1.793421
H	1.872253	2.994072	2.187596	Н	0.006747	-1.786850	-0.497538
H	-0.933867	3.106106	3.378258	0	1.045885	-1.550314	1.170365
H	-1.684561	1.847165	2.371145	0	-1.415072	-2.272710	-2.293600
Н	-0.040020	1.611712	3.018928	0	1.048762	0.604924	1.879007
Н	-2.052649	3.503576	0.464806	C	1.982728	0.395000	2.998973
Н	-1.297675	4.835657	1.373925	C	1.387569	-0.595558	3.998088
Н	-0.661440	4.377218	-0.221969	C	3.336014	-0.057454	2.454268
0	-2.400674	-2.158572	-1.543029	C	2.073606	1.790570	3.612151
C	-3.264684	-3.246254	-1.068772	Н	2.772437	1.776383	4.455558
C	-4.314434	-3.345248	-2.173969	H	2.433796	2.512014	2.870416
C	-2.463627	-4.543997	-0.968423	H	1.091747	2.117475	3.968953
C	-3.914042	-2.849086	0.256938	H	4.062206	-0.084735	3.274651
Н	-3.146202	-5.371257	-0.743073	Н	3.270579	-1.051140	2.006865
Н	-1.969660	-4.756408	-1.923498	Н	3.695170	0.651996	1.700190
H	-1.709683	-4.484967	-0.180878	H	2.026985	-0.628134	4.887248
л Н	-4.399710	-1.871673	0.157869	п Н	0.388047	-0.266649	4.304015
	-4.677609	-3.589743	0.520250	п Н	1.323700	-1.601306	3.577390
H H	-3.177864	-2.799956	1.061591	О	-2.001164	-0.071185	-2.202284
л Н	-5.034701	-4.133392	-1.929898	C	-2.894306	-0.071183	-3.379953
	-4.853269	-2.397041	-2.276859	C	-3.369804	1.286782	-3.573438
H		-3.586844	-3.132720		-2.094616	-0.602917	-3.573438 -4.603069
H	-3.842634		-3.132720	C			
C	1.948659	-1.200291		C	-4.072249	-1.071203	-3.063891
C	1.805757	1.231087	-2.029402	H	-2.727605	-0.505835	-5.492249 -4.735700
0	0.926508	1.891558	-2.534347	H	-1.218947	0.043144	
C	4.176752	1.086101	1.598600	H	-1.766696	-1.639068	-4.513875
C	3.459691	1.045820	0.400704	H	-4.579005	-0.732069	-2.153074
C	2.335397	0.228648	0.279092	H	-4.790483	-1.028586	-3.890688
C	1.942522	-0.557993	1.367448	H	-3.748212	-2.105379	-2.931888
C	2.655253	-0.512702	2.562617	H	-3.978755	1.339063	-4.482540
C	3.776405	0.311300	2.684623	H	-3.967582	1.626873	-2.725425
H	5.047669	1.732877	1.679574	H	-2.514596	1.961962	-3.686031
Н	3.788993	1.675505	-0.420938	С	-2.406491	1.383721	-0.233262
H	1.061838	-1.189825	1.275906	С	-0.032041	2.109045	-0.768025
H	2.333489	-1.124489	3.402624	0	-2.900577	2.368923	-0.729637
H	4.332750	0.346622	3.618441	H	-3.008413	0.511541	0.084276
H	2.859711	1.353667	-2.343566	H	0.950584	2.280855	-0.318181
Н	1.669715	-2.048657	-1.081211	Н	0.090854	1.528333	-1.686411
H	3.036210	-1.199695	-1.838019	H	-0.490085	3.065474	-1.029173
H	1.472970	-1.313411	-2.690986	С	-2.026429	1.862740	3.824566
H	-1.286231	-0.233918	-2.174800	C	-1.752606	1.258671	2.600304
				C	-1.115689	1.976371	1.580052
(R)-tra	ans-TS3a			С	-0.795833	3.317004	1.792619
` /	oint Energy (Har	treel.	0.4616502236	С	-1.074099	3.922368	3.017983
	Energy (Hartree)		6.5311051827	С	-1.686910	3.199325	4.039964
	neigy (maitree) py (Hartree)		6.5301609737	H	-2.511644	1.288227	4.610446
	py (martree) onal entropy		0.0167413496	H	-2.013972	0.214882	2.444972
		:	0.0167413496	Н	-0.319176	3.899435	1.010956
	ional entropy ational entropy		0.0412363540	Н	-0.809516	4.966206	3.170909
				Н	-1.904173	3.673498	4.994136
Entrop	У	•	0.0786804639				

Synthesis of starting materials

Aldehydes 1b-j1

Morita-Baylis-Hillman Reaction b³

General procedure for the synthesis of 4b, 4c, 4d, 4i and 4m.²

In a 10 mL round bottom flask equipped with a magnetic stirring bar 2 mmol of aldehyde, 4 mL of freshly distilled THF and 3 mmol of NaBH₄ were added. After three hours the reaction was quenched with a saturated solution of NH₄Cl and extracted three times with ethyl acetate. The organic fractions were collected, dried on Na₂SO₄, filtered, and concentrated with rotavapor. The crude product was pure enough to be used in the following step without further purification.

In a previously dried 10 mL two-necks round bottom flask, equipped with a magnetic stirring bar and flushed with nitrogen, the corresponding alcohol was added in DCM (0.5 M). After cooling the flask with an ice bath, 1.5 eq of PBr₃ were slowly added. The consumption of the starting compound was checked with TLC, then the reaction was stopped with the slow addition of distilled water. The two phases were separated, and the water phase was washed twice with fresh DCM. The organic phases were collected and washed twice with brine, dried on Na₂SO₄, filtered, and concentrated at low pressure. The crude product was purified through flash chromatography with a 9:1 hexane/diethyl ether mixture.

Experimental procedures

General procedure for the sequential catalysis one-pot reactions

The reactions were carried out on a 0.3 mmol scale of aldehyde. To a 25 mL round bottom flask with a Teflon coated magnetic stirrer, 5% mol of catalyst **A** was added and dissolved in 3 mL of toluene; 0.3 mmol of aldehyde **1a-j**, TFA (15 mol%) and **2a-b** (1.1 eq) were added, and the solution was left stirring for 24h at 25 °C. An equal amount of toluene was added together with 12 mL of a solution of KOH_(aq) (50% w/w), PTC catalyst **N** (10 mol%) and electrophile **4a-m** / **a** / **b** (1 eq). The flask was cooled to -5 °C and left stirring vigorously at this temperature. Completion of the reaction was checked by TLC using a solvent mixture of hexane:diethyl ether – 4:1. After the appropriate time, the two phases were separated and the water phase was washed twice with diethyl ether; the organic parts were collected, dried over Na₂SO₄, filtered and concentrated with rotavapor without heating the bath; eventual traces of toluene were removed by high vacuum pump. Column chromatography was used with the proper solvent mixture to isolate the product as a single spot containing both diastereoisomers. To determine the diastereomeric ratio and enantiomeric excess of the major diastereoisomer, in most cases reduction to alcohols was necessary as the four peaks could not be separated by HPLC.

General procedure for reduction reactions

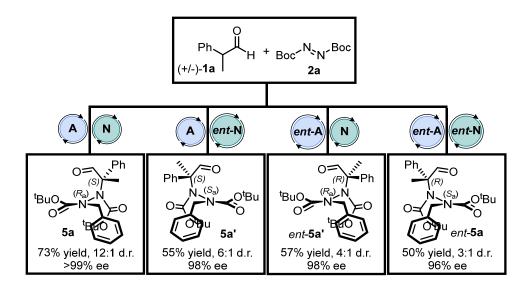
Reduction was performed with 1 eq of sodium borohydride in isopropanol (0.04 M) at r.t. After 2/3 hours, completion of the reaction was checked by TLC; a saturated solution of NH₄Cl was added and the solution was extracted with diethyl ether. Yield was quantitative in all cases. Crude mixture was directly analyzed through ¹H NMR and HPLC with chiral stationary phase.

The assignment of d.r. and e.e.% was done by identification of the enantiomeric couples by UV spectra.

Oxidation reaction - 5ao

0.2 mmol of compound **5a** were dissolved in 3 mL of a mixture of *tert*-butanol:H₂O (5:1), then KH₂PO₄ (0.34 mmol, 46 mg), H₂O₂ (0.96 mmol, 0.1 mL of a 30% solution) and NaOCl₂ (0.69 mmol, 62 mg) were added. The solution was stirred at 25 °C for 24 hours, then water was added and EtOAc was used to extract. The organic parts were collected, dried over Na₂SO₄ and concentrated on the rotary evaporator. Crude ¹H NMR showed a mixture of diastereoisomers and complete conversion of the starting material. Column chromatography was used to get the clean final product **5ao**, that was obtained as a single diastereoisomer.

Three-step reaction process synthesis of 10ekr


To a 25 mL round bottom flask with a Teflon coated magnetic stirrer, 5 mol % of catalyst **A** was added and dissolved in 3 mL of toluene; 0.3 mmol of aldehyde **1e**, TFA (15 mol %) and **2a** (1.1 eq) were added, and the solution was left stirring for 24h. An equal amount of toluene was added together with 12 mL of a solution of KOH_(aq) (50% w/w), PTC catalyst **N** (10 mol%) and electrophile **4k** (1 eq). The flask was cooled to -5 °C and left stirring vigorously at this temperature. Completion of the reaction was checked by TLC using a solvent mixture of hexane:diethyl ether – 4:1. The two phases were separated and the water phase was washed twice with diethyl ether; the organic parts were collected, dried over Na₂SO₄, filtered and concentrated with rotavapor without heating the bath; eventual traces of toluene were removed by high vacuum pump. Reduction was then directly performed adding 1 eq of sodium borohydride in isopropanol (0.04 M) at r.t. After 2h, completion of the reaction was checked by TLC; a saturated solution of NH₄Cl was added and the solution was extracted with diethyl ether. Column chromatography was used to isolate the product as a single spot containing both diastereoisomers.

Large scale reaction for 5a and 6k

The reactions were carried out following the general procedure for the sequential catalysis one-pot reactions, using 3 mmol of aldehyde 1a for compound 5a, 2.5 mmol of aldehyde 1a for compound 6k.

Stereodivergent synthesis

Reactions were performed in a 0.2 mmol scale of **1a**, following general procedure. To obtain the four diastereoisomers different combinations of catalysts **A** and **N** and their correspondent pseudoenantiomers *ent*-**A** (9-*epi*-deoxy-amino-quinidine) and *ent*-**N** (catalyst **O**) were exploited. Regarding the amination step, catalyst *ent*-**A** gave the trisubstituted hydrazide (*R*)-**3a** with a 72% yield and 68% ee, hence showing a lower reactivity and enantioselectivity with respect to **A**.

To better understand the diastereoselectivity, products **5a'**, *ent-***5a'** and *ent-***5a** were reduced following general procedure B.

Experimental details

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (5a)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 73% (100 mg). Colorless oil. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 14 min, t_2 = 15 min, t_3 = 16 min, t_4 = 26 min. d.r.= 13:1 and e.e. (major diastereoisomer) 99%. Peaks 1 and 3: minor diastereoisomer; peaks 2 and 4: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{26}H_{34}N_2NaO_5]^+477.2360$, found 477.2359 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.93 – 9.61 (m, 1H), 7.50 – 6.89 (m, 10H), 5.17 – 4.13 (m, 2H), 1.83 – 1.08 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 197.35, 196.25, 196.10, 195.94, 195.66, 155.49, 155.36, 155.10, 154.71, 154.39, 154.17, 152.79, 138.99, 138.84, 136.71, 136.59, 136.18, 135.89, 129.77, 129.17, 129.08, 128.49, 128.29, 128.25, 128.21, 128.18, 128.14, 127.87, 127.77, 127.72, 127.61, 127.50, 127.47, 127.45, 127.32, 127.29, 127.23, 126.81, 126.06, 82.59, 82.40, 82.32, 82.23, 82.13, 82.03, 81.94, 81.59, 72.78, 71.69, 71.54, 71.43, 56.41, 55.23, 54.44, 29.69, 29.65, 29.35, 28.34, 28.24, 28.14, 27.88, 27.82, 22.49, 20.27, 20.00, 19.69, 18.95, 18.42.

IR (ATR) v(max) = 1735 (s) 1710 (s) 1681 (s) 1355 (s) 1150 (s) 1126 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-hydroxy-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (5ar)

The reaction was carried out following the general reduction procedure. HPLC analysis were performed on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ =

220 nm: t_1 = 14 min, t_2 =18 min, t_3 = 28 min, t_4 = 43 min. The d.r. and e.e. values are consistent with those of **5a**. Peaks 1 and 2: couple of enantiomers; peaks 3 and 4: couple of enantiomers.

HRMS-ESI-ORBITRAP (+): calculated for [C₂₇H₃₆N₂NaO₅]⁺ 479.2516, found 479.2509 [M+Na]⁺.

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.01 (m, 10H), 5.52 – 3.37 (m, 4H), 1.95 – 0.94 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 159.08, 157.54, 156.15, 155.41, 153.69, 153.31, 146.16, 145.93, 144.25, 142.81, 137.70, 137.22, 137.00, 129.45, 128.83, 128.45, 128.28, 128.19, 127.47, 127.38, 127.27, 126.69, 126.61, 126.28, 125.37, 125.23, 125.03, 83.36, 83.00, 82.25, 81.73, 81.33, 70.33, 70.01, 69.63, 69.17, 66.90, 66.44, 58.65, 57.91, 55.79, 31.91, 30.32, 29.68, 28.34, 28.22, 27.87, 27.81, 26.77, 25.51, 25.21, 23.88.

IR (ATR) v(max) = 3406 (br, m) 1694 (s) 1367 (s) 1152 (s) cm⁻¹.

(S, R_a) -2-(2-benzyl-1,2-bis(tert-butoxycarbonyl)hydrazineyl)-2-phenylpropanoic acid (5ao)

The reaction was carried out following the oxidation procedure. The crude mixture was purified by flash column chromatography (hexane:EtOAc = 2:1). Yield= 56% (53 mg). White solid. m.p. = 90-92 °C. D.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 18 min, t_2 = 20 min, t_3 = 48 min, t_4 = 54 min. d.r.> 20:1 and e.e. (major diastereoisomer) > 99%. Peaks 3 and 4: minor diastereoisomer; peaks 1 and 2: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for [C₂₆H₃₄N₂NaO₅]⁺ 493.2309, found 493.2304 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.07 (m, 10H), 5.18 – 4.27 (m, 2H), 1.74 – 1.11 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 172.59, 171.98, 160.28, 158.92, 155.22, 153.56, 152.86, 140.06, 139.47, 136.98, 136.02, 135.76, 135.64, 130.00, 129.81, 129.46, 128.75, 128.40, 128.33, 128.22, 128.07, 127.84, 127.61, 127.46, 127.42, 127.32, 127.17, 127.12, 126.08, 125.50, 85.45, 84.95, 83.09, 71.50, 70.63, 65.83, 57.04, 56.40, 53.77, 34.21, 30.31, 29.24, 28.56, 28.24, 28.15, 27.82, 27.80, 27.64, 25.84, 24.59, 15.25.

IR (ATR) v(max) = 3662 (br, m) 3444 (br, m) 1704 (s) 1367 (s) 1151 (s) 1127 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-oxo-2-(p-tolyl)propan-2-yl)hydrazine-1,2-dicarboxylate (5b)

The reaction was carried out following the general procedure, at r.t. Reaction time: 32h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 57% (53 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_5]^+$ 491.2516, found 491.2515 [M+Na]⁺. **¹H NMR** (400 MHz, CDCl₃) δ 9.74 (d, J = 51.6 Hz, 1H), 7.35 – 6.88 (m, 9H), 5.13 – 4.01 (m, 2H), 2.47 – 2.23 (m, 3H), 1.82 – 1.13 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 197.82, 197.28, 196.31, 196.03, 195.87, 155.52, 155.37, 155.07, 154.66, 143.85, 143.42, 138.14, 137.60, 137.43, 136.81, 136.64, 135.85, 135.74, 134.72, 130.50, 129.77, 129.22, 129.01, 128.58, 128.42, 128.24, 128.14, 128.06, 127.44, 127.34, 127.15, 127.12, 126.14, 83.32, 82.46, 82.27, 82.18, 82.05, 81.94, 72.57, 71.54, 71.29, 56.41, 54.95, 54.43, 30.31, 29.68, 28.34, 28.23, 27.85, 27.82, 27.79, 26.51, 22.12, 21.61, 20.99, 20.92, 19.92, 19.49, 18.85.

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-hydroxy-2-(p-tolyl)propan-2-yl)hydrazine-1,2-dicarboxylate (5br)

The reaction was carried out following the general reduction procedure. The dr and ee were determined by HPLC analysis on a Phenomenex Lux 5u Cellulose-2 column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 =17 min, t_2 = 28 min, t_3 = 30 min, t_4 = 43 min. D.r.= 5:1 and e.e. (major diastereoisomer) >99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 6.90 (m, 9H), 5.36 - 3.34 (m, 4H), 2.32 (d, J = 7.3 Hz, 3H), 1.77 - 0.96 (m, 21H).

IR (ATR) v(max) = 3406 (br, m) 1694 (s) 1367 (s) 1152 (s) 1067 (s) 1049 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(2-(4-(tert-butyl)phenyl)-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (5c)

The reaction was carried out following the general procedure. Reaction time: 5 days. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 67% (104 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{30}H_{42}N_2NaO_5]^+$ 533.2986, found 533.2984 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 10.03 – 9.51 (m, 1H), 7.43 – 6.84 (m, 9H), 5.25 – 4.03 (m, 2H), 1.95 – 0.96 (m, 30H).

¹³C NMR (101 MHz, CDCl₃) δ 197.15, 196.02, 195.63, 156.79, 155.52, 155.36, 155.15, 154.77, 153.18, 151.15, 150.69, 150.50, 136.85, 136.58, 135.66, 129.81, 129.13, 129.02, 128.96, 128.28, 128.09, 128.03, 127.43, 127.37, 127.31, 127.05, 125.98, 125.49, 125.22, 125.16, 124.99, 83.24, 82.28, 82.18, 81.98, 81.91, 81.40, 72.52, 71.52, 71.29, 71.18, 56.68, 56.43, 54.22, 34.45, 34.41, 31.30, 31.08, 29.69, 28.35, 28.23, 27.92, 27.81, 21.86, 19.68, 19.27, 18.56.

IR (ATR) v(max) = 1697 (s) 1366 (s) 1150 (s) 1124 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(2-(4-(tert-butyl)phenyl)-1-hydroxypropan-2-yl)hydrazine-1,2-dicarboxylate (5cr)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Phenomenex Lux 5u Cellulose-2 column: hexane/i-PrOH 95/5, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 7 min, t_2 = 9 min, t_3 = 13 min, t_4 = 15 min. D.r.= 10:1 and e.e. (major diastereoisomer) >99%. Peaks 1 and 3: minor diastereoisomer; peaks 2 and 4: major diastereoisomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.02 (m, 9H), 5.65 – 3.24 (m, 4H), 1.70 – 1.03 (m, 30H).

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-oxo-2-(5,6,7,8-tetrahydronaphthalen-2-yl)propan-2-yl)hydrazine-1,2-dicarboxylate (5d)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane: $Et_2O = 8:2$).

Yield= 60% (92 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{30}H_{40}N_2NaO_5]^+$ 531.2829, found 531.2827 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (d, J = 48.1 Hz, 1H), 7.46 – 6.80 (m, 8H), 5.15 – 4.03 (m, 2H), 2.93 – 2.50 (m, 4H), 1.78 (dh, J = 10.6, 4.6 Hz, 4H), 1.66 – 1.09 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 196.28, 195.95, 156.78, 155.57, 155.45, 155.12, 154.68, 137.39, 136.90, 136.86, 136.72, 135.57, 129.70, 129.09, 128.80, 128.40, 128.08, 127.95, 127.78, 127.37, 127.21, 126.91, 124.29, 83.25, 82.20, 82.12, 82.01, 81.86, 71.64, 71.37, 56.57, 54.47, 29.62, 29.58, 28.98, 28.91, 28.34, 28.22, 27.84, 27.79, 23.15, 23.12, 19.94, 19.38.

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-hydroxy-2-(5,6,7,8-tetrahydronaphthalen-2-yl)propan-2-yl)hydrazine-1,2-dicarboxylate (5dr)

The reaction was carried out following the general reduction procedure.

The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column.: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 19 min, t_2 = 21 min, t_3 = 50 min, t_4 = 55 min. D.r.= 13:1 and e.e. (major diastereoisomer) >99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 – 6.69 (m, 8H), 5.46 – 3.21 (m, 4H), 2.74 (q, J = 5.3 Hz, 4H), 1.80 (dh, J = 7.8, 4.3, 3.9 Hz, 4H), 1.70 – 1.15 (m, 21H). **IR** (ATR) v(max)= 3407 (br, m) 1693 (s) 1367 (s) 1153 (s) 1058 (s) 1049 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-(2-([1,1'-biphenyl]-4-yl)-1-oxopropan-2-yl)-2-benzylhydrazine-1,2-dicarboxylate (5e)

The reaction was carried out following the general procedure, at r.t. Reaction time: 32h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 6:1). Yield= 63% (100 mg). White solid.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{32}H_{38}N_2NaO_5]^+$ 553.2673, found 553.2669 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 10.08 – 9.60 (m, 1H), 7.66 – 7.11 (m, 14H), 5.61 – 3.98 (m, 2H), 1.93 – 1.11 (m, 21H).

¹³C **NMR** (101 MHz, CDCl₃) δ 197.73, 197.45, 195.60, 155.42, 154.75, 145.77, 145.49, 140.64, 139.87, 139.59, 137.78, 136.58, 135.85, 135.57, 129.70, 129.42, 128.94, 128.90, 128.76, 128.66, 128.62, 128.48, 128.21, 128.19, 127.93, 127.65, 127.37, 127.26, 127.21, 127.11, 126.98, 126.93, 126.93, 126.83, 126.68, 82.53, 82.20, 71.31, 54.60, 29.68, 28.36, 28.25, 28.08, 27.85, 27.58, 26.65, 26.37, 19.99. **IR** (ATR) ν(max)= 1699 (s) 1679 (s) 1367 (s) 1151 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-(2-([1,1'-biphenyl]-4-yl)-1-hydroxypropan-2-yl)-2-benzylhydrazine-1,2-dicarboxylate (5er)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column.: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 19 min, t_2 = 21 min, t_3 = 38 min, t_4 = 42 min. D.r.= 5:1 and e.e.(major diastereoisomer)= 99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 6.92 (m, 14H), 5.50 – 3.31 (m, 4H), 1.93 – 0.99 (m, 21H).

(S, R_a)-di-tert-butyl 1-benzyl-2-(2-(naphthalen-2-yl)-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (5f)

The reaction was carried out following the general procedure. Reaction time: 5 days. The crude mixture was purified by flash column chromatography (hexane: $Et_2O = 7:3$). Yield= 72% (109 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{30}H_{36}N_2NaO_5]^+$ 527.2516, found 527.2513 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 10.11 – 9.64 (m, 1H), 8.18 – 6.92 (m, 12H), 5.16 – 4.09 (m, 2H), 2.00 – 0.99 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 198.09, 197.52, 196.38, 195.72, 155.58, 155.47, 155.16, 154.79, 136.58, 136.39, 135.59, 134.50, 132.91, 132.81, 132.52, 132.39, 130.19, 129.70, 129.54, 129.30, 129.06, 128.82, 128.46, 128.42, 128.38, 128.13, 128.05, 127.95, 127.78, 127.66, 127.50, 127.41, 127.38, 126.77, 126.31, 126.28, 126.19, 126.07, 125.96, 125.29, 125.05, 124.30, 123.90, 83.48, 82.52, 82.38, 82.21, 82.09, 72.85, 71.77, 71.54, 56.36, 54.62, 29.69, 28.37, 28.27, 27.92, 27.86, 27.75, 26.68, 22.56, 20.05, 19.82.

IR (ATR) v(max) = 1734 (s) 1710 (s) 1694 (s) 1367 (s) 1150 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-hydroxy-2-(naphthalen-2-yl)propan-2-yl)hydrazine-1,2-dicarboxylate (5fr)

The reaction was carried out following the general reduction procedure. The dr and ee were determined by HPLC analysis on a Daicel Chiralpak IC column.: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 17 min, t_2 = 18 min, t_3 = 37 min, t_4 = 43 min. D.r.= 11:1 and e.e.(major diastereoisomer)= >99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer.

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 – 6.99 (m, 12H), 5.51 – 3.41 (m, 4H), 1.88 – 0.63 (m, 21H).

(S, R_a) -di-tert-butyl 1-benzyl-2-(2-(4-methoxyphenyl)-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (5g)

The reaction was carried out following the general procedure. Reaction time: 72h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 65% (94 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_6]^+$ 507.2466, found 507.2467 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (d, J = 51.0 Hz, 1H), 7.41 – 6.66 (m, 9H), 5.12 – 4.08 (m, 2H), 3.88 – 3.69 (m, 3H), 1.86 – 1.03 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 197.07, 196.73, 196.19, 195.70, 163.47, 159.47, 159.14, 159.05, 158.80, 155.48, 155.36, 155.05, 154.68, 136.76, 136.58, 131.47, 130.77, 130.57, 130.33, 129.72, 129.14, 128.99, 128.66, 128.46, 128.13, 128.07, 127.63, 127.44, 127.35, 113.66, 113.64, 113.35, 83.37, 82.42, 82.28, 82.16, 82.00, 81.92, 81.55, 72.25, 71.21, 71.08, 71.00, 70.89, 56.36, 55.44, 55.24, 54.39, 30.30, 29.67, 28.33, 28.22, 28.15, 27.87, 27.82, 27.80, 26.31, 21.89, 19.61, 19.24.

(S, R_a)-di-tert-butyl 1-benzyl-2-(1-hydroxy-2-(4-methoxyphenyl)propan-2-yl)hydrazine-1,2-dicarboxylate (5gr)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column.: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 27 min, t_2 = 30 min, t_3 = 51 min, t_4 = 62 min. D.r.= 11:1 and e.e.(major diastereoisomer)= >99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 6.64 (m, 9H), 5.36 – 3.30 (m, 7H), 1.89 – 0.99 (m, 21H). **IR** (ATR) ν (max)= 3406 (br, m) 1694 (s) 1367 (s) 1249 (s) 1152 (s) 1067 (s) 1032 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(2-(3-(benzyloxy)phenyl)-1-oxopropan-2-yl)hydrazine-1,2-dicarboxylate (5h)

The reaction was carried out following the general procedure. Reaction time: 4 days. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 7:3). Yield= 50% (84 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_5]^+$ 583.2779, found 583.2772 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 9.74 (d, J = 51.7 Hz, 1H), 7.66 – 6.77 (m, 14H), 5.01 (d, J = 4.5 Hz, 2H), 4.67 – 4.06 (m, 2H), 1.80 – 1.21 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 197.16, 195.81, 195.30, 158.76, 156.71, 155.52, 155.34, 155.11, 154.77, 140.59, 137.00, 136.97, 136.75, 136.57, 129.75, 129.63, 129.28, 128.97, 128.56, 128.15,

128.08, 127.95, 127.47, 127.38, 121.31, 120.27, 119.86, 118.75, 114.45, 114.34, 114.15, 113.70, 113.58, 113.12, 83.41, 82.43, 82.32, 82.11, 82.05, 72.67, 71.63, 71.32, 70.18, 69.95, 56.42, 54.38, 29.69, 28.34, 28.24, 27.82, 26.71, 22.39, 19.84, 19.51.

IR (ATR) v(max) = 1696 (s) 1367 (s) 1149 (s) 1056 (s) 1027 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(2-(3-(benzyloxy)phenyl)-1-hydroxypropan-2-yl)hydrazine-1,2-dicarboxylate (5hr)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column.: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 20 min, t_2 = 23 min, t_3 = 46 min, t_4 = 58 min. D.r.= 12:1 and e.e.(major diastereoisomer)= >99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 6.72 (m, 14H), 5.02 (d, J = 6.5 Hz, 2H), 4.82 – 3.78 (m, 4H), 1.81 – 0.71 (m, 21H).

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-oxo-2-(thiophen-2-yl)propan-2-yl)hydrazine-1,2-dicarboxylate (5i)

The reaction was carried out following the general procedure. Reaction time: 72h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 7:3). Yield= 33% (46 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{24}H_{32}N_2NaO_5S]^+483.1924$, found 483.1924 [M+Na]⁺ ¹**H NMR** (400 MHz, CDCl₃) δ 9.89 – 9.47 (m, 1H), 7.39 – 6.85 (m, 8H), 5.03 – 4.06 (m, 2H), 1.77 – 1.12 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 195.54, 194.87, 194.43, 193.94, 192.24, 155.19, 154.87, 154.54, 154.22, 153.94, 142.63, 140.27, 140.15, 136.64, 136.57, 136.36, 136.09, 132.34, 132.32, 129.79, 129.22, 129.15, 128.59, 128.46, 128.28, 128.18, 127.50, 127.41, 127.32, 127.25, 126.96, 126.94, 126.73, 126.62, 126.38, 126.36, 125.56, 125.44, 125.32, 124.78, 124.58, 123.60, 123.42, 83.81, 82.38, 82.24, 81.91, 81.67, 69.73, 69.44, 69.07, 68.61, 56.35, 56.04, 55.20, 54.08, 29.67, 28.34, 28.26, 28.16, 28.01, 27.89, 27.76, 27.53, 27.51, 19.33, 19.10, 19.00.

IR (ATR) v(max) = 1734 (s) 1692 (s) 1367 (s) 1150 (s) cm⁻¹.

(S, R_a)-di-tert-butyl 1-benzyl-2-(1-hydroxy-2-(thiophen-2-yl)propan-2-yl)hydrazine-1,2-dicarboxylate (5ir)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC: hexane/*i*-PrOH 98/2, flow rate 0.5 mL/min, 25 °C, λ = 220 nm: t_1 = 41 min, t_2 = 43 min, t_3 = 48 min, t_4 = 66 min. D.r.= 1.3:1 and e.e.(major diastereoisomer)= 92%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 6.85 (m, 7H), 5.13 – 3.30 (m, 4H), 1.82 – 1.10 (m, 21H).

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-oxo-2-phenylbutan-2-yl)hydrazine-1,2-dicarboxylate (5j)

The reaction was carried out following the general procedure. (with 1.5 eq of 4a). Reaction time: 7 days. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 34% (32 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_5]^+491.2516$, found 491.2516 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 10.30 – 9.49 (m, 1H), 7.73 – 6.89 (m, 10H), 5.46 – 4.10 (m, 2H), 2.75 – 0.52 (m, 23H).

¹³C NMR (101 MHz, CDCl₃) δ 198.20, 197.40, 196.25, 195.15, 156.26, 155.65, 155.39, 154.92, 154.74, 154.40, 154.13, 152.95, 150.07, 138.07, 137.93, 137.36, 136.95, 136.79, 136.73, 136.45, 136.28, 135.59, 130.50, 130.29, 130.14, 129.93, 129.74, 129.65, 129.58, 129.39, 128.97, 128.77, 128.57, 128.41, 128.36, 128.34, 128.28, 128.26, 128.24, 128.21, 128.16, 128.12, 127.90, 127.60, 127.50, 127.43, 127.36, 127.32, 127.24, 126.95, 83.12, 82.84, 82.11, 82.00, 81.62, 81.34, 81.24, 80.93, 80.83, 80.72, 80.50, 75.14, 74.63, 74.50, 73.65, 73.50, 70.48, 57.01, 56.42, 54.55, 52.56, 28.40, 28.35, 28.33, 28.22, 28.18, 28.13, 27.98, 27.92, 27.81, 27.74, 27.71, 27.39, 26.93, 23.98, 23.64, 23.10, 10.81, 9.24, 9.00, 8.75, 8.58, 8.40.

IR (ATR) v(max) = 1699 (s) 1367 (s) 1152 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-benzyl-2-(1-hydroxy-2-phenylbutan-2-yl)hydrazine-1,2-dicarboxylate (5jr)

The reaction was carried out following the general reduction procedure, using 1.5 eq of **4a**. The d.r. and e.e. were determined by HPLC analysis on a Phenomenex Lux 5u Cellulose-2 column: hexane/i-PrOH 95/5, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 8 min, t_2 = 18, t_3 = 20, t_4 = 27 min. D.r.= 2:1

and e.e.(major diastereoisomer)= >99%. Peaks 1 and 4: minor diastereoisomer; peaks 2 and 3: major diastereoisomer.

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 6.66 (m, 10H), 5.47 – 3.64 (m, 4H), 2.65 – 0.42 (m, 23H).

(S, R_a) -di-tert-butyl (S)-1-(4-methoxybenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6b)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=76% (110 mg). Colorless oil. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 21 min, t_2 = 23 min, t_3 = 25 min, t_4 = 37 min. d.r.= 9.6:1 and e.e.(major diastereoisomer)= >99%. Peaks 1 and 3: minor diastereoisomer; peaks 2 and 4: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_6]^+$ 507.2466, found 507.2457 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.95-955 (m 1H), 7.49 – 6.63 (m, 9H), 5.13 – 4.08 (m, 2H), 3.82 – 3.68 (m, 3H), 1.58 – 1.12 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 197.52, 196.46, 195.79, 159.04, 156.63, 155.52, 155.34, 155.13, 154.74, 153.15, 139.14, 138.90, 131.03, 130.70, 130.47, 130.19, 129.00, 128.78, 128.24, 128.20, 128.01, 127.83, 127.65, 127.44, 127.24, 126.71, 126.07, 113.52, 83.28, 82.48, 82.34, 82.20, 82.04, 81.95, 72.80, 71.64, 71.54, 71.42, 55.57, 55.28, 55.24, 55.18, 53.85, 29.26, 28.35, 28.31, 28.25, 27.90, 27.87, 27.75, 20.06, 19.84.

IR (ATR) v(max) = 1695 (s) 1367 (s) 1248 (s) 1150 (s) 1125 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-(3-methoxybenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6c)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=70% (101 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_6]^+$ 507.2466, found 507.2451 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 9.92-9.62 (m, 1H), 7.43 – 6.46 (m, 9H), 5.17 – 4.09 (m, 2H), 3.68 (m, 3H), 1.62 – 1.10 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 210.82, 206.91, 197.36, 196.24, 195.65, 159.40, 156.73, 155.49, 155.35, 155.06, 154.70, 138.97, 138.78, 138.47, 138.16, 138.09, 129.17, 128.26, 128.21, 128.03, 127.85, 127.68, 127.28, 126.13, 122.06, 121.44, 114.82, 114.50, 114.32, 113.59, 113.27, 83.41, 82.40, 82.27, 82.14, 82.06, 71.63, 71.41, 69.49, 56.43, 56.28, 55.07, 54.99, 54.45, 53.79, 31.72, 30.91, 29.26, 28.33, 28.29, 28.22, 27.89, 27.82, 20.00, 19.69.

IR (ATR) v(max)= 1696 (s) 1367 (s) 1260 (s) 1150 (s) 1125 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-(1-hydroxy-2-phenylpropan-2-yl)-2-(3-methoxybenzyl)hydrazine-1,2-dicarboxylate (6cr)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 92/8, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 9 min, t_2 = 11 min, t_3 = 15 min, t_4 = 18 min. D.r.= 7:1 and e.e.(major diastereoisomer)= 99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 6.72 (m, 9H), 5.32 – 3.38 (m, 7H), 1.78 – 1.02 (m, 21H).

(S, R_a) -di-tert-butyl (S)-1-(2-methoxybenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6d)

The reaction was carried out following the general procedure, at -5 °C. Reaction time: 5 days. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=48% (70 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_6]^+$ 507.2466, found 507.2452 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.99 – 9.68 (m, 1H), 7.54 – 6.55 (m, 9H), 5.16 – 4.07 (m, 2H), 3.85 – 3.56 (m, 3H), 1.84 – 1.06 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 198.25, 197.56, 197.46, 196.66, 196.45, 157.50, 157.45, 157.32, 157.24, 156.82, 156.06, 155.53, 155.42, 155.34, 155.24, 154.65, 154.36, 153.37, 152.84, 140.46, 139.25, 139.04, 136.75, 136.37, 132.16, 131.68, 131.12, 130.53, 128.74, 128.52, 128.21, 128.17, 128.05, 128.01, 127.89, 127.52, 127.41, 127.32, 127.01, 126.84, 126.59, 125.88, 125.21, 125.14, 124.41, 120.46, 120.29, 120.02, 119.93, 109.93, 109.88, 109.73, 82.99, 82.92, 82.40, 82.04, 81.87, 81.81, 81.78, 81.76, 81.70, 81.61, 81.26, 73.10, 72.05, 71.65, 69.48, 55.02, 54.85, 54.76, 53.80, 51.21, 50.66, 50.27, 49.17, 48.94, 31.72, 31.58, 30.32, 29.69, 29.27, 28.32, 28.29, 28.26, 28.19, 27.78, 22.69, 22.64, 20.80, 20.18, 18.38, 17.88, 14.12.

IR (ATR) v(max)= 1695 (s) 1367 (s) 1245 (s) 1152 (s) 1131 (s) cm⁻¹.

(S, R_a)-di-tert-butyl 1-(1-hydroxy-2-phenylpropan-2-yl)-2-(2-methoxybenzyl)hydrazine-1,2-dicarboxylate (6dr)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 90/10, flow rate 1

mL/min, 25 °C, $\lambda = 220$ nm: $t_1 = 8$ min, $t_2 = 9$ min, $t_3 = 16$ min, $t_4 = 23$ min. D.r.= 2.4:1 and e.e.(major diastereoisomer)= 97%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer. **H NMR** (600 MHz, CDCl₃) δ 7.96 – 6.68 (m, 9H), 5.26 – 3.43 (m, 7H), 1.90 – 0.96 (m, 21H).

(S, R_a) -di-tert-butyl (S)-1-(4-methylbenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6e)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=70% (98 mg). Colorless oil. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 17 min, t_2 = 19 min, t_3 = 21, t_4 = 33 min. d.r.= 7:1 and e.e.(major diastereoisomer)= >99%. Peaks 1 and 3: minor diastereoisomer; peaks 2 and 4: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_5]^+491.2516$, found 491.2512 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.92 – 9.63 (m, 1H), 7.41 – 6.76 (m, 9H), 5.13 – 4.08 (m, 2H), 2.30 (m, 3H), 1.79 – 1.09 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 198.09, 197.53, 196.47, 196.18, 196.02, 195.82, 156.96, 156.71, 155.59, 155.37, 155.11, 154.72, 154.17, 153.18, 140.02, 139.12, 138.89, 137.10, 136.32, 135.97, 133.82, 133.58, 133.50, 133.09, 129.73, 129.31, 129.13, 128.90, 128.81, 128.78, 128.56, 128.51, 128.29, 128.23, 128.19, 128.02, 127.80, 127.61, 127.48, 127.21, 126.74, 126.02, 83.24, 82.50, 82.34, 82.21, 82.05, 81.95, 81.85, 81.49, 72.80, 71.67, 71.55, 71.45, 56.88, 56.04, 54.92, 54.23, 28.34, 28.27, 28.23, 28.16, 27.86, 27.82, 27.74, 26.58, 22.65, 22.18, 21.10, 21.08, 20.12, 19.90, 19.04, 18.46. **IR** (ATR) ν(max)= 1697 (s) 1367 (s) 1150 (s) 1127 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-(2-methylbenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6f)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=69% (97 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{36}N_2NaO_5]^+491.2516$, found 491.2514 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 9.97-9.74 (m, 1H), 7.43 – 6.58 (m, 9H), 5.18 – 4.02 (m, 2H), 2.33 – 1.87 (m, 3H), 1.68 – 1.04 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 197.85, 196.83, 195.93, 155.89, 155.28, 154.71, 138.85, 137.13, 136.89, 136.35, 134.47, 134.14, 133.09, 130.60, 130.18, 129.77, 128.56, 128.29, 128.24, 128.17, 128.00, 127.84, 127.68, 127.64, 127.39, 126.01, 125.53, 83.54, 83.31, 82.36, 82.15, 72.79, 71.66, 71.25, 65.83, 53.38, 51.20, 28.31, 28.10, 27.79, 19.70, 19.07, 18.38, 15.27.

IR (ATR) v(max) = 1696 (s) 1367 (s) 1150 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-(1-hydroxy-2-phenylpropan-2-yl)-2-(2-methylbenzyl)hydrazine-1,2-dicarboxylate (6fr)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 95/5, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 10 min, t_2 = 10.5 min, t_3 = 17 min, t_4 = 22 min. D.r.= 5:1 and e.e.(major diastereoisomer)= 98%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer.

¹**H NMR** (600 MHz, CDCl₃): δ 7.72 – 6.80 (m, 9H), 5.35 – 3.74 (m, 4H), 2.47 – 2.08 (m, 3H), 1.75 – 0.91 (m, 21H).

(S, R_a) -di-tert-butyl (S)-1-(4-(tert-butyl)benzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6g)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=67% (104 mg). Colorless oil. The d.r.and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 13 min, t_2 = 14 min, t_3 = 15 min, t_4 = 18 min. d.r.= 10:1 and e.e.(major diastereoisomer)= 98.6 %. Peaks 1 and 3: minor diastereoisomer; peaks 2 and 4: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{30}H_{42}N_2NaO_5]^+$ 533.2986, found 533.2980 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.96-9.61 (m, 1H), 7.48 – 6.98 (m, 9H), 5.09 – 3.91 (m, 2H), 1.64 – 1.07 (m, 30H).

¹³C NMR (400 MHz, CDCl₃) δ 198.07, 197.51, 196.36, 196.17, 195.69, 155.34, 155.16, 155.12, 154.77, 153.20, 150.47, 150.40, 150.27, 140.03, 139.19, 138.94, 137.13, 133.60, 133.54, 133.08, 129.66, 129.12, 128.61, 128.56, 128.29, 128.26, 128.21, 128.04, 127.88, 127.69, 127.31, 126.05, 125.09, 125.06, 83.21, 82.47, 82.24, 82.08, 81.96, 81.89, 81.77, 81.46, 72.84, 71.60, 71.48, 71.42, 55.90, 55.42, 54.27, 53.56, 34.46, 31.57, 31.34, 28.35, 28.30, 28.23, 27.79, 27.73, 26.90, 26.58, 22.64, 22.55, 19.98, 19.74, 19.14, 18.62, 14.12.

IR (ATR) v(max) = 1695 (s) 1366 (s) 1152 (s) 1129 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-(4-isopropylbenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6h)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=70 % (104 mg). Colorless oil. The d.r.and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 15 min, t_2 = 17 min, t_3 = 18 min, t_4 = 22 min. d.r.= 10:1 and e.e.(major diastereoisomer)= 98.5 %. Peaks 1 and 3: minor diastereoisomer; peaks 2 and 4: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{29}H_{40}N_2NaO_5]^+$ 519.2829, found 519.2823 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 9.75 (m, 1H), 7.42 – 6.98 (m, 9H), 5.08 – 3.96 (m, 2H), 2.86 (m, 1H), 1.84 – 1.10 (m, 27H).

¹³C NMR (400 MHz, CDCl₃) δ 198.09, 197.54, 196.39, 195.72, 156.68, 155.38, 155.20, 155.11, 154.77, 153.18, 148.23, 148.20, 148.07, 140.01, 139.16, 138.93, 137.13, 133.98, 133.90, 133.08, 129.92, 129.36, 128.56, 128.29, 128.26, 128.21, 128.03, 127.87, 127.68, 127.29, 126.75, 126.23, 126.20, 126.05, 82.48, 82.26, 82.11, 81.98, 81.90, 81.79, 81.46, 72.83, 71.61, 71.49, 71.42, 56.86, 55.94, 55.61, 54.44, 53.73, 33.84, 33.75, 29.68, 28.35, 28.29, 28.23, 27.80, 27.74, 26.59, 24.06, 24.00, 23.97, 22.56, 19.99, 19.75.

IR (ATR) v(max) = 1695 (s) 1367 (s) 1152 (s) 1131 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-(naphthalen-1-ylmethyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6i)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=68% (103 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{30}H_{36}N_2NaO_5]^+$ 527.2516, found 527.2508 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 10.04 – 9.43 (m, 1H), 8.20 – 6.65 (m, 12H), 5.38 – 4.28 (m, 2H), 1.71 – 0.76 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 198.13, 196.79, 196.61, 195.71, 155.37, 155.17, 154.88, 154.74, 154.13, 139.06, 138.92, 137.13, 136.35, 133.63, 133.09, 132.66, 132.41, 132.28, 131.88, 129.34, 128.56, 128.38, 128.34, 128.30, 128.19, 128.06, 127.66, 127.47, 126.97, 126.62, 126.33, 125.95, 125.70, 125.59, 125.04, 124.96, 124.84, 124.34, 123.96, 123.40, 83.57, 82.26, 82.18, 82.15, 81.92, 72.85, 71.65, 71.56, 71.07, 69.48, 65.84, 53.78, 52.55, 52.26, 50.18, 29.27, 28.33, 28.27, 27.98, 27.81, 27.65, 27.46, 27.23, 26.60, 19.87, 19.09, 18.90, 18.68, 18.36, 15.28.

IR (ATR) v(max)= 1736 (s) 1690 (s) 1367 (s) 1151 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-(1-hydroxy-2-phenylpropan-2-yl)-2-(naphthalen-1-ylmethyl)hydrazine-1,2-dicarboxylate (6ir)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 90/10, flow rate 1

mL/min, 25 °C, λ = 220 nm: t_1 = 7 min, t_2 = 8 min, t_3 = 11 min, t_4 = 12 min. D.r.= 3:1 and e.e.(major diastereoisomer)= 96%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer. ¹H NMR of alcohol (600 MHz, Chloroform-*d*) δ 7.98 – 6.85 (m, 12H), 5.39 – 3.74 (m, 4H), 1.71 – 0.74 (m, 21H).

(S, R_a) -di-tert-butyl (S)-1-(naphthalen-2-ylmethyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6j)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O=3:1). Yield=66% (100 mg). Colorless oil. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak OD-H column: hexane/*i*-PrOH 98/2, flow rate 0.5 mL/min, 25 °C, λ = 220 nm: t₁ = 13 min, t₂ = 14 min, t₃ = 18 min, t₄ = 21 min. D.r.= 6:1 and e.e.(major diastereoisomer)=>99%. Peaks 2 and 4: minor diastereoisomer; peaks 1 and 3: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{30}H_{36}N_2NaO_5]^+$ 527.2516, found 527.2509 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.93 – 9.62 (m, 1H), 7.86 – 7.12 (m, 12H), 5.35 – 4.22 (m, 2H), 1.84 – 1.12 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 197.32, 196.08, 195.61, 195.46, 156.81, 155.60, 155.45, 155.30, 155.17, 154.76, 154.51, 154.25, 153.18, 139.79, 138.96, 136.04, 135.78, 134.38, 134.17, 134.00, 133.87, 133.02, 132.76, 132.70, 128.61, 128.33, 128.30, 128.03, 127.96, 127.88, 127.78, 127.49, 127.44, 127.40, 126.99, 126.84, 126.13, 126.06, 125.94, 125.81, 83.46, 82.65, 82.44, 82.35, 82.19, 82.14, 82.06, 81.69, 72.76, 71.67, 71.34, 65.84, 57.41, 57.06, 56.64, 56.37, 55.84, 54.60, 53.43, 30.33, 29.70, 29.28, 28.36, 28.29, 28.26, 28.14, 27.84, 27.79, 22.44, 19.73, 19.47, 18.71, 18.16.

IR (ATR) v(max) = 1695 (s) 1367 (s) 1150 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-(4-bromobenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6k)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=70% (112 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{26}H_{36}BrN_2NaO_5]^+$ 555.1465, found 555.1458 $[M+Na]^+$.

¹**H NMR** (400 MHz, CDCl₃) δ 9.86 – 9.52 (m, 1H), 7.45 – 6.60 (m, 9H), 5.01 – 3.94 (m, 2H), 2.10 (s, 3H), 1.65 – 1.06 (m, 18H).

¹³C NMR (400 MHz, CDCl₃) δ 206.76, 196.69, 195.64, 195.10, 156.61, 155.40, 155.31, 155.03, 154.57, 154.30, 154.04, 153.38, 153.04, 139.94, 139.52, 138.69, 136.27, 135.96, 135.82, 135.77, 135.59, 131.30, 131.23, 131.20, 131.13, 130.80, 130.47, 130.18, 129.77, 128.33, 128.15, 127.97, 127.86, 127.41, 127.26, 127.23, 126.10, 121.44, 121.23, 121.13, 120.98, 83.52, 83.33, 82.71, 82.57, 82.48, 82.30, 82.23, 81.84, 72.92, 72.67, 71.66, 71.51, 71.29, 69.43, 56.20, 56.03, 55.77, 55.08, 54.03, 53.80, 30.83, 29.23, 28.26, 28.16, 27.90, 27.84, 27.72, 22.14, 21.62, 19.67, 19.21, 18.76, 18.27. **IR** (ATR) ν(max)= 1697 (s) 1367 (s) 1149 (s) 1127 (s) cm⁻¹.

(S, R_a) -di-tert-butyl 1-(4-bromobenzyl)-2-(1-hydroxy-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6kr)

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on Phenomenex Lux 5u Cellulose-2 column: hexane/i-PrOH 90/10, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 6 min, t_2 = 7 min, t_3 = 9 min, t_4 = 22 min. D.r.= 8.5:1 and e.e.(major diastereoisomer)= 99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major

diastereoisomer. The reported HPLC chromatogram is referred to the large-scale reaction (d.r.= 7:1, e.e.= 95.5%).

¹**H NMR:** (600 MHz, CDCl₃) δ 7.73 – 6.91 (m, 9H), 5.29 – 3.72 (m, 4H), 1.76 – 0.95 (m, 21H).

(S, R_a) -di-tert-butyl (S)-1-(4-cyanobenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6l)

The reaction was carried out following the general procedure, at r.t. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 2:1). Yield=42% (60 mg). Colorless oil. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/*i*-PrOH 90/10, flow rate 1 mL/min, 25 °C, λ = 220 nm: t₁ = 24 min, t₂ = 28 min, t₃ = 31 min, t₄ = 36 min. D.r.= 4:1 and e.e.(major diastereoisomer)= 98%. Peaks 2 and 4: minor diastereoisomer; peaks 1 and 3: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{33}N_3NaO_5]^+$ 502.2312, found 502.2305 $[M+Na]^+$. ¹**H NMR** (400 MHz, CDCl₃) δ 9.87 – 9.54 (m, 1H), 7.55 – 6.72 (m, 9H), 5.02 – 4.02 (m, 2H), 1.75 – 1.09 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 196.39, 196.02, 195.17, 194.89, 194.61, 156.61, 155.51, 154.98, 154.45, 153.03, 142.47, 142.03, 139.04, 138.38, 138.09, 131.94, 131.90, 131.77, 129.85, 129.26, 128.90, 128.68, 128.50, 128.33, 128.18, 127.76, 127.68, 127.43, 127.39, 127.22, 126.25, 118.66, 111.17, 110.92, 83.90, 83.08, 82.86, 82.75, 82.64, 82.60, 82.27, 72.69, 71.90, 71.65, 71.35, 69.47, 65.81, 57.06, 56.37, 55.99, 54.88, 53.78, 31.71, 30.30, 29.25, 28.26, 28.17, 28.07, 28.01, 27.95, 27.75, 21.58, 19.39, 18.59, 15.26.

IR (ATR) v(max)= 2229 (s) 1697 (s) 1368 (s) 1149 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-(3-nitrobenzyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (6m)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 2:1). Yield=65% (98 mg). Colorless oil. The d.r. and e.e. were determined by HPLC analysis on a Phenomenex Lux 5u Cellulose-2 column: hexane/*i*-PrOH 90/10, flow rate 1 mL/min, 25 °C, λ = 220 nm: t₁ = 10 min, t₂ = 11 min, t₃ = 12 min, t₄ = 15 min. D.r.= 6:1 and e.e.(major diastereoisomer)= 98%. Peaks 2 and 3: minor diastereoisomer; peaks 1 and 4: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{26}H_{33}N_3NaO_7]^+$ 522.2211, found 522.2202 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 9.92 – 9.56 (m, 1H), 8.11 – 7.11 (m, 9H), 5.02 – 4.06 (m, 2H), 1.77 – 1.15 (m, 21H).

¹³C NMR (400 MHz, CDCl₃) δ 195.99, 195.53, 194.90, 194.41, 156.55, 156.24, 155.72, 155.51, 155.33, 155.03, 154.86, 154.52, 154.23, 154.02, 153.02, 148.20, 148.00, 139.12, 139.02, 138.89, 138.78, 138.31, 138.13, 135.43, 135.26, 135.05, 134.15, 133.71, 129.08, 128.93, 128.52, 128.41, 128.36, 128.23, 128.04, 127.79, 127.34, 127.19, 126.85, 126.31, 125.33, 123.93, 123.52, 123.28, 123.01, 122.34, 122.13, 122.08, 83.97, 83.07, 82.86, 82.78, 82.52, 72.92, 72.64, 71.80, 71.59, 71.29, 56.45, 55.73, 54.48, 31.54, 30.29, 29.24, 28.24, 28.15, 28.09, 27.93, 27.76, 25.21, 22.61, 21.49, 21.13, 19.21, 18.58, 18.42, 18.22, 14.09.

IR (ATR) v(max) = 1698 (s) 1528 (s) 1368 (s) 1346 (s) 1148 (s) cm⁻¹.

(S, R_a) -diisopropyl 1-benzyl-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (7)

The reaction was carried out following the general procedure. Reaction time: 48h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 56% (48 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{24}H_{30}N_2NaO_5]^+$ 449.2047, found 449.2047 [M+Na]⁺. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC: hexane/*i*-PrOH 90/10, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 16 min, t_2 = 16 min, t_3 = 23 min, t_4 = 40 min. D.r.= 6.4:1 and e.e.(major)=>99%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer. ¹H NMR (400 MHz, CDCl₃) δ 10.00 – 9.50 (m, 1H), 7.59 – 6.93 (m, 10H), 5.21 – 4.23 (m, 4H), 1.81 – 0.74 (m, 15H).

¹³C NMR (101 MHz, CDCl₃) δ 197.13, 196.21, 195.79, 157.22, 156.58, 156.45, 156.27, 155.60, 155.34, 154.89, 145.91, 141.01, 138.77, 138.63, 136.60, 136.35, 136.29, 129.56, 129.15, 128.49, 128.44, 128.32, 128.29, 128.24, 128.16, 127.91, 127.80, 127.65, 127.52, 127.38, 127.21, 127.09, 126.98, 126.93, 126.17, 126.03, 125.36, 72.89, 72.05, 71.99, 71.87, 71.32, 71.01, 70.86, 70.75, 70.29, 65.23, 56.20, 56.02, 55.21, 29.68, 25.20, 22.20, 22.07, 21.92, 21.82, 21.46, 21.31, 20.27, 19.86, 19.61. **IR** (ATR) ν (max)= 1699 (s) 1374 (s) 1105 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-allyl-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (8)

The reaction was carried out following the general procedure, at r.t. Reaction time: 6 days. The crude mixture was purified by flash column chromatography (hexane: $Et_2O = 3:1$). Yield=40% (50 mg). Colorless oil.

HRMS-ESI-ORBITRAP (+): calculated for [C₂₂H₃₂N₂NaO₅]⁺ 427.2203, found 427.2202 [M+Na]⁺. ¹H NMR (400 MHz, CDCl₃) δ 9.93 – 9.61 (m, 1H), 7.60 – 7.18 (m, 5H), 6.07 – 5.65 (m, 1H), 5.20 – 4.90 (m, 2H), 4.27 – 3.64 (m, 2H), 1.69 – 1.37 (m, 18H), 1.27 – 1.11 (m, 3H). ¹³C NMR (400 MHz, CDCl₃) δ 197.07, 196.38, 195.87, 155.36, 154.97, 154.86, 154.60, 153.20, 138.94, 138.66, 133.74, 133.58, 133.23, 128.22, 128.09, 127.78, 127.63, 127.41, 126.99, 126.90, 126.12, 118.11, 117.84, 117.57, 83.22, 82.58, 82.38, 82.09, 81.73, 72.73, 71.61, 71.47, 56.17, 55.01,

(S, R_a) -di-tert-butyl 1-allyl-2-(1-hydroxy-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (8r)

54.20, 30.30, 29.67, 28.32, 28.21, 28.10, 28.07, 27.70, 22.39, 20.50, 20.07.

The reaction was carried out following the general reduction procedure. The d.r. and e.e. were determined by HPLC analysis on Daicel Chiralpak IC column: hexane/i-PrOH 97.5/2.5, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 12 min, t_2 = 13 min, t_3 = 22 min, t_4 = 46 min. D.r.= 6:1 and e.e.(major diastereoisomer)= 96%. Peaks 1 and 2: minor diastereoisomer; peaks 3 and 4: major diastereoisomer. The reported HPLC chromatogram is referred to the reaction with the second step at -5°C (d.r.= 15:1, e.e.>99%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 6.97 (m, 6H), 6.18 – 3.43 (m, 8H), 1.92 – 0.86 (m, 21H). **IR** (ATR) ν (max)= 3406 (br,m) 1715 (s) 1367 (s) 1144 (s) 1069 (s) cm⁻¹.

(S, R_a) -di-tert-butyl (S)-1-(2-(tert-butoxycarbonyl)allyl)-2-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (9)

The reaction was carried out following the general procedure. Reaction time: 72h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 3:1). Yield=40% (60 mg). Colorless oil. The d.r. and e.e. were determined by HPLC analysis on a Daicel Chiralpak IC column: hexane/i-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 13 min, t_2 = 14 min, t_3 = 15 min, t_4 = 17 min. D.r.= 4.7:1 and e.e.(major diastereoisomer)= 90%. Peaks 1 and 4: minor diastereoisomer; peaks 2 and 3: major diastereoisomer.

HRMS-ESI-ORBITRAP (+): calculated for $[C_{27}H_{40}N_2NaO_7]^+$ 527.2728, found 527.2717 [M+Na]⁺. ¹**H NMR** (400 MHz, CDCl₃) δ 9.89 – 9.59 (m, 1H), 7.60 – 7.17 (m, 5H), 6.20 – 3.56 (m, 4H), 1.84 – 1.07 (m, 30H).

¹³C NMR (400 MHz, CDCl₃) δ 197.19, 195.30, 194.05, 193.72, 165.22, 155.71, 155.43, 154.69, 154.58, 154.36, 152.88, 138.22, 137.10, 136.25, 136.16, 135.61, 135.49, 133.07, 128.54, 128.51, 128.34, 128.27, 127.94, 127.37, 127.09, 126.94, 126.33, 126.01, 125.85, 125.34, 83.55, 83.15, 82.95, 82.81, 82.42, 82.07, 81.58, 81.02, 80.88, 80.81, 72.07, 71.99, 71.70, 54.38, 54.06, 53.01, 31.54, 29.65, 29.24, 28.19, 28.11, 28.02, 28.00, 27.93, 27.73, 26.57, 22.61, 19.62, 19.48, 18.71, 17.14, 17.01, 14.08. **IR** (ATR) ν (max)= 1702 (s) 1367 (s) 1143 (s) cm⁻¹.

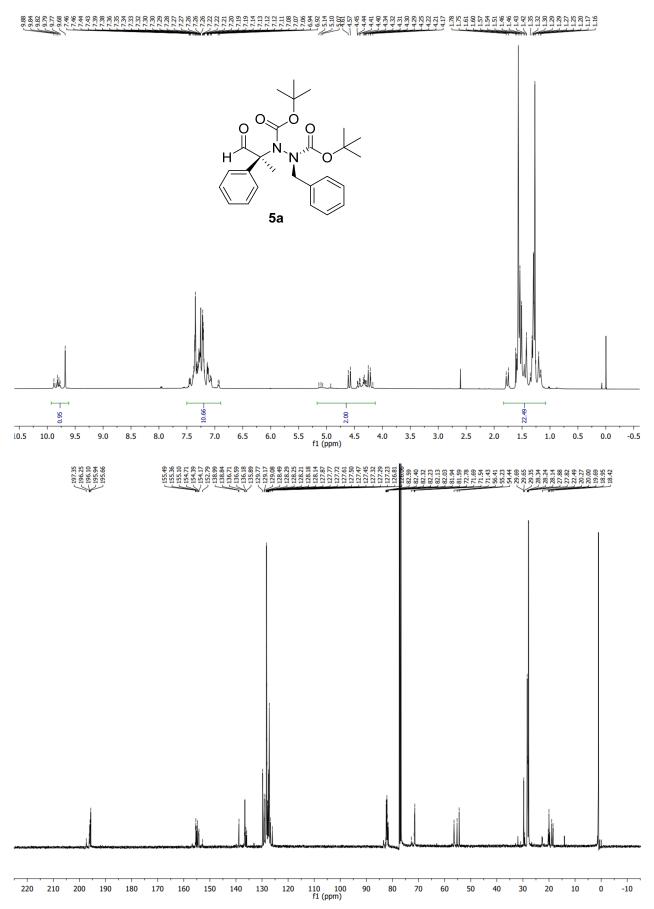
(S, R_a) -di-tert-butyl 1-(2-([1,1'-biphenyl]-4-yl)-1-oxopropan-2-yl)-2-(4-bromobenzyl)hydrazine-1,2-dicarboxylate (10ek)

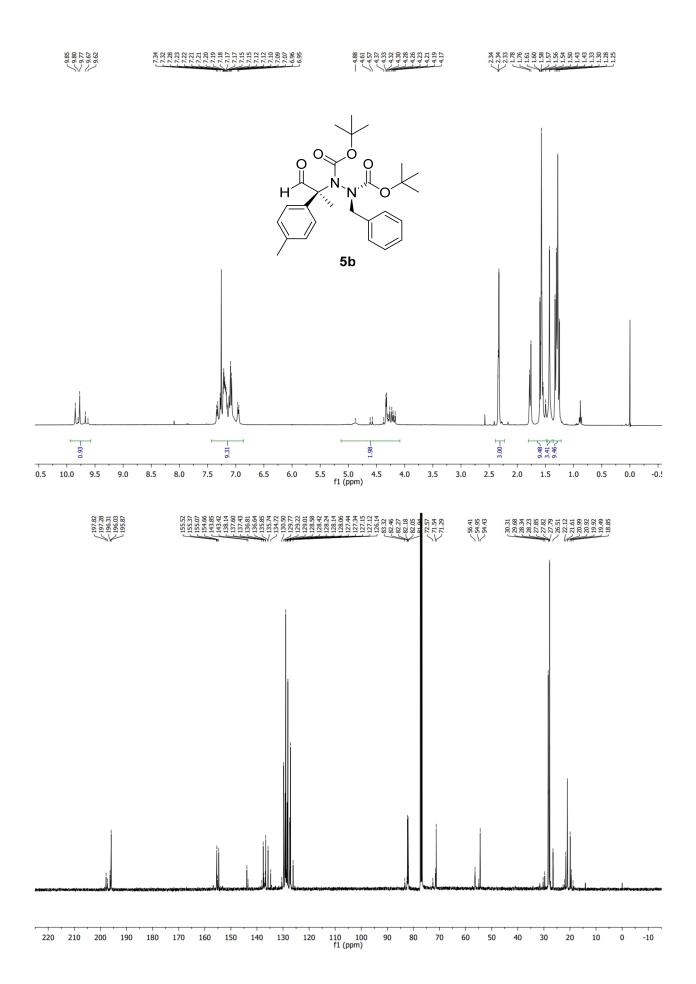
The reaction was carried out following the general procedure. Reaction time: 72h. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 64% (117 mg). White solid.

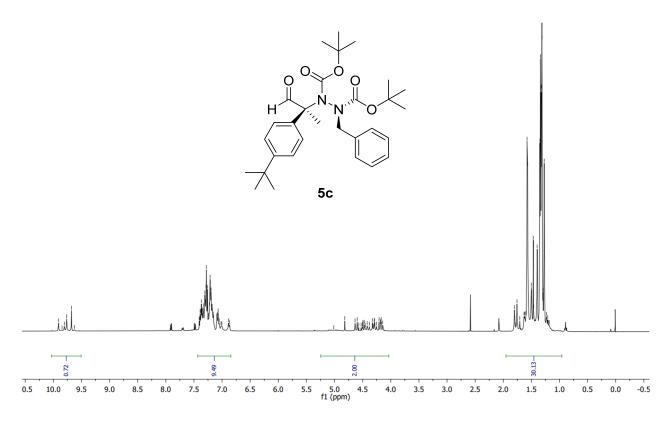
HRMS-ESI-ORBITRAP (+): calculated for $[C_{32}H_{37}BrN_2NaO_5]^+$ 631.1778, found 631.1775 $[M+Na]^+$.

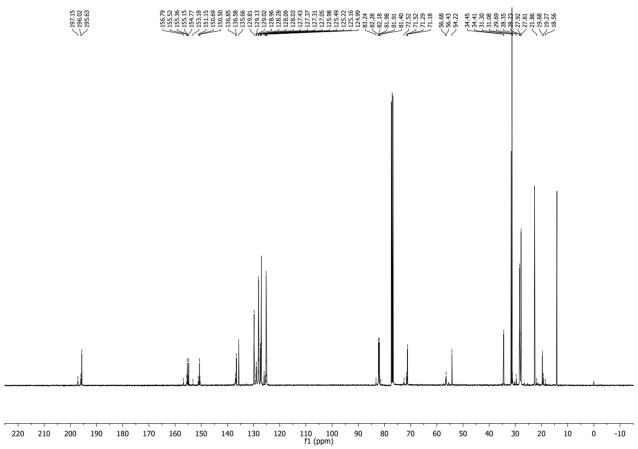
¹**H NMR** (400 MHz, CDCl₃) δ 10.00 – 9.62 (m, 1H), 7.82 – 6.68 (m, 13H), 5.06 – 3.97 (m, 2H), 1.91 – 1.13 (m, 21H).

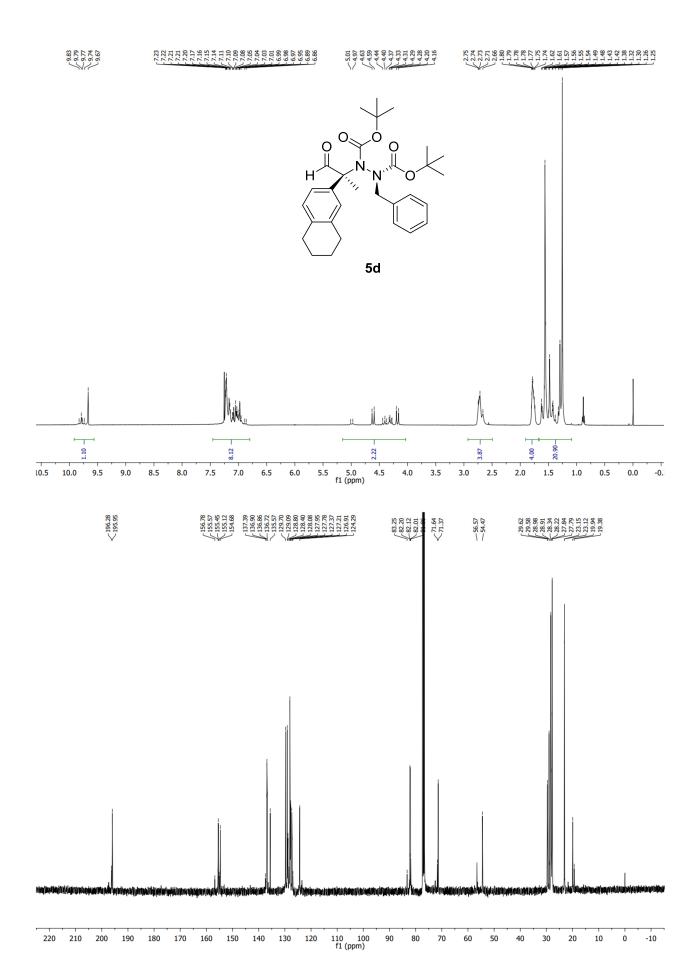
¹³C NMR (101 MHz, CDCl₃) δ 195.78, 195.57, 195.16, 155.64, 155.45, 155.12, 154.64, 154.31, 154.07, 141.08, 140.82, 140.41, 140.29, 140.17, 137.61, 135.90, 135.61, 134.81, 134.65, 131.26, 131.21, 131.17, 130.48, 129.76, 128.89, 128.81, 127.99, 127.81, 127.68, 127.64, 127.46, 127.11, 127.08, 127.03, 126.91, 126.75, 121.51, 121.20, 121.05, 82.76, 82.66, 82.44, 82.30, 81.99, 71.43, 71.23, 56.34, 55.31, 54.29, 30.91, 29.68, 28.35, 28.15, 27.98, 27.93, 19.87, 19.70, 18.85, 18.42. **IR** (ATR) ν(max)= 1698 (s) 1366 (s) 1152 (s) cm⁻¹.

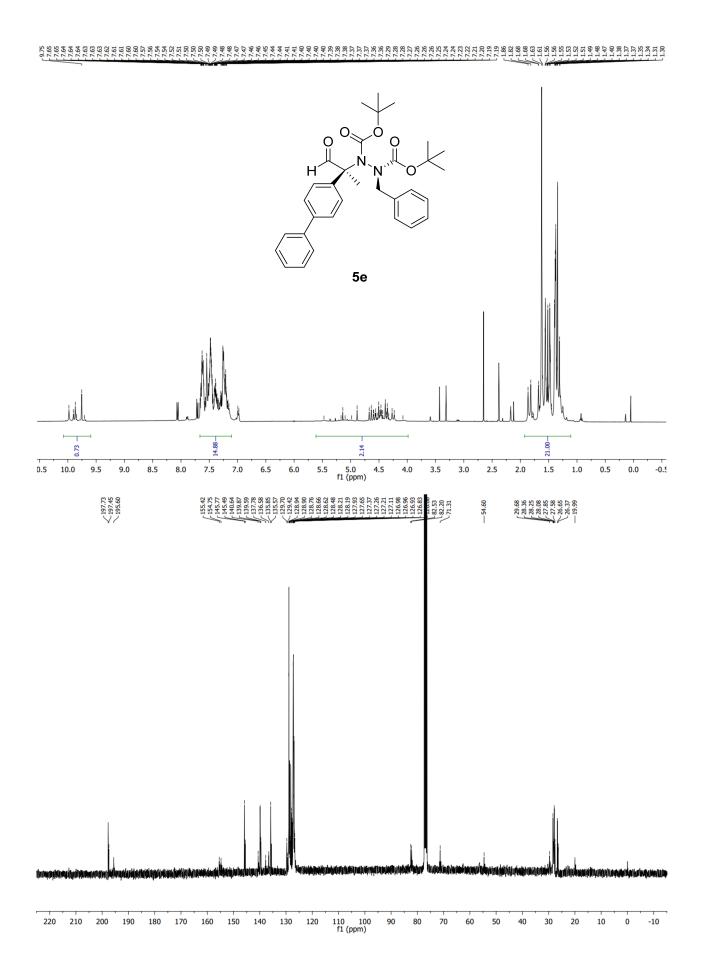

(S, R_a) -di-tert-butyl 1-(2-([1,1'-biphenyl]-4-yl)-1-hydroxypropan-2-yl)-2-<math>(4-bromobenzyl)hydrazine-1,2-dicarboxylate (10ekr)

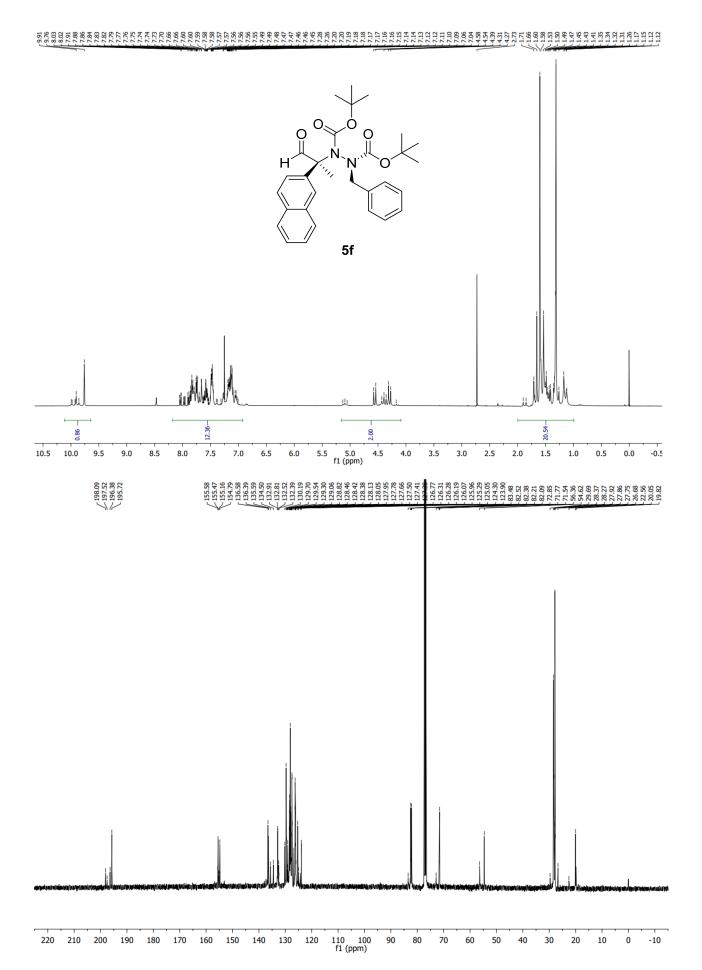

The reaction was carried out following the reported one-pot procedure. The crude mixture was purified by flash column chromatography (hexane:Et₂O = 8:2). Yield= 64% (117 mg). White solid.

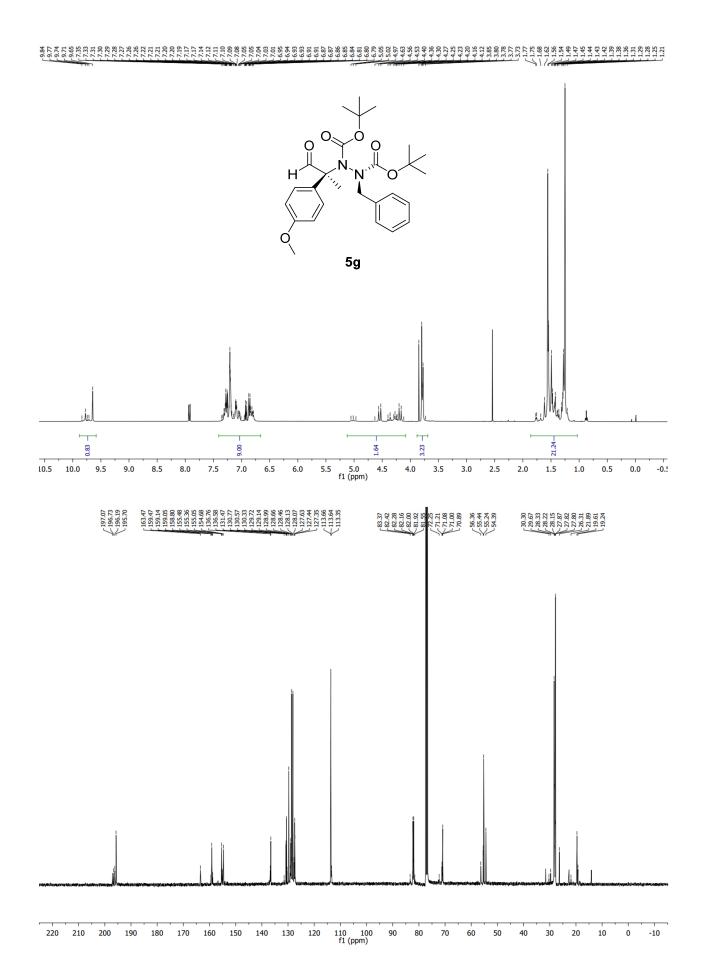

The d.r. and e.e. were determined by HPLC analysis on a Phenomenex Lux 5u Cellulose-2 column: hexane/*i*-PrOH 98/2, flow rate 1 mL/min, 25 °C, λ = 220 nm: t_1 = 25 min, t_2 = 42 min, t_3 = 78 min, t_4 = 99 min. D.r.= 8:1 and e.e.(major diastereoisomer)= >99%. Peaks 1 and 2: major diastereoisomer; peaks 3 and 4: minor diastereoisomer.

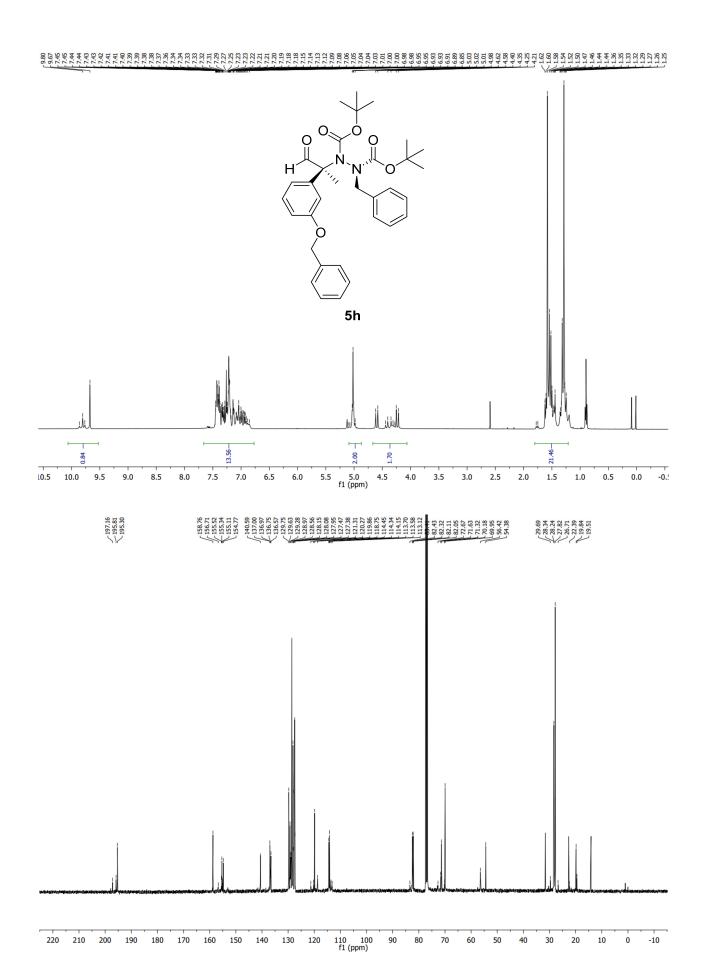

¹H NMR (400 MHz, CDCl₃) δ 8.08 – 6.80 (m, 13H), 5.23 – 3.15 (m, 4H), 1.89 – 0.96 (m, 21H).

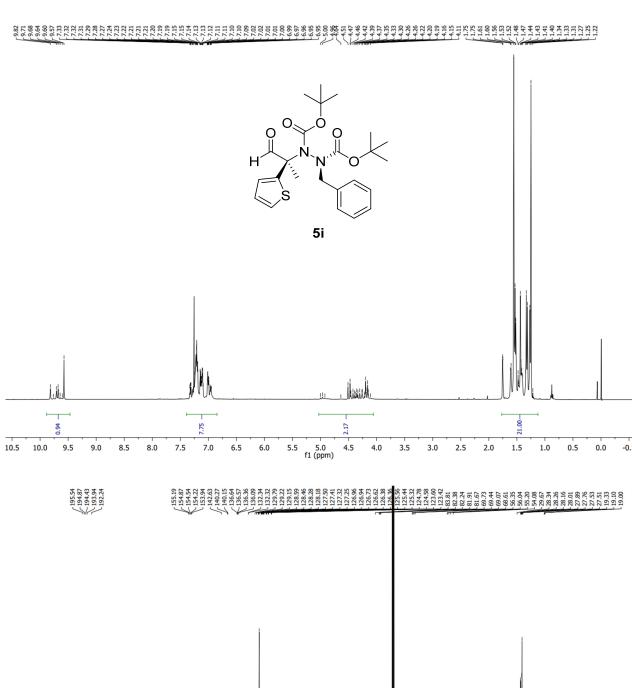

NMR traces

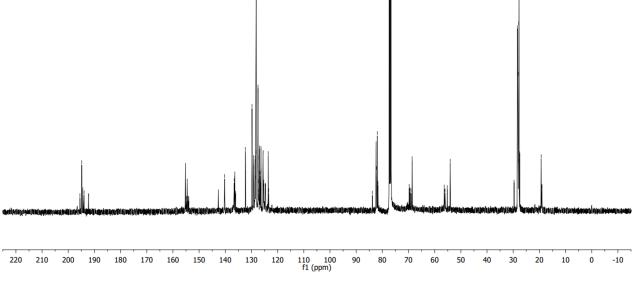


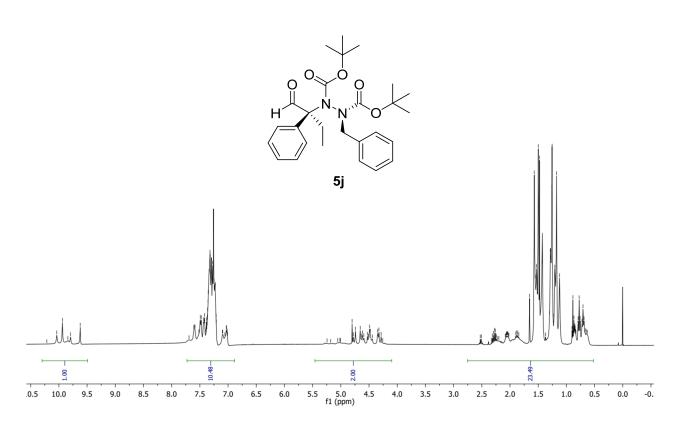


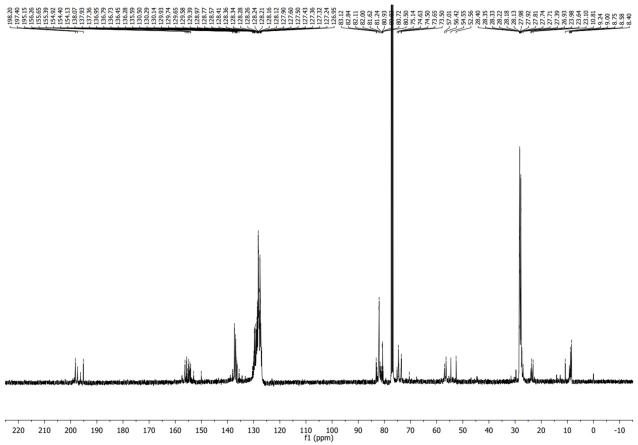


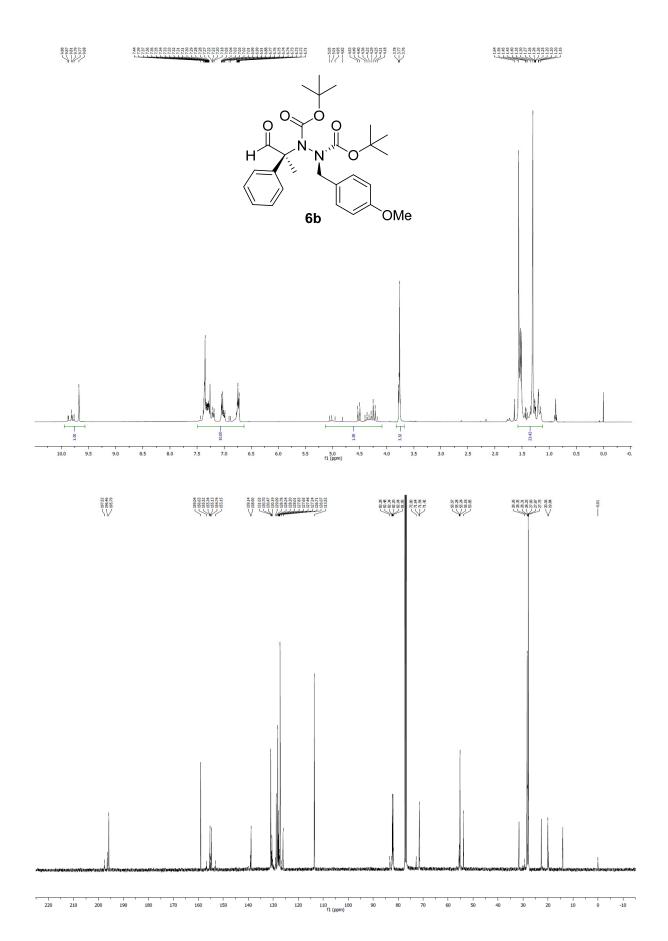


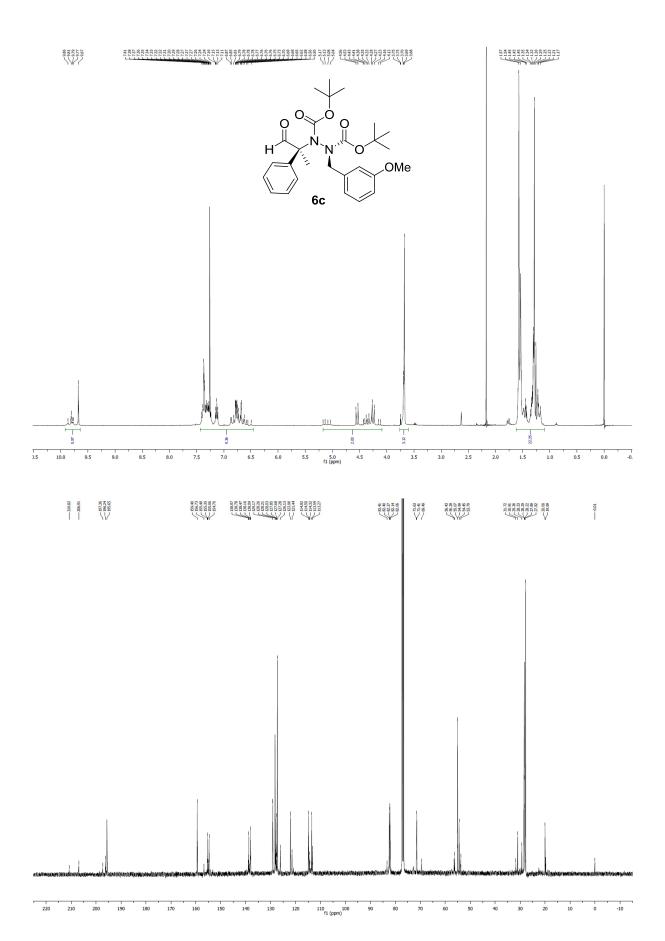


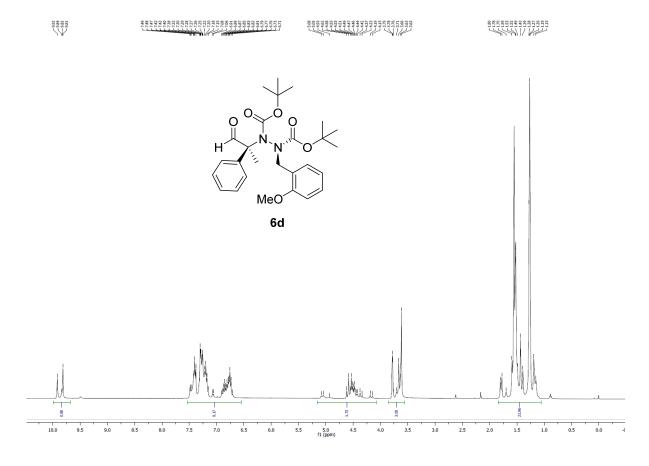


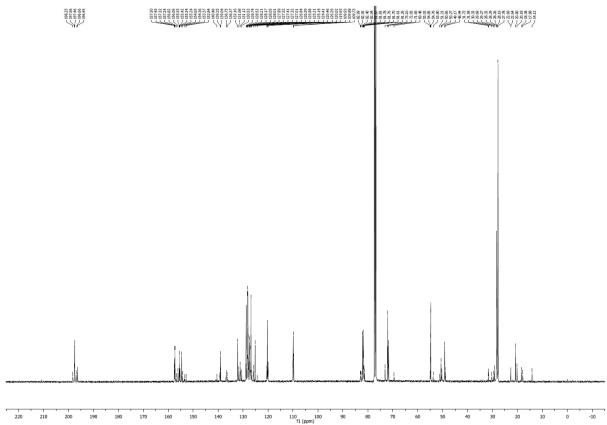


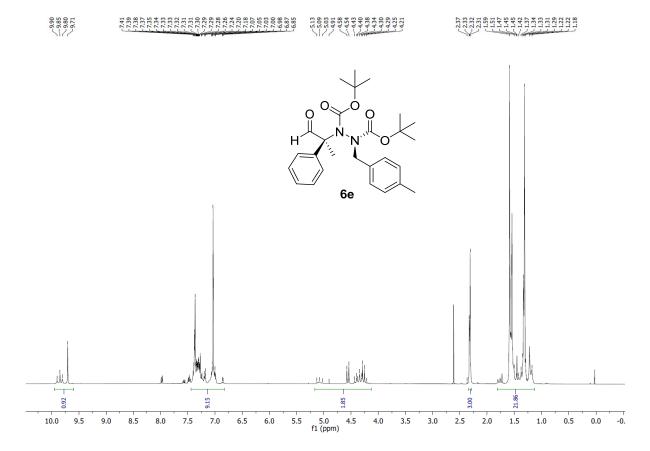


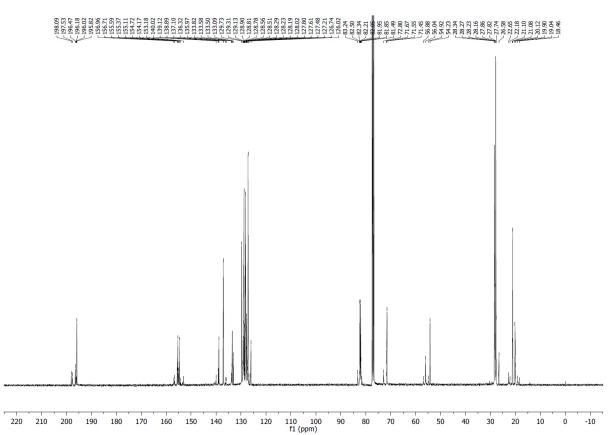


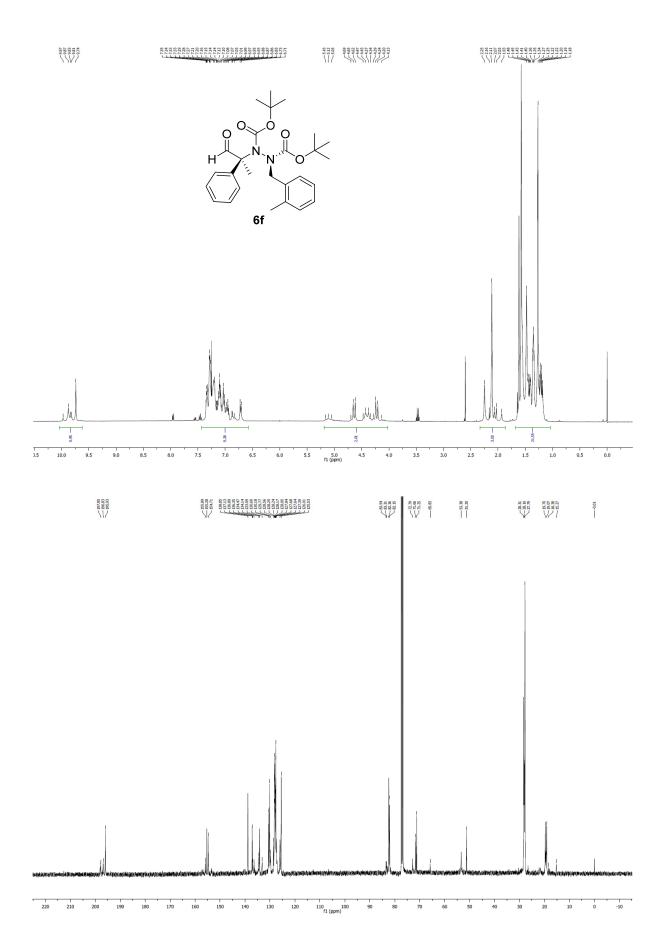


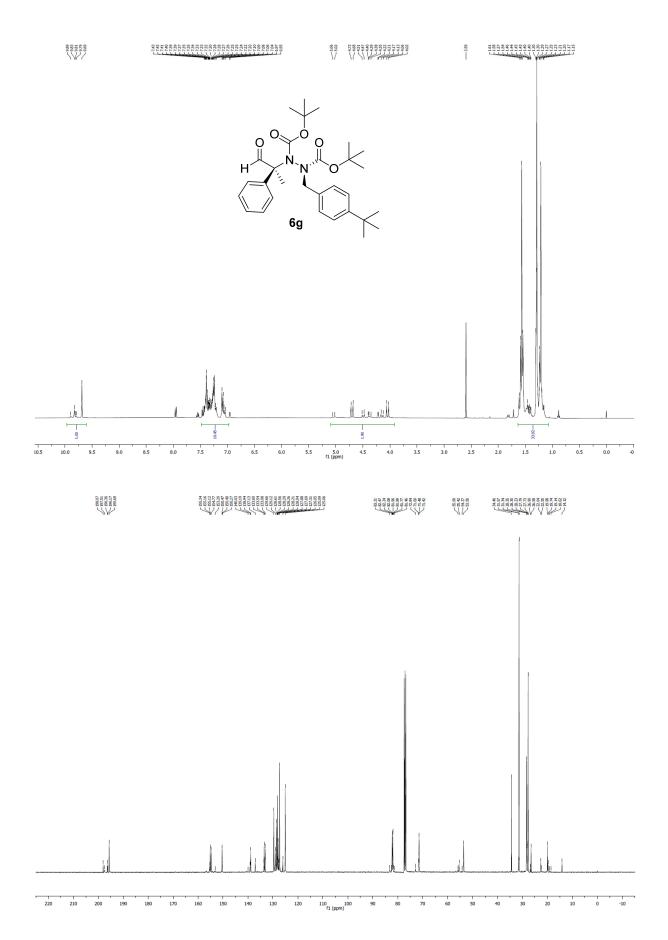


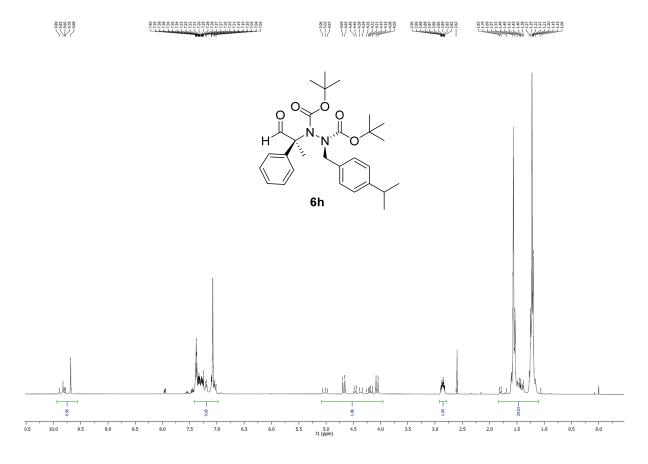


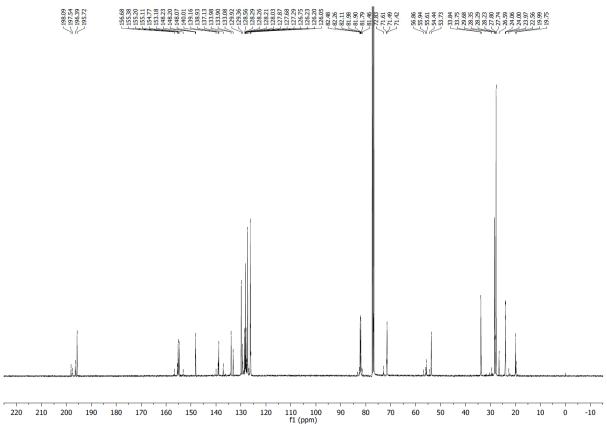


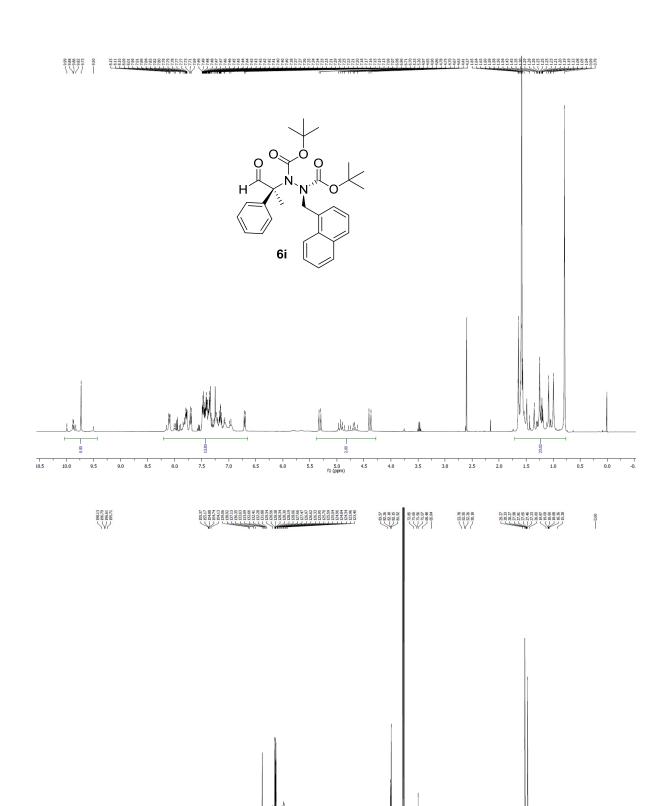


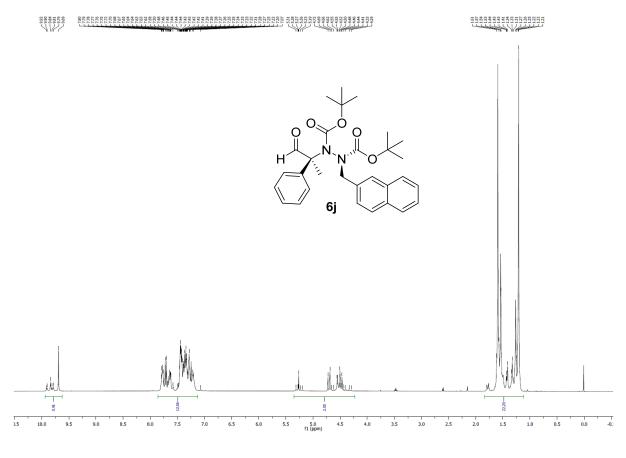


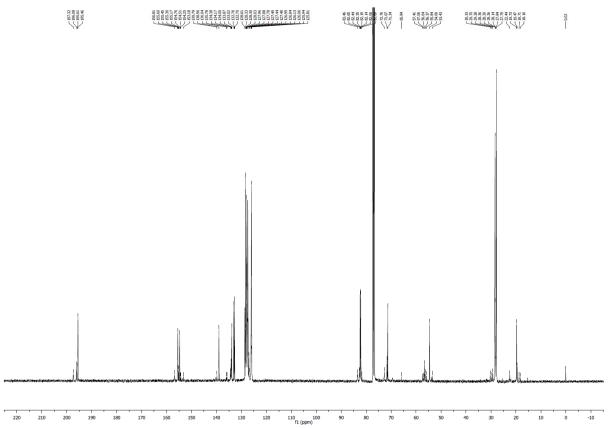


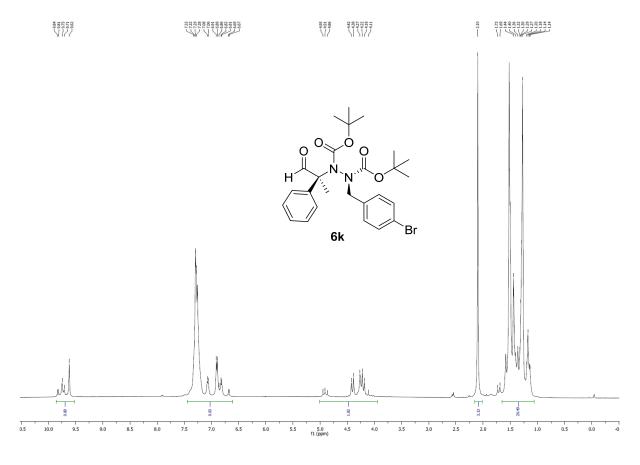


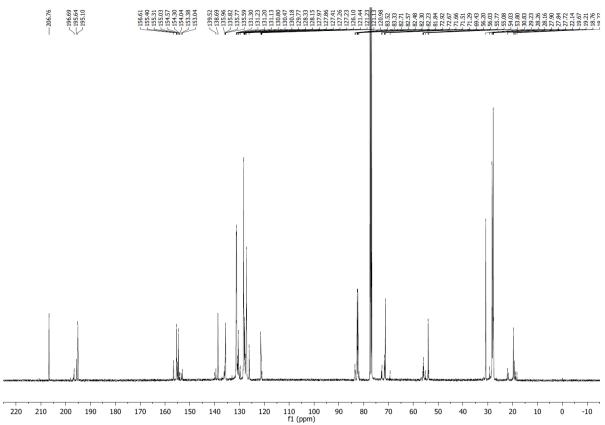


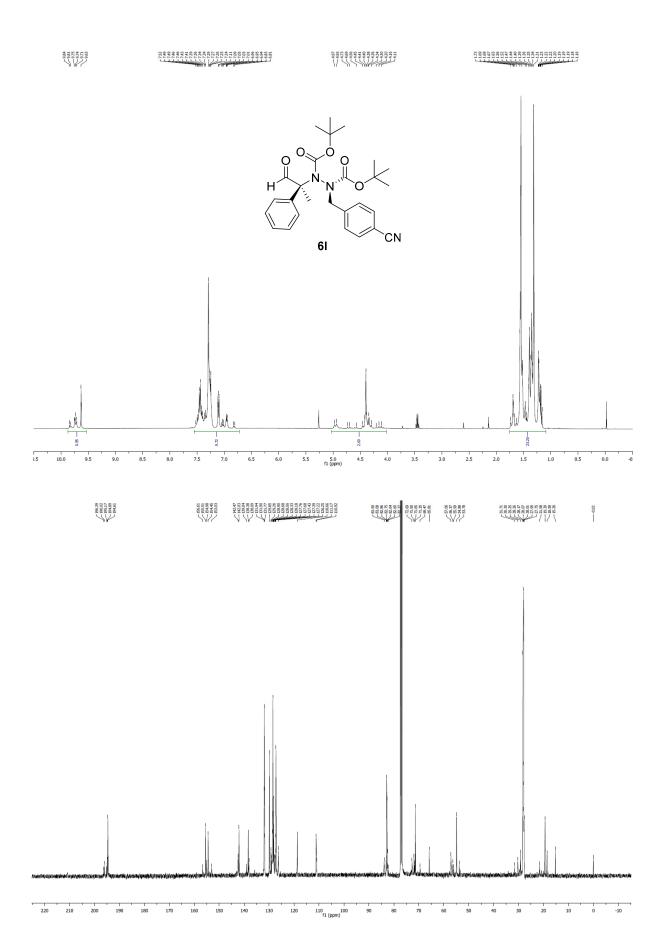


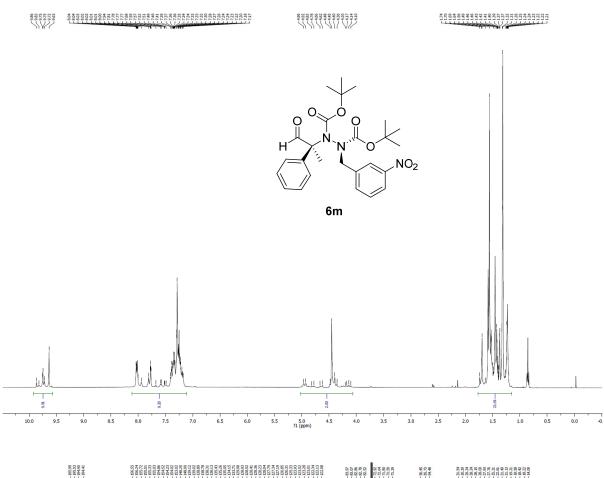


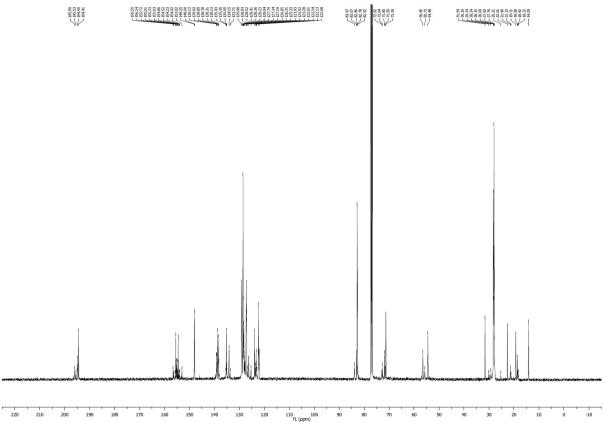


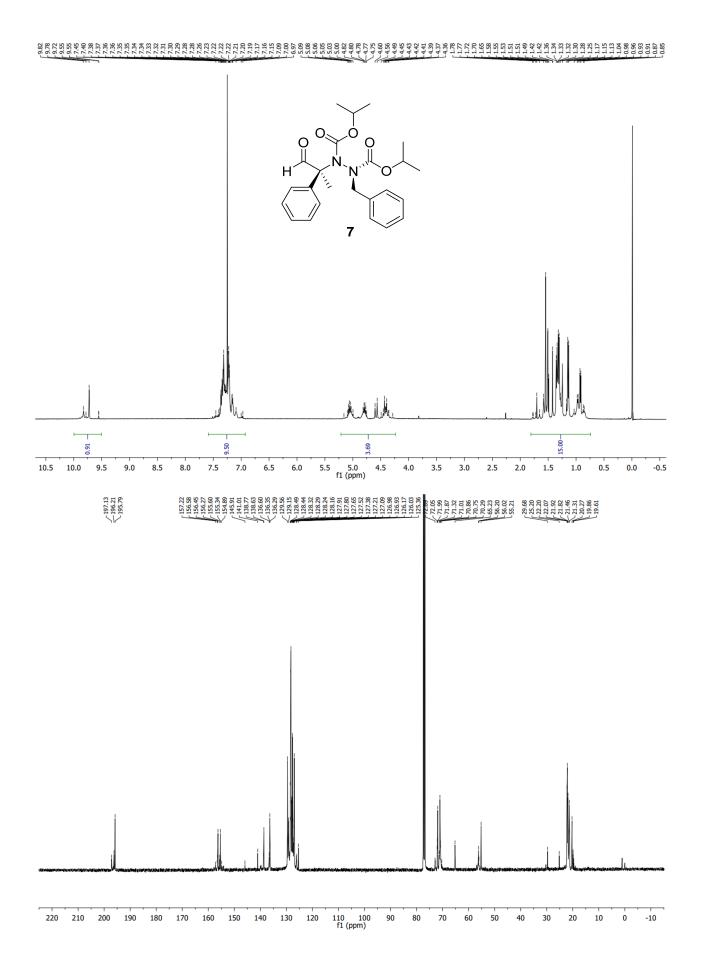


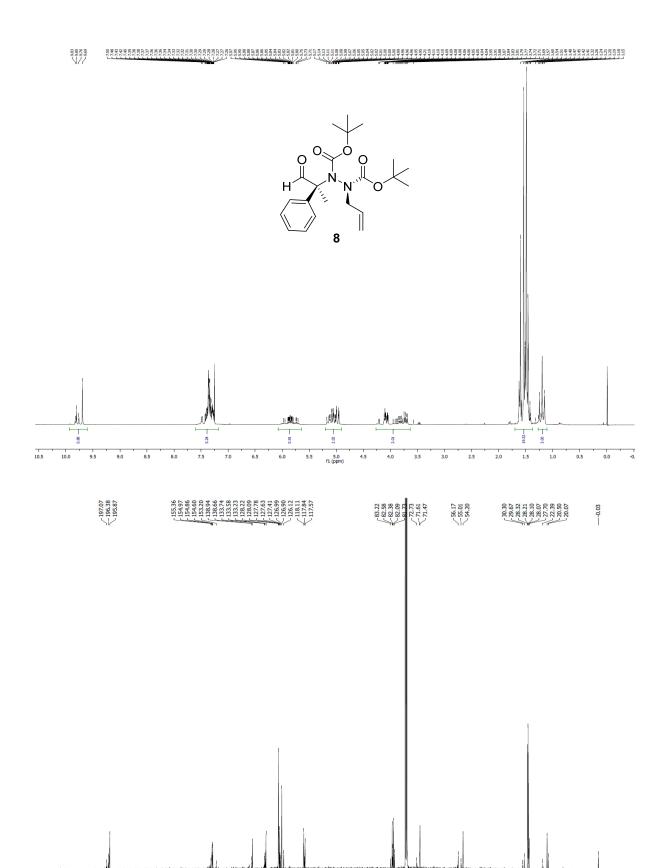


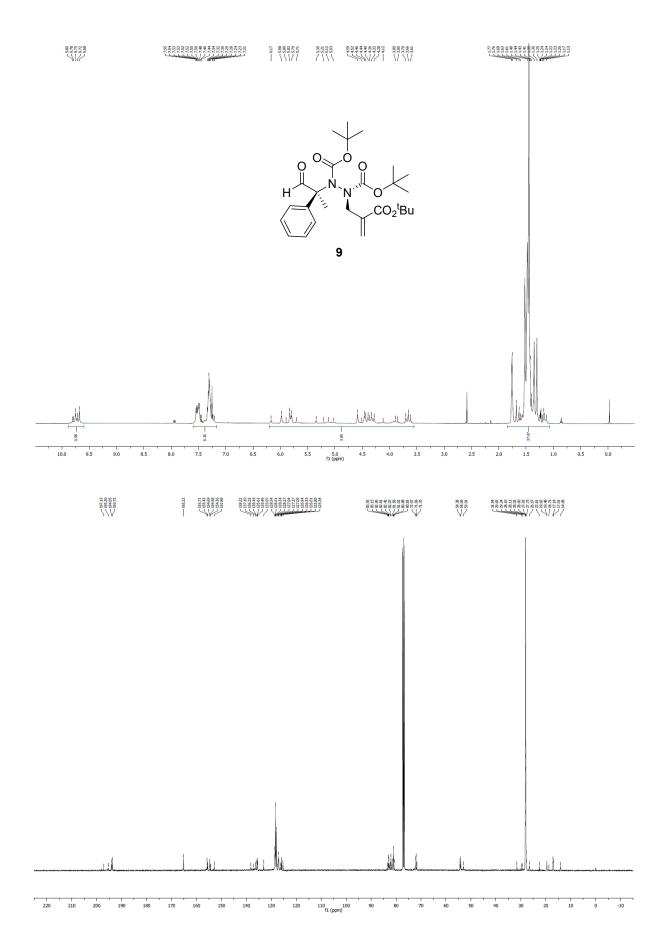


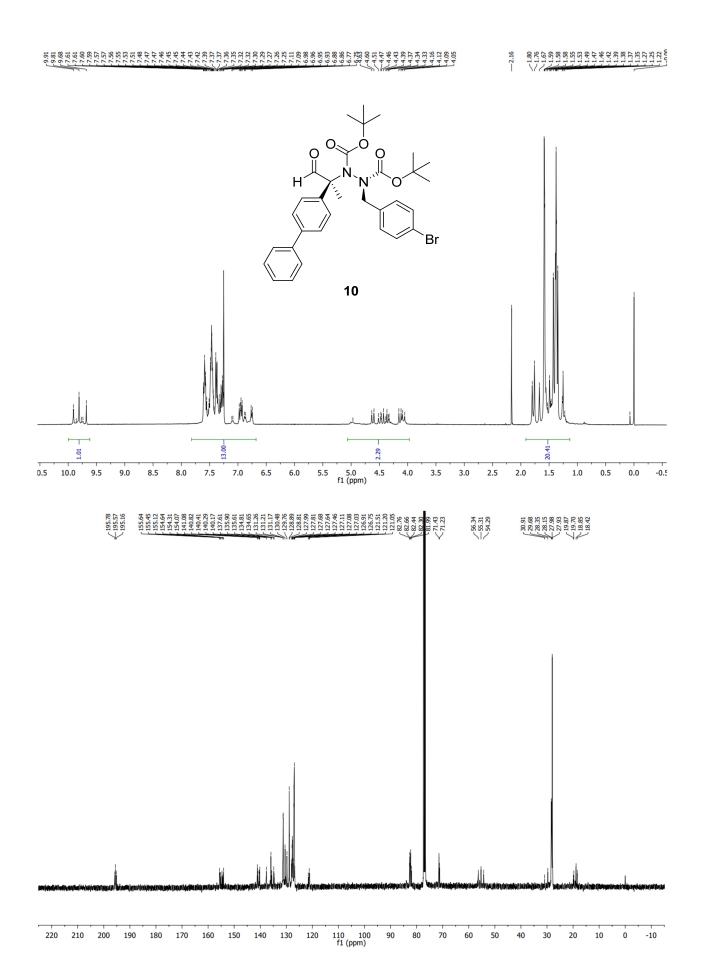


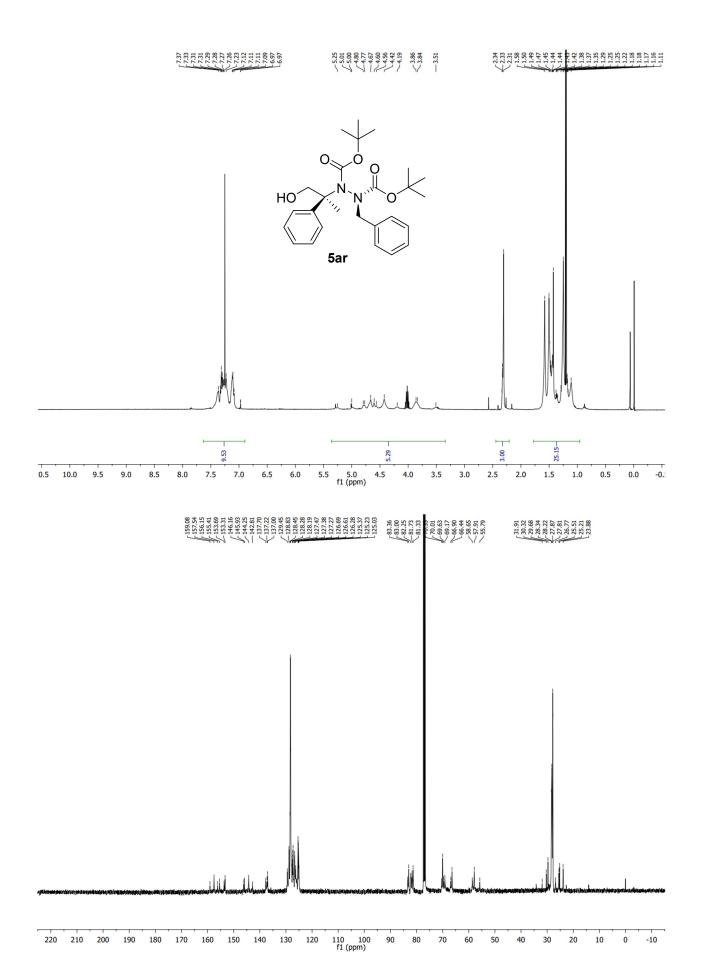


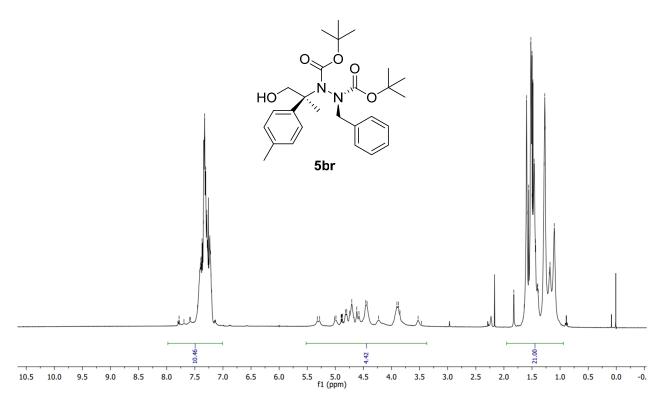


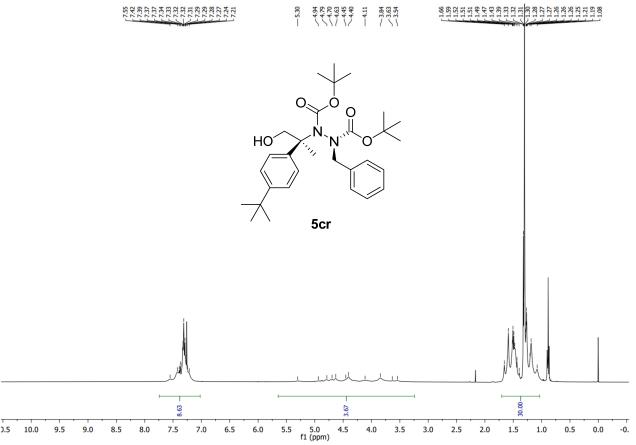


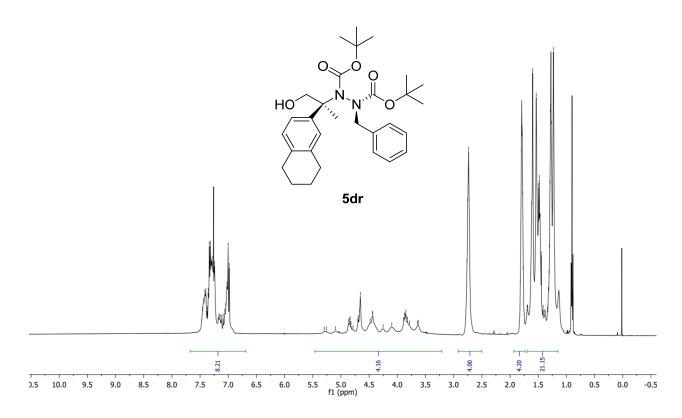

110 100 f1 (ppm)

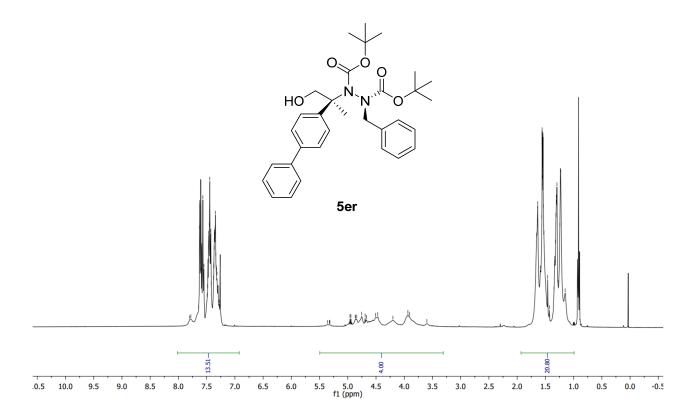

220 210 200

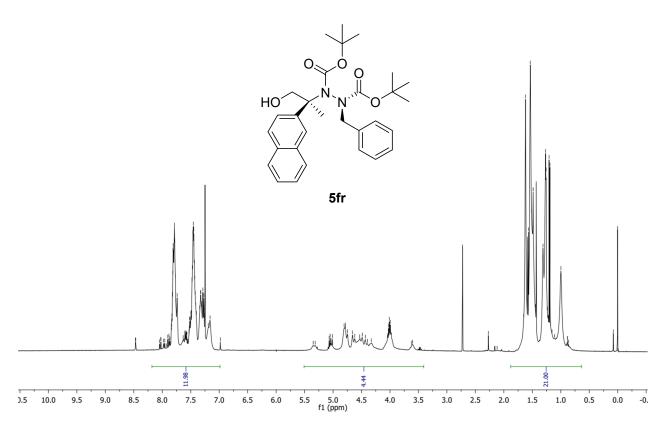

180 170

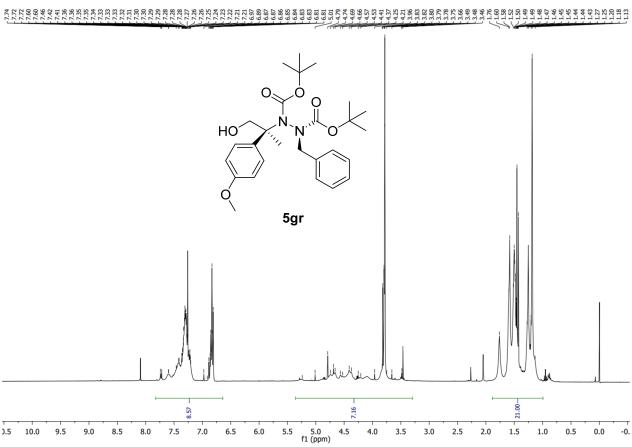

160 150

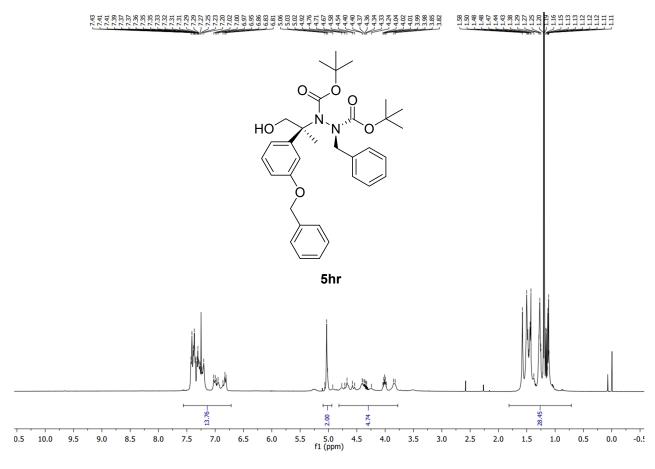

140 130

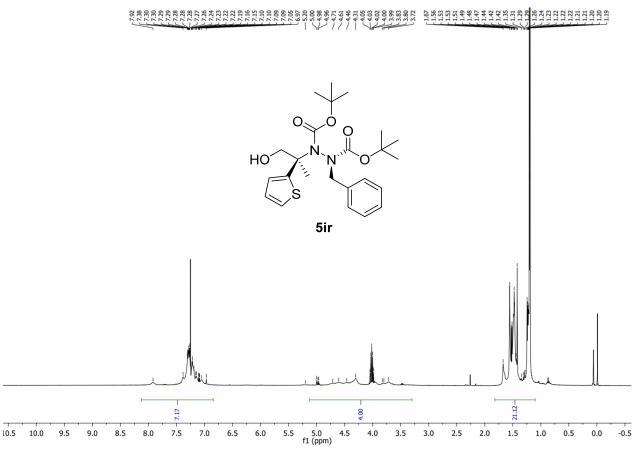


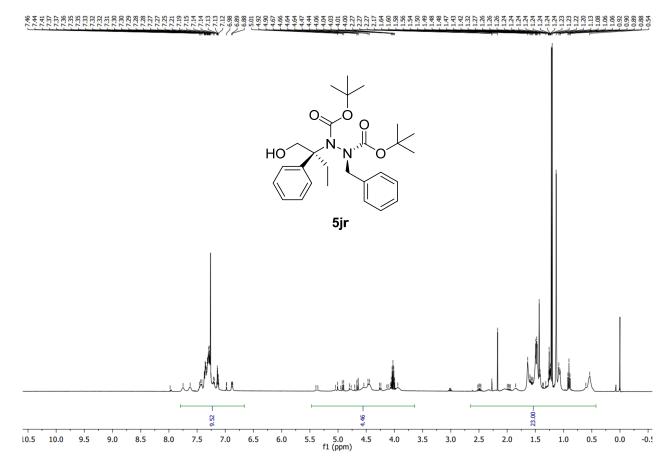


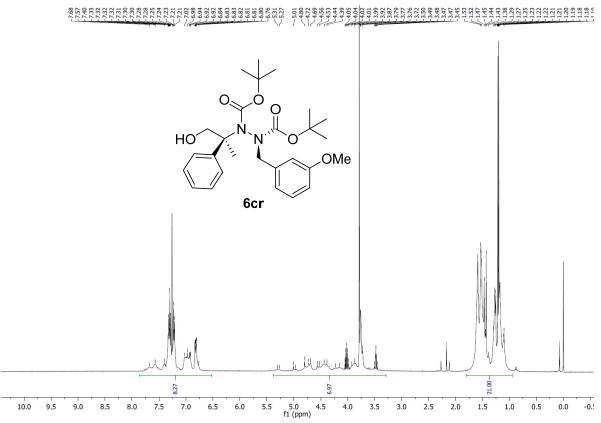


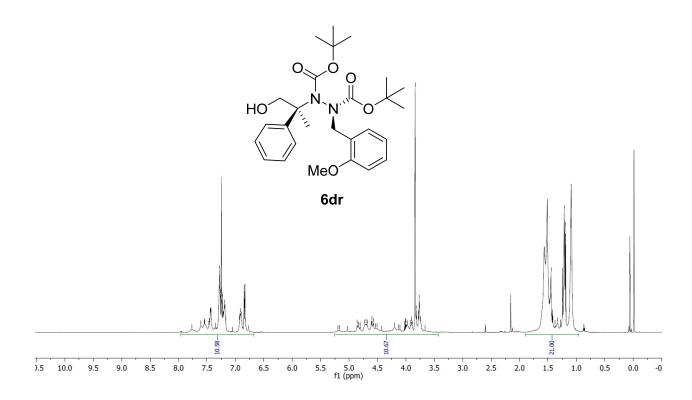


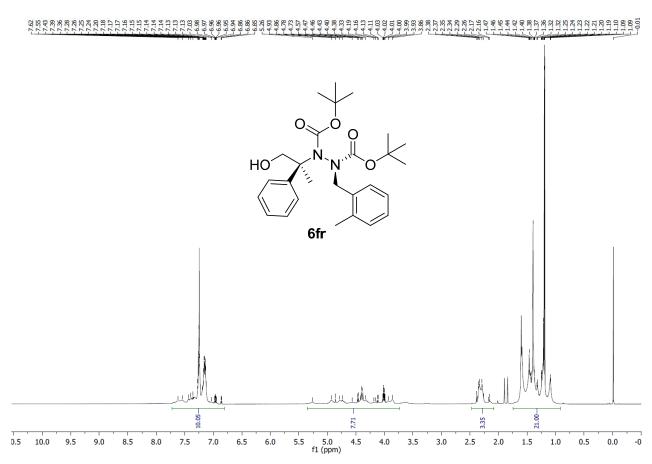


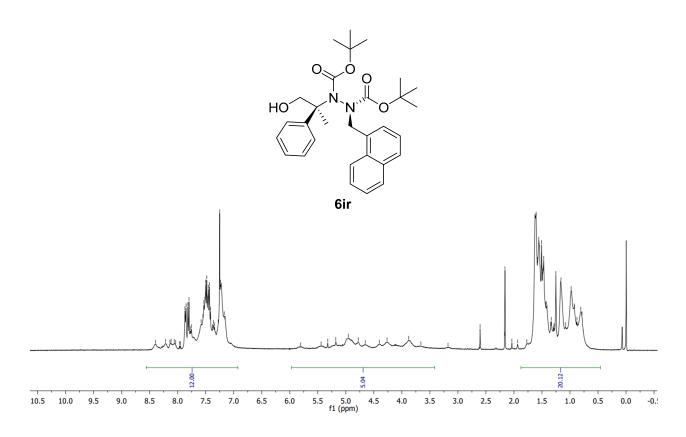


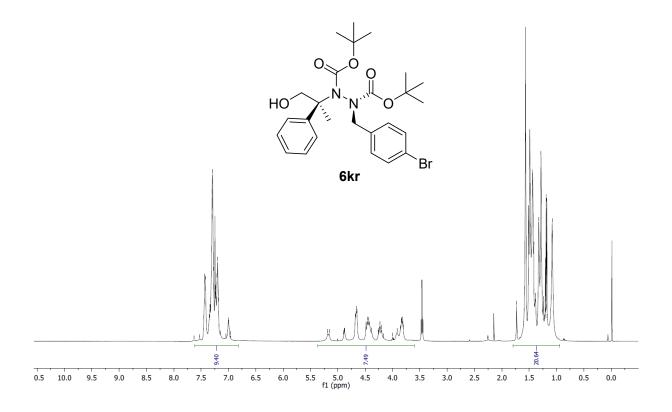


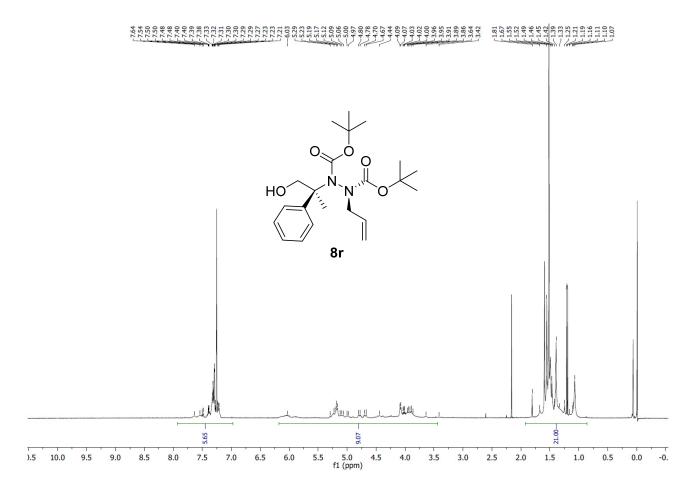


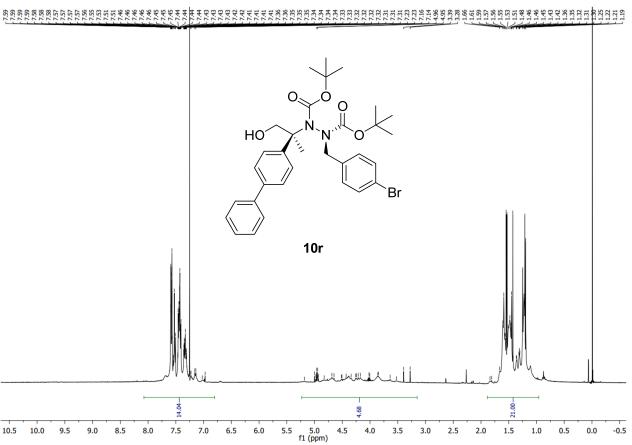











8.88 8.80 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

25.5

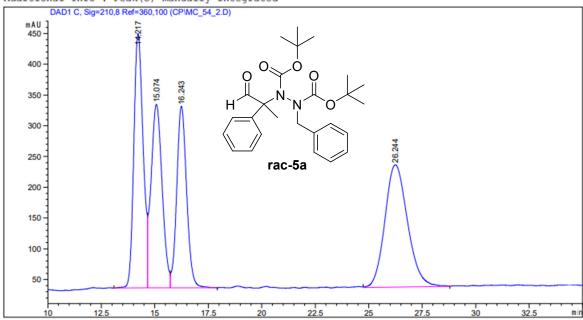
HPCL traces

Data File C:\CHEM32\1\DATA\CP\MC 54 2.D

Sample Name: MC 54 2

Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 23/02/2021 13:39:21

: C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method Last changed : 23/02/2021 13:31:10 by Chiara (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 24/02/2021 18:09:49 by Chiara (modified after loading)

: MC_54_2, 1.0 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	14.217	BV	0.4660	1.25196e4	412.61871	26.4103	
2	15.074	VV	0.5484	1.07350e4	297.93188	22.6456	
3	16.243	VB	0.5045	9504.39063	294.48352	20.0496	
4	26.244	VV	1.1159	1.46453e4	198.70433	30.8945	

4.74044e4 1203.73845 Totals :

Sample Name: GC_334.D

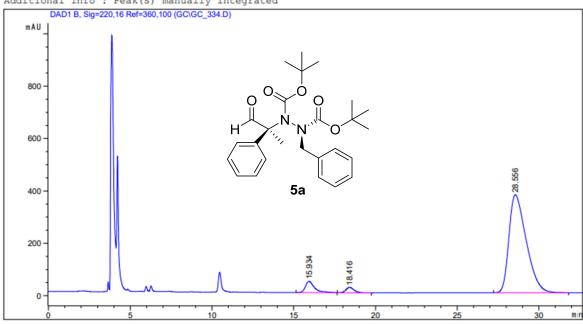
Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 10/12/2021 15:04:47

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 10/12/2021 14:42:19 by Chiara


(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 18/05/2022 15:43:08 by Giovanni

(modified after loading)

Sample Info : GC_334, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.934	BB	0.5672	1646.84863	42.95967	5.5226
2	18.416	BB	0.5263	704.22192	20.42389	2.3616
3	28.556	BB	1.1208	2.74691e4	374.05396	92.1158

Totals: 2.98201e4 437.43751

Data File C:\CHEM32\1\DATA\CP\CP_233_R.D

Sample Name: CP_233_R

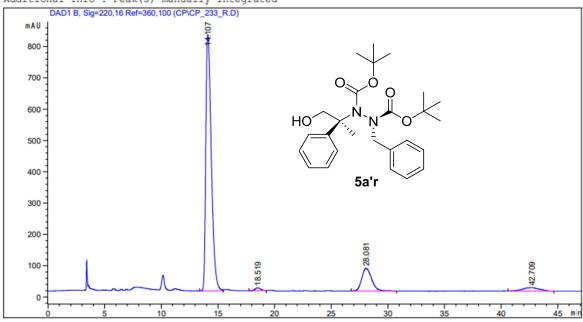
Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 25/03/2022 16:38:16

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 25/03/2022 16:36:55 by Chiara


(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 18/05/2022 15:47:25 by Giovanni

(modified after loading)

Sample Info : CP_233_R, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.107	BV	0.5232	2.76049e4	819.14893	82.6333
2	18.519	BB	0.5194	301.73871	8.94777	0.9032
3	28.081	BB	0.9441	4370.65576	72.41911	13.0832
4	42.709	BB	1.2980	1129.23645	11.03340	3.3803

Totals: 3.34066e4 911.54920

ata File C:\CHEM32\1\DATA\CP\CP_234_R.D

ample Name: CP 234 R

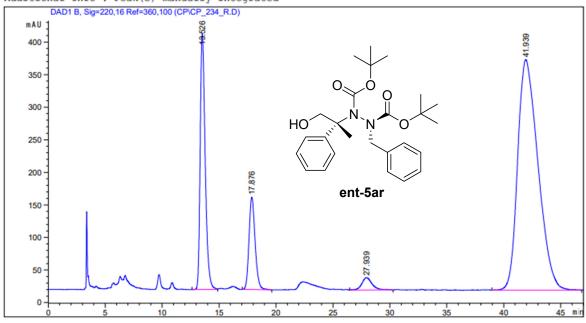
Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 25/03/2022 14:46:52

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

: 25/03/2022 14:46:16 by Chiara


(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 18/05/2022 15:56:19 by Giovanni

(modified after loading)

Sample Info : CP_234_R, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	13.526	BV	0.4639	1.19908e4	393.02396	19.2553
2	17.876	BB	0.5690	5265.57910	141.88268	8.4557
3	27.939	BB	0.9515	1178.91699	18.80141	1.8932
4	41.939	VB	1.9417	4.38373e4	353.75073	70.3958

Totals: 6.22725e4 907.45877

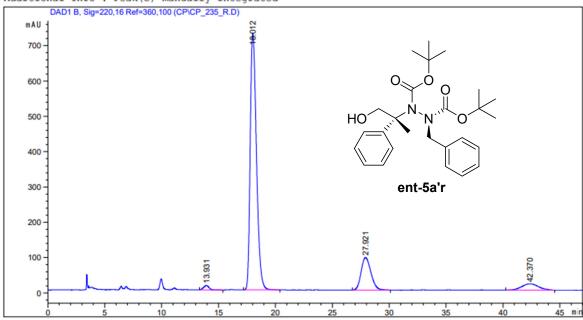
Sample Name: CP_235_R

Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 28/03/2022 15:40:19

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 28/03/2022 14:41:27 by Alberto Last changed


(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 18/05/2022 15:55:24 by Giovanni

(modified after loading)

: CP_235_R, 1 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By Signal

: 1.0000 Multiplier: Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

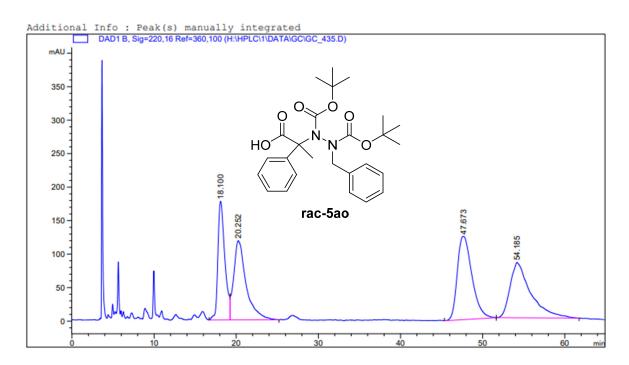
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.931	BB	0.4947	417.59653	12.47040	1.1816
2	18.012	BB	0.5999	2.76104e4	725.60986	78.1230
3	27.921	BB	0.9296	5496.96240	91.92726	15.5535
4	42.370	BB	1.2393	1817.24609	17.44482	5.1419

Totals: 3.53422e4 847.45235

Data File H:\HPLC\1\DATA\GC\GC_435.D

Sample Name: GC_435



Acq. Operator : Chiara Acq. Instrument : HPLC-1

Injection Date : 09/06/2022 16:45:51
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 09/06/2022 16:45:02 by Chiara Last changed (modified after loading)

Analysis Method: H:\HPLC\2\METHODS\DEF_LC.M Last changed : 21/06/2022 22:53:21 (modified after loading)

Sample Info : GC_435, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Location : Vial 1

Area Percent Report _____

Sorted By Signal

Multiplier: 1.0000 : 1.0000 Dilution: Use Multiplier & Dilution Factor with ISTDs

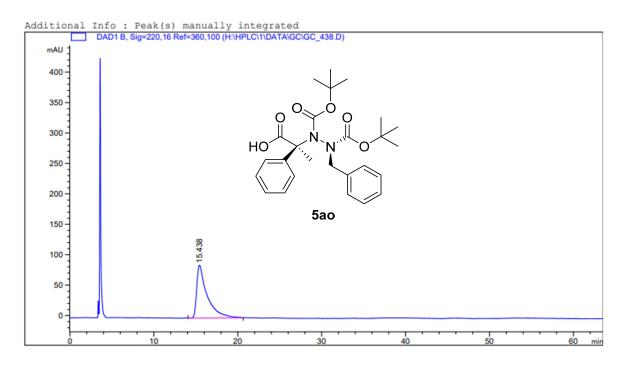
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.100	BV	0.8961	1.04589e4	177.31779	19.8196
2	20.252	VB	1.3715	1.24886e4	118.31341	23.6658
3	47.673	BB	1.8663	1.53991e4	124.21582	29.1811
4	54.185	BB	2.1390	1.44241e4	82.69429	27.3335

5.27707e4 502.54131 Totals :

Data File H:\HPLC\1\DATA\GC\GC_438.D

Sample Name: GC_438


Acq. Operator : Giovanni Acq. Instrument : HPLC-1

Location : Vial 1

Injection Date : 10/06/2022 18:05:57
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 10/06/2022 18:05:30 by Giovanni Last changed (modified after loading) Analysis Method: H:\HPLC\2\METHODS\DEF_LC.M

Last changed : 21/06/2022 22:55:20 (modified after loading)

Sample Info : GC_438, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By Signal

Multiplier: 1,0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

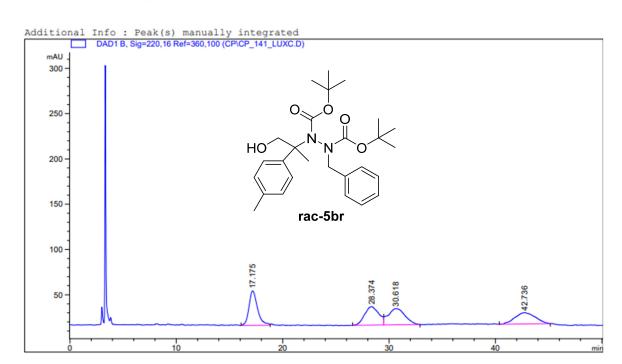
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Height [mAU] Peak RetTime Type Width # [min] [min] [mAU*s] ----|------|------| 1 15.438 BB 1.1907 7499.94482 86.74514 100.0000

Totals : 7499.94482 86.74514 Data File C:\CHEM32\1\DATA\CP\CP_141_LUXC.D

Sample Name: CP_141_LuxC

Acq. Operator : Chiara


Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 17/03/2022 14:13:25
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 17/03/2022 14:12:55 by Chiara (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 22/04/2022 17:39:59 by Chiara

(modified after loading)
Sample Info : CP_141_LuxC, 1 mL/min, 98:2 hex:ipr, 25°C, Lux 5u Cellu

lose-2

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

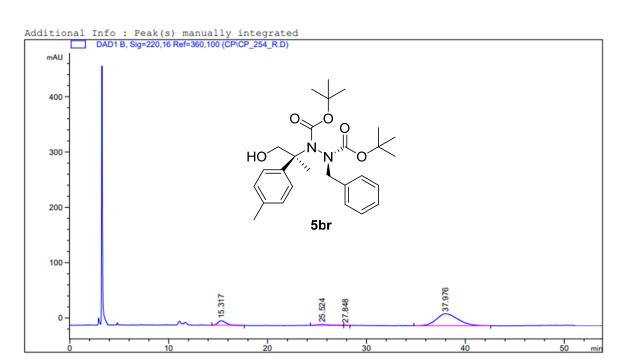
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.175	BV	0.8410	2130.24976	38.17538	27.7597
2	28.374	BV	1.1798	1904.16736	20.42281	24.8136
3	30.618	VB	1.4154	1975.45605	17.84628	25.7425
4	42.736	BB	1.6009	1664.02673	12.61544	21.6842

Totals: 7673.89990 89.05992

Data File C:\CHEM32\1\DATA\CP\CP_254_R.D

Sample Name: CP_254_R

Acq. Operator : Chiara
Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 22/04/2022 11:31:14

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 22/04/2022 11:28:01 by Chiara (modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 22/04/2022 17:37:28 by Chiara
(modified after loading)

Sample Info : CP_254_R, 1 mL/min, 98:2 hex:ipr, 25°C, Lux 5u Cellulos

6

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

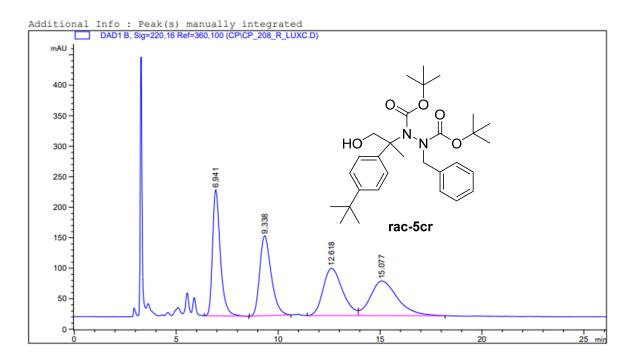
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	15.317	BB	0.8531	479.38226	8.30861	12.1362
2	25.524	BV	1.1480	157.74081	1.67915	3.9934
3	27.848	VB	0.2966	6.85585	3.21790e-1	0.1736
4	37.976	BB	1.9262	3306.05005	21.54502	83.6969

Totals: 3950.02898 31.85456

Data File C:\CHEM32\1\DATA\CP\CP_208_R_LUXC.D

Sample Name: CP_208_R_LuxC


Acq. Operator : Chiara Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 09/03/2022 12:27:27
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 09/03/2022 12:25:28 by Chiara (modified after loading)

Analysis Method: C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 22/04/2022 17:56:54 by Chiara (modified after loading)

: CP_208_R_LuxC, 1 mL/min, 95:5 hex:ipr, 25°C, lux 5u cel Sample Info

lulose-2

Area Percent Report

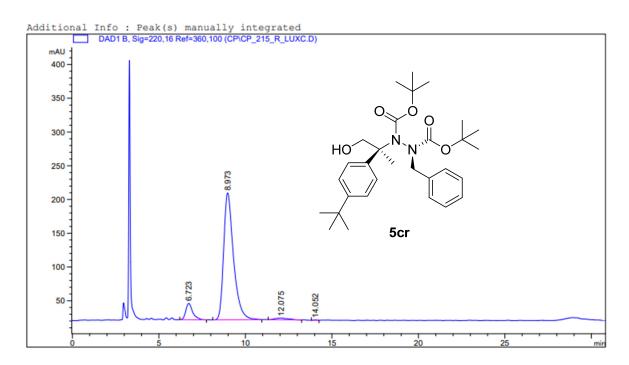
Sorted By Signal

: Multiplier: 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.941	BB	0.4023	5497.83203	206.72803	26.1940
2	9.338	BB	0.6018	5122.81299	131.12161	24.4072
3	12.618	BV	1.0064	5136.26514	77.58142	24.4713
4	15.077	VB	1.3805	5232.02393	56.70445	24.9275

Totals : 2.09889e4 472.13551 Data File C:\CHEM32\1\DATA\CP\CP_215_R_LUXC.D


Sample Name: CP_215_R_LuxC

Acq. Operator : Chiara Acq. Instrument : HPLC-1

Injection Date : 10/03/2022 15:36:51
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 10/03/2022 15:22:31 by Chiara (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 22/04/2022 17:58:37 by Chiara (modified after loading)

Sample Info : CP_215_R_LuxC, 1 mL/min, 95:5 hex:ipr, 25°C, LuxC

Location : Vial 1

Area Percent Report ______

Sorted By Signal

Multiplier: 1.0000 : 1.0000 Dilution: Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

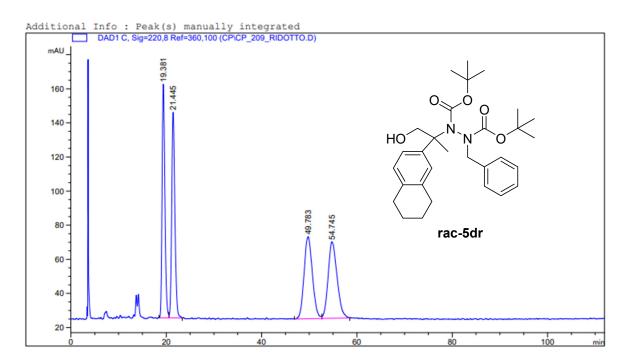
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	6.723	BB	0.4193	675.41315	24.22640	8.1690	
2	8.973	BB	0.5939	7445.16797	188.05902	90.0482	
3	12.075	BB	0.6714	140.41481	2.65319	1.6983	
4	14.052	BB	0.1892	6.98399	5.85274e-1	0.0845	

8267.97991 215.52389 Totals :

Data File C:\CHEM32\1\DATA\CP\CP_209_RIDOTTO.D

Sample Name: CP_209_ridotto

Acq. Operator : Chiara Acq. Instrument : HPLC-1


cq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 02/02/2022 13:57:29
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 02/02/2022 13:56:41 by Giovanni (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 22/04/2022 18:00:41 by Chiara

(modified after loading)

Sample Info : CP_209_ridotto, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

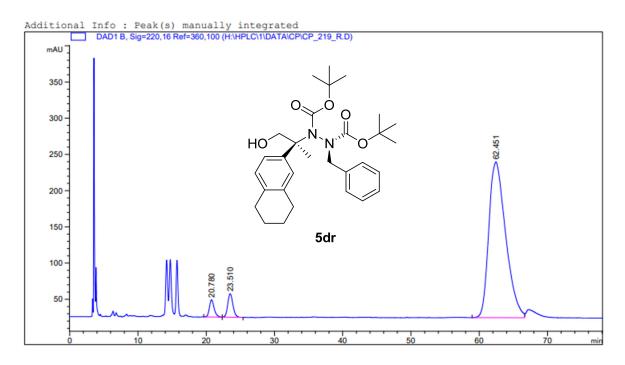
Signal 1: DAD1 C, Sig=220,8 Ref=360,100

Pe	ak	RetTime	Type	Width	Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	8
	1	19.381	BV	0.6305	5571.86377	137.00578	24.3925
	2	21.445	VB	0.7019	5559.34180	120.58350	24.3377
	3	49.783	BV	1.7572	5865.04834	48.14730	25.6760
	4	54.745	VB	1.6920	5846.29053	44.87307	25.5939

Totals: 2.28425e4 350.60965

Data File H:\HPLC\1\DATA\CP\CP_219_R.D

Sample Name: CP_219_R


Acq. Operator : Chiara Acq. Instrument : HPLC-1

Injection Date : 18/02/2022 12:55:07
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 18/02/2022 12:10:40 by Chiara

(modified after loading)
H:\HPLC\2\METHODS\DEF LC.

Sample Info : CP_219_R, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Location : Vial 1

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.780	BB	0.7421	1154.79504	23.79881	2.9082
2	23.510	BB	0.8194	1711.21057	32.44208	4.3095
3	62.451	BV	2.5069	3.68421e4	215.02814	92.7823

Totals: 3.97081e4 271.26903

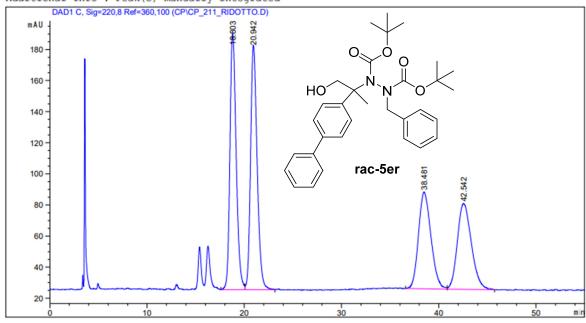
Data File C:\CHEM32\1\DATA\CP\CP_211_RIDOTTO.D

Sample Name: CP_211_ridotto

Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 02/02/2022 15:50:26


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 02/02/2022 15:49:49 by Chiara (modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 18/05/2022 17:12:22 by Giovanni

(modified after loading)

: CP_211_ridotto, 1 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Signal Sorted By

: 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs

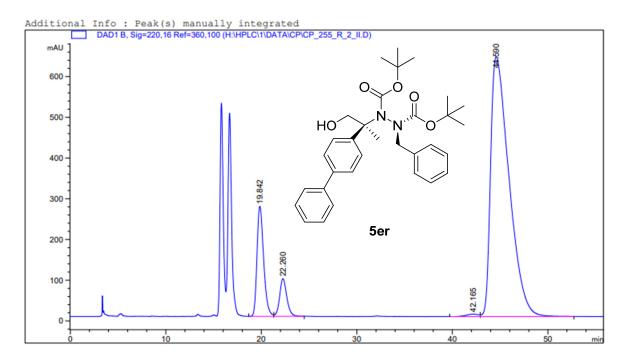
Signal 1: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.803	BV	0.6847	7347.02734	164.61923	28.4906
2	20.942	VB	0.7152	7375.02051	157.24989	28.5992
3	38.481	BV	1.3939	5540.93408	62.28122	21.4869
4	42.542	VB	1.4545	5524.55664	55.06638	21.4234

Totals : 2.57875e4 439.21672 ata File H:\HPLC\1\DATA\CP\CP_255_R_2_II.D

ample Name: CP_255_R_2_II

Acq. Operator : Chiara Acq. Instrument : HPLC-1


Instrument : HPLC-1 Location : Vial 1

Injection Date : 21/04/2022 18:01:06
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 21/04/2022 17:53:32 by Chiara (modified after loading)
Analysis Method : H:\HFLC\2\METHODS\DEF_LC.M
Last changed : 06/06/2022 10:36:40

(modified after loading)

Sample Info : CP_255_R_2_II, pulito, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

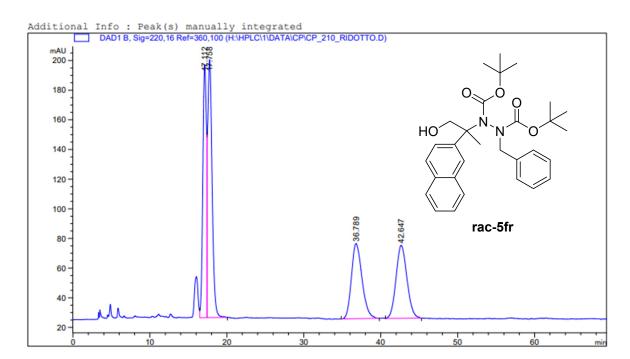
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.842	BV	0.7354	1.30479e4	270.18030	12.5910
2	22.260	VB	0.7955	4814.13281	92.45843	4.6456
3	42.165	BV	1.1949	513.15485	5.80731	0.4952
4	44.590	VB	1.9701	8.52537e4	638.37128	82.2683

Totals: 1.03629e5 1006.81731

Data File H:\HPLC\1\DATA\CP\CP_210_RIDOTTO.D

Sample Name: CP_210_ridotto



Acq. Operator : Chiara Acq. Instrument : HPLC-1

ment : HPLC-1 Location : Vial 1

Injection Date : 03/02/2022 10:57:51
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Sample Info : CP_210_ridotto, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
	[min]		[min]	[mAU*s]	[mAU]	8
1	17.112	VV	0.4985	5589.28711	170.49522	25.1286
2	17.758	VB	0.5896	6943.39697	173.99034	31.2165
3	36.789	BB	1.4424	4845.10547	50.72123	21.7829
4	42.647	BB	1.5256	4864.94385	49.20243	21.8721

Totals: 2.22427e4 444.40923

Sample Name: CP_220_R

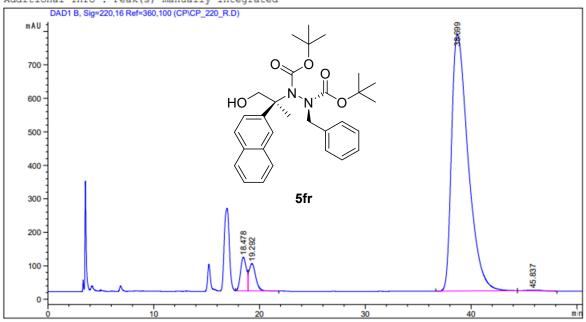
Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 15/02/2022 16:35:29

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 15/02/2022 16:07:22 by Giovanni


(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 18/05/2022 17:20:25 by Giovanni

(modified after loading)

Sample Info : CP_220_R, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

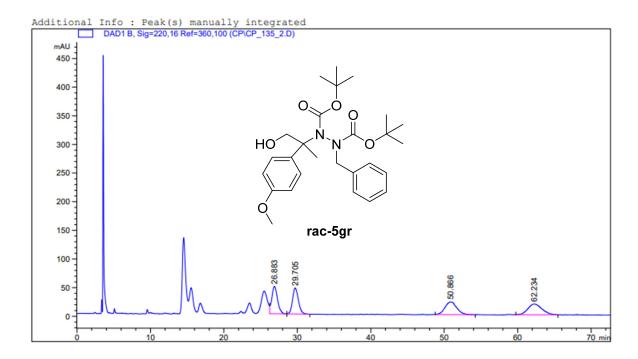
Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.478	VV	0.5934	3920.14453	100.87508	4.3057
2	19.292	VB	0.6568	3568.94238	81.83964	3.9200
3	38.699	BB	1.6134	8.33232e4	765.81567	91.5181
4	45.837	BB	1.2445	233.29845	2.29790	0.2562

Totals: 9.10456e4 950.82829


Data File C:\CHEM32\1\DATA\CP\CP_135_2.D

Sample Name: CP_135_2

Acq. Operator : Chiara Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 01/03/2022 14:06:01
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 01/03/2022 13:50:56 by Chiara Last changed (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M : 22/04/2022 17:50:00 by Chiara Last changed (modified after loading)

Sample Info : CP_135_2, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	26.883	VB	0.8266	2596.38647	48.03494	25.6748
2	29.705	BB	0.8649	2526.40649	45.41959	24.9828
3	50.866	BB	1.5147	2495.89844	22.21669	24.6811
4	62.234	BB	1.8403	2493.91187	18.64765	24.6614

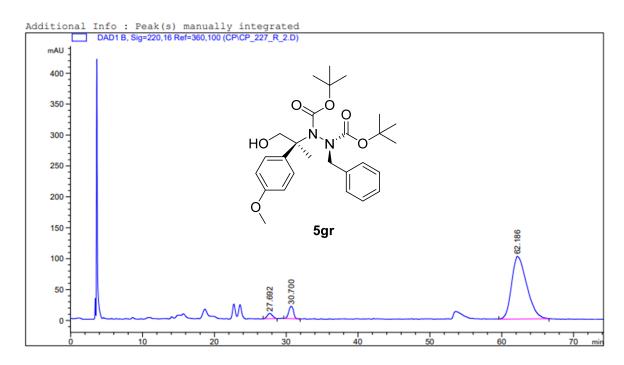
1.01126e4 134.31888 Totals :

Data File C:\CHEM32\1\DATA\CP\CP_227_R_2.D

Sample Name: CP_227_R_2

Acq. Operator : Chiara
Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 02/03/2022 16:25:59
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 02/03/2022 16:23:12 by Chiara

(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 22/04/2022 17:52:27 by Chiara
(modified after loading)

Sample Info : CP_227_R_2, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

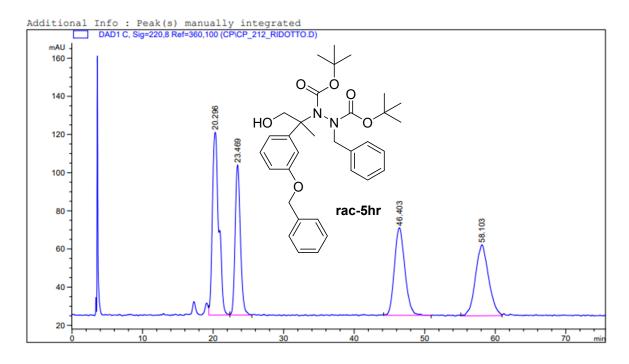
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	27.692	BB	0.7806	443.52988	8.61513	2.7364
2	30.700	BB	0.7476	930.21252	20.11050	5.7391
3	62.186	BB	1.9470	1.48345e4	101.14850	91.5244

Totals: 1.62083e4 129.87413

Sample Name: CP_212_ridotto


Acq. Operator : Chiara Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 02/02/2022 16:51:27
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Acq. Method Last changed : 02/02/2022 16:50:53 by Chiara (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 26/04/2022 12:59:23 by Chiara

(modified after loading)

: CP_212_ridotto, 1 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

______ Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

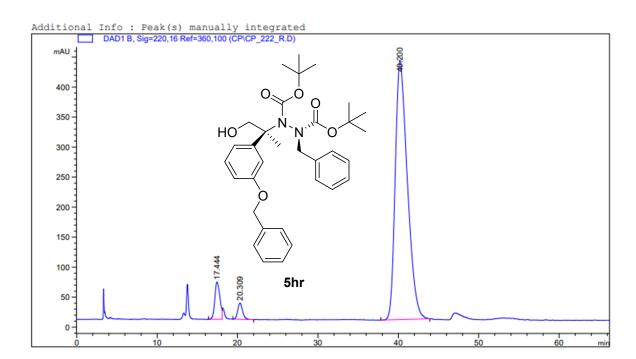
Signal 1: DAD1 C, Sig=220,8 Ref=360,100

RetTime	Type	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	8
20.296	VV	0.9441	6043.45605	95.78014	30.7125
23.469	VV	0.7975	4082.83569	78.66629	20.7488
46.403	BB	1.5139	4733.56543	45.94631	24.0557
58.103	VV	1.6734	4817.63721	37.13958	24.4830
	[min] 20.296 23.469 46.403	[min]	[min] [min] 	[min] [min] [mAU*s]	[min] [min] [mAU*s] [mAU]

1.96775e4 257.53232 Totals :

Data File C:\CHEM32\1\DATA\CP\CP_222_R.D

Sample Name: CP_222_R



Acq. Operator : Chiara Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 22/02/2022 15:02:32
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 22/02/2022 13:59:28 by Chiara

(modified after loading) Analysis Method: C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 26/04/2022 13:00:16 by Chiara

(modified after loading) : CP_222_R, 1 mL/min, 90:10 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.444	BV	0.7011	2697.91357	62.06453	5.5046
2	20.309	BB	0.6287	1121.28235	27.10343	2.2878
3	40.200	BB	1.5004	4.51929e4	432.02646	92.2076

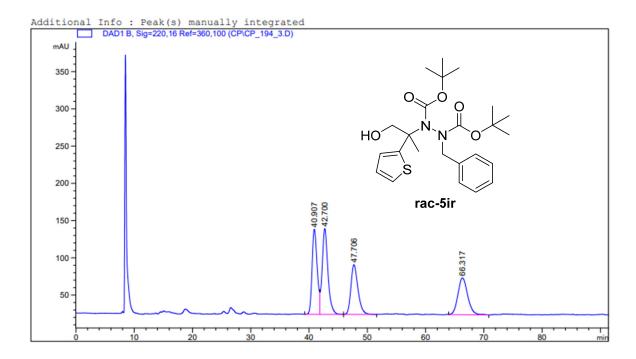
4.90121e4 521.19442 Totals :

Data File C:\CHEM32\1\DATA\CP\CP_194_3.D

Sample Name: CP_194_3

Acq. Operator : Chiara Acq. Instrument : HPLC-1

cq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 15/12/2021 12:33:24
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 15/12/2021 12:32:01 by Chiara (modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 03/05/2022 17:55:16 by Chiara (modified after loading)

Sample Info : CP_194_3, 0.5 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

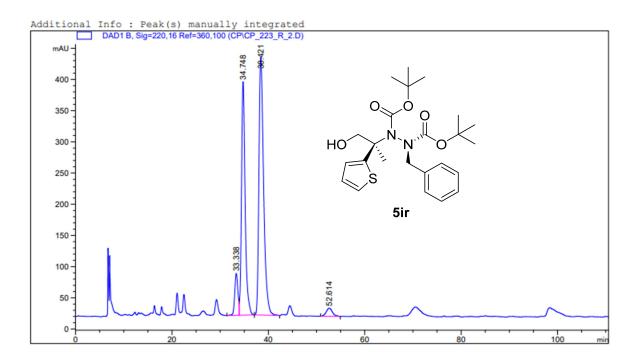
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	40.907	BV	0.9332	6948.21289	114.29614	26.4888
2	42.700	VB	1.0279	7934.87500	115.16032	30.2502
3	47.706	BB	1.2773	5610.95996	66.70800	21.3907
4	66.317	BB	1.7501	5736.73877	49.28159	21.8703

Totals: 2.62308e4 345.44606

Data File C:\CHEM32\1\DATA\CP\CP_223_R_2.D


Sample Name: CP_223_R_2

Acq. Operator : Chiara Acq. Instrument : HPLC-1

Injection Date : 23/02/2022 11:21:53
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 23/02/2022 11:20:57 by Chiara Last changed (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M

: 03/05/2022 17:57:02 by Chiara Last changed (modified after loading)

Sample Info : CP_223_R_2, 0.5 mL/min, 98:2 hex:ipr, 25°C, IC

Location : Vial 1

Area Percent Report _____

5.18252e4 867.62857

Sorted By Signal

Multiplier: 1.0000 : 1.0000 Dilution: Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Totals :

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	33.338	BV	0.6965	3097.83911	67.37090	5.9775
2	34.748	VB	0.7969	1.96592e4	374.21191	37.9336
3	38.421	BB	1.0200	2.78935e4	412.97580	53.8222
4	52.614	BB	1.4086	1174.72314	13.06996	2.2667

Data File C:\CHEM32\1\DATA\CP\CP_180_R_LUXC.D

Sample Name: CP_180_R_LuxC

Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

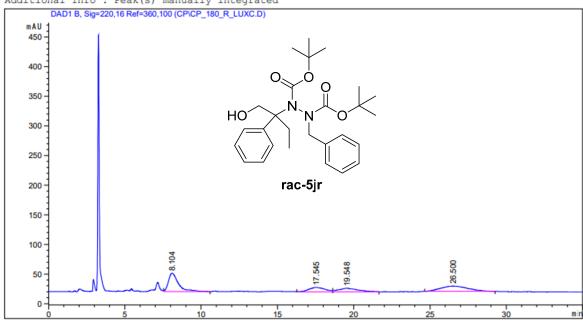
Injection Date : 09/03/2022 13:01:50

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 09/03/2022 12:53:56 by Chiara

(modified after leading)

(modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M


Last changed : 18/05/2022 16:46:26 by Giovanni

(modified after loading)

Sample Info : CP_180 R LuxC, 1 mL/min, 95:5 hex:ipr, 25°C, lux 5u cel

lulose-2

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.104	VB	0.6820	1425.58569	31.03194	39.5513
2	17.545	BV	0.9742	526.32788	7.25633	14.6024
3	19.548	VB	1.1138	504.38864	5.89765	13.9937
4	26.500	BB	1.5416	1148.09827	9.01617	31.8527

Totals: 3604.40048 53.20209

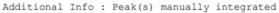
Data File C:\CHEM32\1\DATA\CP\CP_239R_2_LUXC.D

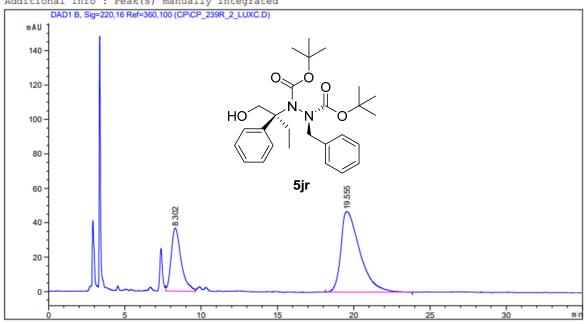
Sample Name: CP_239R_2_LuxC

Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 04/05/2022 15:28:50


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 04/05/2022 15:02:10 by Giovanni Last changed


(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 18/05/2022 16:53:41 by Giovanni

(modified after loading)

Sample Info : CP_239R_2_LuxC, 1 mL/min, 95:5 hex:ipr, 25°C, LuxC

Area Percent Report

Sorted By Signal

Multiplier: : 1.0000 Dilution: 1.0000 : Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

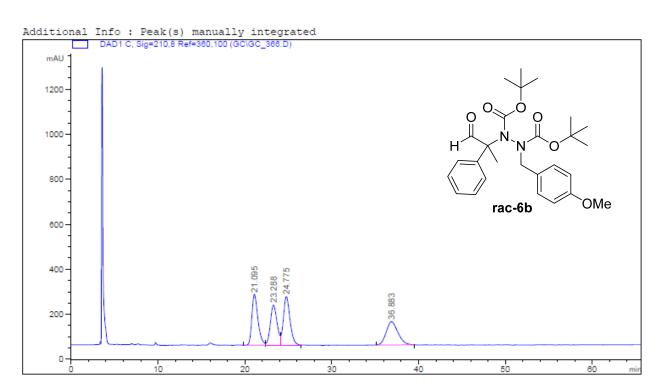
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	8.302	VV	0.6859	1657.85583	36.63976	29.0649	
2	19.555	BB	1.2258	4046.11426	46.74608	70.9351	

Totals : 5703.97009 83.38585 Data File H:\HPLC\1\DATA\GC\GC_366.D

Sample Name: GC 366

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 17/01/2022 10.41.51


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 17/01/2022 10.41.11 by Giovanni

(modified after loading)
Analysis Method : H:\HPLC\1\METHODS\DEF LC.M

Last changed : 07/05/2022 14.10.49

(modified after loading)

Sample Info : GC_366, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

#	[min]		[min]		Height [mAU]	Area %
1	21.095	BV	0.7440	1.10458e4	225.27597	26.4823
2	23.288	VV	0.8205	9535.31738	178.14674	22.8610
3	24.775	VB	0.8049	1.14462e4	215.75931	27.4423
4	36.883	BB	1.3641	9682.70703	103.06392	23.2144

Totals: 4.17100e4 722.24594

Data File H:\HPLC\1\DATA\GC\GC 382.D

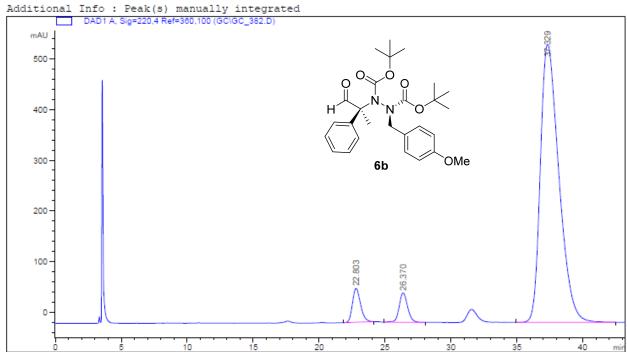
Sample Name: GC 382

Acq. Operator : Giovanni

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 18/02/2022 09.46.55

: C:\CHEM32\1\METHODS\DEF LC.M Acq. Method : 18/02/2022 09.29.14 by Giovanni Last changed


(modified after loading) Analysis Method: H:\HPLC\1\METHODS\DEF LC.M

Last changed : 07/05/2022 14.02.09

(modified after loading)

: GC_382, 1 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : 1.0000 Dilution: : Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=360,100

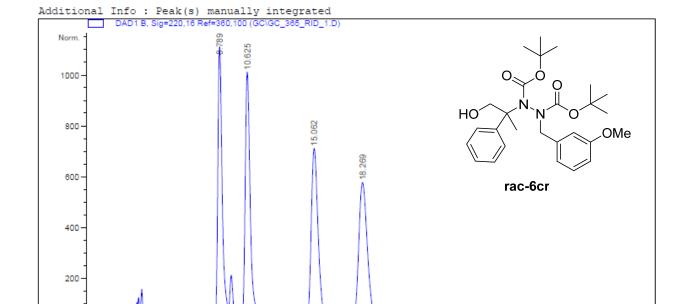
				Area [mAU*s]	Height [mAU]	Area %
1	22.803	BB	0.6538	2857.00757	66.95844	4.8440
2	26.370	BB	0.6817	2584.41187	58.02159	4.3819
3	37.329	BB	1.4422	5.35383e4	548.79712	90.7741

Totals : 5.89797e4 673.77714 Data File C:\CHEM32\1\DATA\GC\GC_365_RID_1.D

Sample Name: GC 365 rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 21/02/2022 14:51:22


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M

Last changed : 21/02/2022 14:46:01 by Giovanni
(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 03/05/2022 10:40:53 by Chiara

(modified after loading)

Sample Info : GC_365_ridotto, 1 mL/min, 92:8 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

				Area [mAU*s]	_	Area %
1	8.789	BV	0.3183	2.23275e4	1093.24707	24.5720
2	10.625	VB	0.3571	2.36134e4	994.05261	25.9872
3	15.062	BV	0.4949	2.22911e4	693.72565	24.5319
4	18.269	BB	0.6238	2.26335e4	559.69019	24.9088

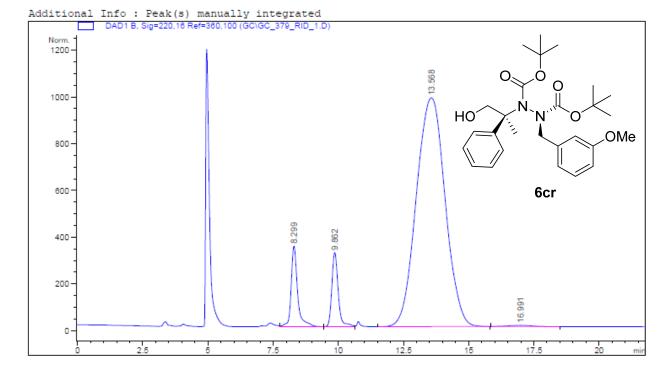
Totals: 9.08655e4 3340.71552

Data File C:\CHEM32\1\DATA\GC\GC_379_RID_1.D

Sample Name: GC 379 rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 21/02/2022 15:30:58


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 21/02/2022 15:29:27 by Giovanni

(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 03/05/2022 10:41:39 by Chiara

(modified after loading)

Sample Info : GC_379_ridotto, 1 mL/min, 92:8 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]		Height [mAU]	Area %
1	8.299	VB	0.2563	5916.02246	344.62469	6.8383
2	9.862	BV	0.2575	5356.50049	316.45337	6.1916
3	13.568	BB	1.2135	7.49478e4	978.63129	86.6318
4	16.991	BB	0.8300	292.72147	5.00762	0.3384

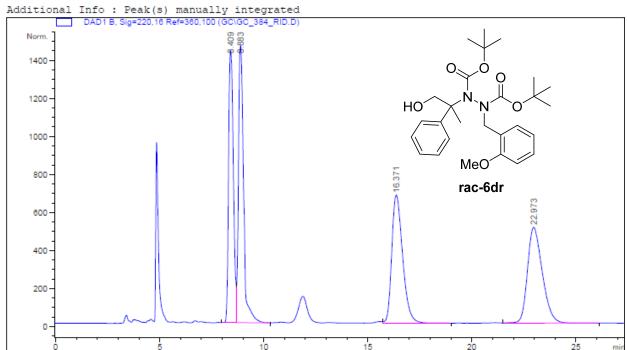
Totals: 8.65131e4 1644.71697

Data File C:\CHEM32\1\DATA\GC\GC 384 RID.D

Sample Name: GC 384 rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 18/02/2022 16:26:01


: C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method Last changed : 18/02/2022 16:15:56 by Chiara (modified after loading) Analysis Method: C:\CHEM32\1\METHODS\DEF LC.M

Last changed : 03/05/2022 10:37:18 by Chiara

(modified after loading)

: GC_384_ridotto, 1 mL/min, 90:10 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

1.0000 Multiplier: Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

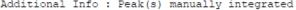
				Area [mAU*s]	Height [mAU]	Area %
1	8.409	BV	0.2541	2.28224e4	1430.49854	23.5122
2	8.883	VB	0.2632	2.48792e4	1457.47778	25.6311
3	16.371	VB	0.5598	2.44525e4	673.19305	25.1916
4	22.973	VB	0.7641	2.49122e4	504.47980	25.6651

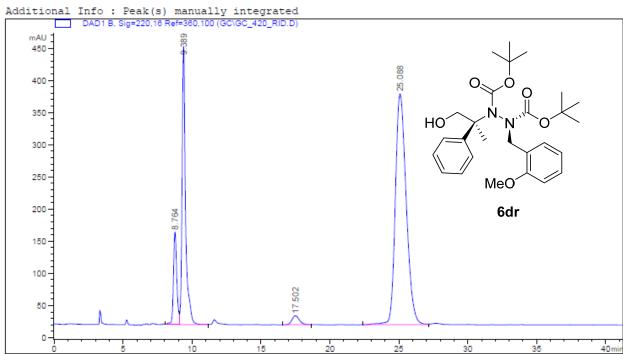
Totals : 9.70664e4 4065.64917 Data File H:\HPLC\1\DATA\GC\GC_420_RID.D

Sample Name: GC 420 RID

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 13/05/2022 11.28.39


: C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method Last changed : 13/05/2022 10.42.01 by Giovanni


(modified after loading)

Analysis Method: H:\HPLC\1\METHODS\DEF LC.M Last changed : 21/05/2022 14.11.49

(modified after loading)

: GC_420_RID,1 mL/min, 90:10 hex:ipr, 25°C, IC Sample Info

Area Percent Report

3.02082e4 948.21870

Sorted By Signal

Multiplier: 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

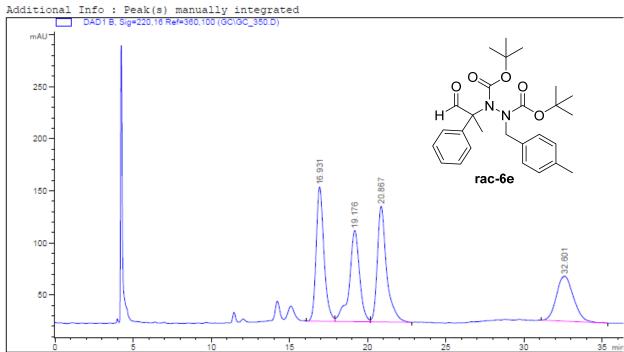
Totals :

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.764	VV	0.2558	2416.99219	143.98268	8.0011
2	9.389	VB	0.2570	7584.79053	431.60550	25.1084
3	17.502	BB	0.5705	518.63452	13.92620	1.7169
4	25.088	BV	0.8443	1.96877e4	358.70432	65.1736

Data File C:\CHEM32\1\DATA\GC\GC 350.D

Sample Name: GC 350

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 15/12/2021 14:38:39 : C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method : 15/12/2021 14:37:53 by Giovanni Last changed

(modified after loading) Analysis Method: C:\CHEM32\1\METHODS\DEF LC.M Last changed : 03/05/2022 10:54:58 by Chiara

(modified after loading)

: GC_350, 1 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

Multiplier: : 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

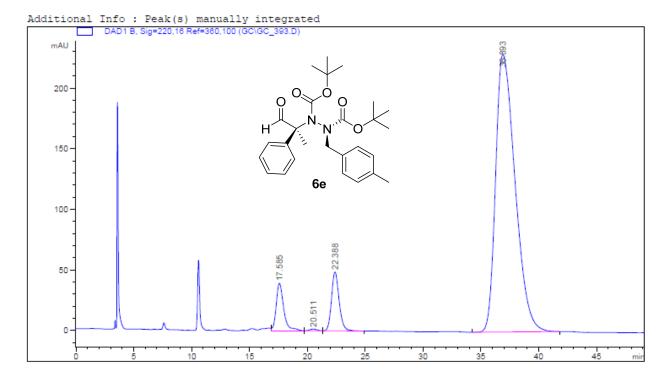
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]		Height [mAU]	Area %
1	16.931	BV	0.5319	4504.48096	128.84485	27.5521
2	19.176	VV	0.6792	3986.21411	87.54908	24.3821
3	20.867	VB	0.6094	4584.28516	111.11101	28.0403
4	32.601	BB	1.1466	3273.95947	43.27497	20.0255

1.63489e4 370.77990 Totals :

Data File C:\CHEM32\1\DATA\GC\GC_393.D

Sample Name: GC 393


Acq. Operator : Giovanni

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 04/03/2022 16:29:46

Last changed : 03/05/2022 10:55:58 by Chiara (modified after loading)

Sample Info : GC_393, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

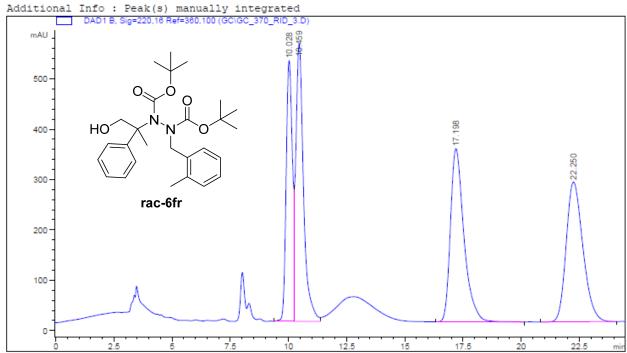
#	[min]		[min]	Area [mAU*s]		Area %
1	17.585	VB	0.6847	1772.01001	39.10073	5.7427
2	20.511	BB	0.5879	63.37709	1.40055	0.2054
3	22.388	BB	0.6957	2225.28589	48.64693	7.2117
4	36.893	BB	1.7723	2.67961e4	228.81345	86.8402

Totals: 3.08567e4 317.96165

Data File C:\CHEM32\1\DATA\GC\GC 370 RID 3.D

Sample Name: GC 370 RID

Acq. Operator : Giovanni


Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 15/03/2022 15:06:48

: C:\CHEM32\1\METHODS\DEF LC.M Acq. Method : 15/03/2022 15:05:36 by Giovanni Last changed (modified after loading) Analysis Method: C:\CHEM32\1\METHODS\DEF LC.M

Last changed : 03/05/2022 11:00:48 by Chiara (modified after loading)

Sample Info : GC_370_RID, 1 mL/min, 95:5 hex:ipr, 25°C, IC

Area Percent Report ______

Sorted By Signal

: 1.0000 : 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs

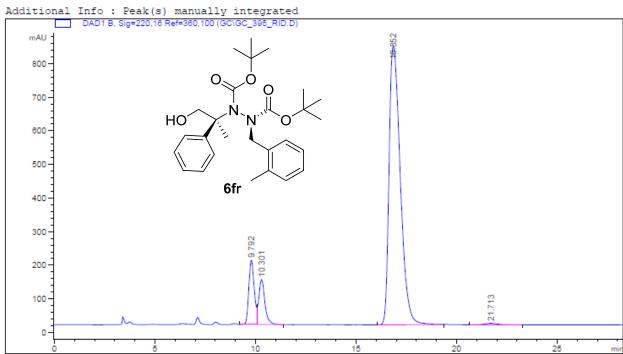
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]	Area [mAU*s]		8
1	10.028	BV	0.2824	9512.76367	517.73743	19.0280
2	10.459	VV	0.3417	1.27222e4	550.32629	25.4477
3	17.198	BB	0.6110	1.38877e4	343.98843	27.7791
4	22.250	BBA	0.7709	1.38708e4	277.63614	27.7452

Totals : 4.99935e4 1689.68829 Data File C:\CHEM32\1\DATA\GC\GC 395 RID.D

Sample Name: GC 395 rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 17/03/2022 15:39:59

: C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method Last changed : 17/03/2022 15:17:43 by Chiara (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M

Last changed : 03/05/2022 11:01:34 by Chiara (modified after loading)

: GC_395_rid, 1 mL/min, 95:5 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

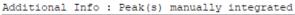
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

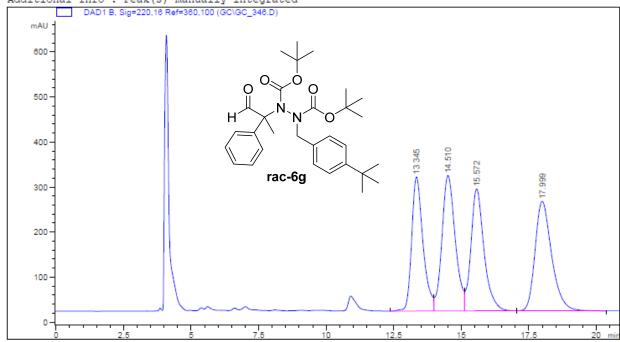
				Area [mAU*s]	Height	Area %
1	9.792	BV	0.2904	3578.63208	191.15277	9.2112
2	10.301	VB	0.3155	2844.47119	134.05757	7.3215
3	16.852	BV	0.6057	3.21656e4	827.10956	82.7926
4	21.713	BB	0.7931	262.08530	4.92326	0.6746

3.88508e4 1157.24316 Totals :

Data File H:\HPLC\1\DATA\GC\GC_346.D

Sample Name: GC_346


Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 14/12/2021 12.44.25

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 14/12/2021 12.37.29 by Chiara
(modified after loading)

Analysis Method : H:\HPLC\1\METHODS\DEF_LC.M

Sample Info : GC_346, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

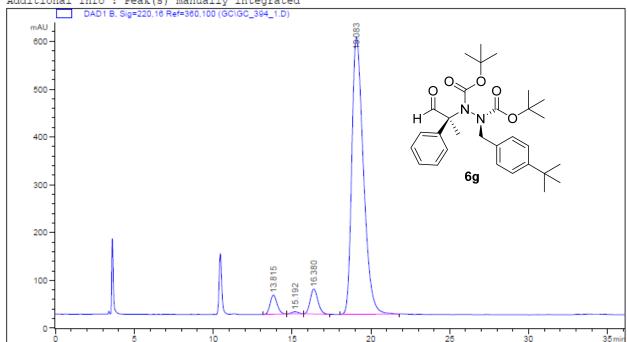
#	[min]		[min]	Area [mAU*s]	[mAU]	8
1	13.345	BV	0.4374	8722.36230	298.05161	22.6122
2	14.510	VV	0.5216	1.03088e4	300.97156	26.7248
3	15.572	VB	0.5064	9155.16895	270.81717	23.7342
4	17.999	BB	0.6502	1.03874e4	243.27058	26.9288

Totals: 3.85737e4 1113.11092

Data File H:\HPLC\1\DATA\GC\GC_394_1.D

Sample Name: GC 394

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 07/03/2022 15.13.17

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 07/03/2022 15.10.35 by Giovanni Last changed (modified after loading)

Analysis Method: H:\HPLC\1\METHODS\DEF LC.M

Sample Info : GC_394 , 1 mL/min, $98:\overline{2}$ hex:ipr, $25^{\circ}C$, IC

Area Percent Report

Sorted By Signal

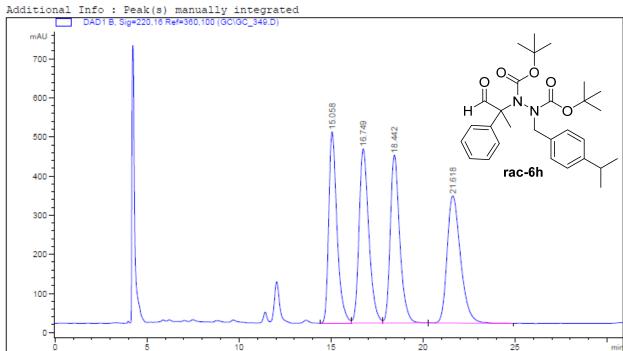
Multiplier: : 1.0000 Dilution: 1.0000 : Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
				[mAU*s]	[mAU]	8
1	13.815	BB	0.4727	1235.50659	40.18773	3.7722
2	15.192	BB	0.4528	130.51820	4.31615	0.3985
3	16.380	BB	0.5252	1772.05920	52.31383	5.4104
4	19.083	BB	0.7834	2.96147e4	580.30078	90.4189

Totals : 3.27527e4 677.11849 Data File C:\CHEM32\1\DATA\GC\GC 349.D

Sample Name: GC 349


Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 15/12/2021 14:06:37

: C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method : 15/12/2021 14:05:14 by Chiara Last changed (modified after loading) Analysis Method: C:\CHEM32\1\METHODS\DEF LC.M

Last changed : 03/05/2022 10:57:34 by Chiara (modified after loading)

: GC_349, 1 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

Multiplier: : 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

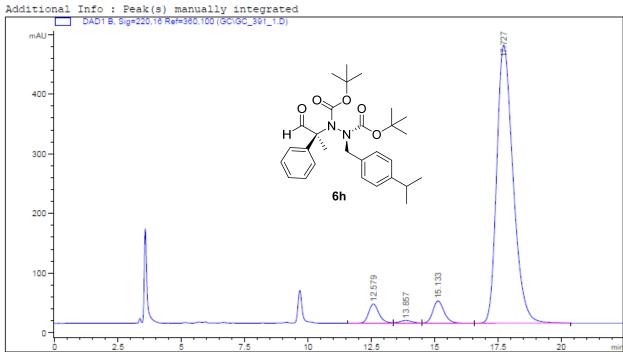
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	15.058	BV	0.4770	1.53105e4	489.37558	24.0669
2	16.749	VV	0.5620	1.64188e4	445.48318	25.8092
3	18.442	VB	0.5415	1.53625e4	429.32986	24.1488
4	21.618	BB	0.7770	1.65244e4	325.08359	25.9751

Totals : 6.36161e4 1689.27222 Data File C:\CHEM32\1\DATA\GC\GC 391 1.D

Sample Name: GC 391

Acq. Operator : Giovanni


Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 28/02/2022 15:33:21

: C:\CHEM32\1\METHODS\DEF LC.M Acq. Method : 28/02/2022 15:31:53 by Giovanni Last changed (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M

Last changed : 03/05/2022 10:58:27 by Chiara (modified after loading)

Sample Info : GC_391, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By Signal

: 1.0000 : 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

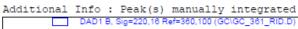
#	[min]		[min]	Area [mAU*s]		Area %
1	12.579	BV	0.4320	908.97858	32.13691	3.9359
2	13.857	VV	0.5014	154.03836	4.43269	0.6670
3	15.133	VB	0.4727	1154.63843	37.34182	4.9996
4	17.727	BB	0.6884	2.08769e4	466.26382	90.3975

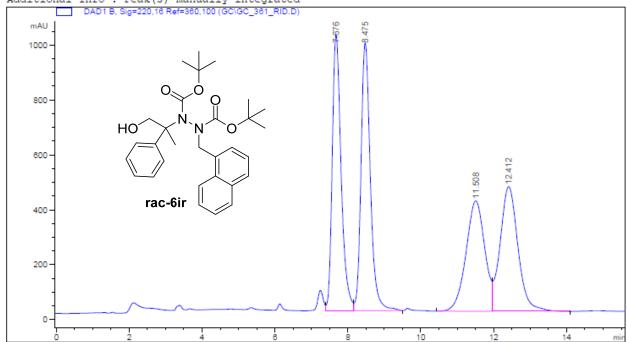
2.30946e4 540.17524 Totals :

Data File C:\CHEM32\1\DATA\GC\GC 361 RID.D

Sample Name: GC 361 rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1


Injection Date : 22/02/2022 09:15:51


: C:\CHEM32\1\METHODS\DEF LC.M Acq. Method : 22/02/2022 09:13:58 by Chiara Last changed (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M

Last changed : 03/05/2022 10:44:55 by Chiara

(modified after loading)

Sample Info : GC_361_ridotto, 1 mL/min, 90:10 hex:ipr, 25°C, IC

Location : Vial 1

Area Percent Report

Sorted By Signal

: 1.0000 : 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs

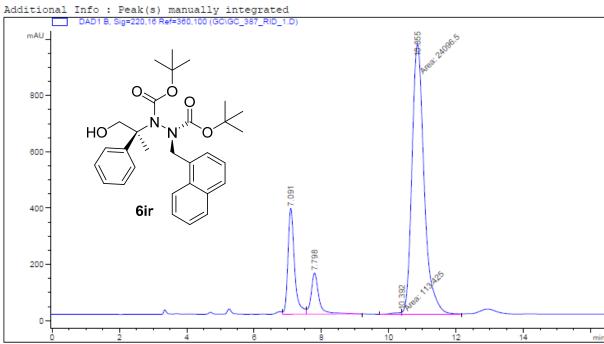
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]	[mAU*s]	Height [mAU]	%
1	7.676	VV	0.2601	1.70587e4	1004.81989	26.5610
2	8.475	VB	0.2733	1.73305e4	975.15918	26.9842
3	11.508	BV	0.5450	1.43717e4	402.06247	22.3772
4	12.412	VB	0.5194	1.54638e4	453.99808	24.0776

Totals : 6.42247e4 2836.03961 Data File H:\HPLC\1\DATA\GC\GC_387_RID_1.D

Sample Name: GC_387_rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 01/03/2022 16.37.40

: C:\CHEM32\1\METHODS\DEF_LC.M : 01/03/2022 16.28.33 by Giovanni Acq. Method Last changed

(modified after loading)

Analysis Method: H:\HPLC\1\METHODS\DEF_LC.M Last changed : 21/05/2022 14.11.49 (modified after loading)

Sample Info : GC_387_rid, 1 mL/min, 90:10 hex:ipr, 25°C, IC

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

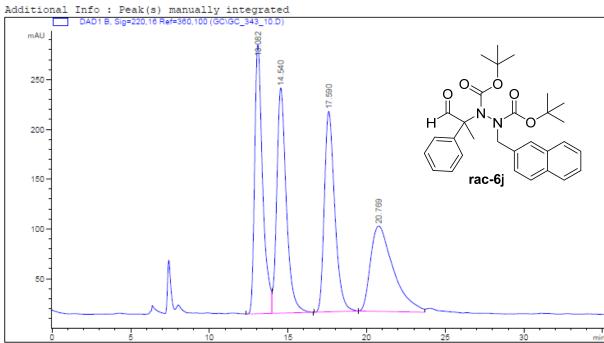
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]		Height [mAU]	
1	7.091	VV	0.2050	5130.84180	376.39688	16.1940
2	7.798	VB	0.2372	2342.85303	146.00117	7.3945
3	10.392	MF	0.2664	113.42534	7.09741	0.3580
4	10.855	FM	0.4188	2.40965e4	958.92871	76.0535

3.16836e4 1488.42417 Totals :

Data File H:\HPLC\1\DATA\GC\GC_343_10.D Sample Name: GC_343

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 05/05/2022 15.46.17

: C:\CHEM32\1\METHODS\DEF_LC.M : 05/05/2022 15.38.27 by Giovanni Acq. Method Last changed

(modified after loading)

Analysis Method: H:\HPLC\1\METHODS\DEF_LC.M Last changed : 21/05/2022 14.11.49 (modified after loading)

Sample Info : GC_343, 0.5 mL/min, 98:2 hex:ipr, 25°C, OD-H

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

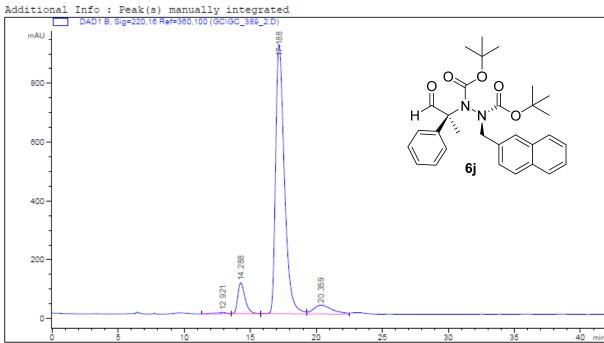
				Area [mAU*s]	Height [mAU]	Area %
1	13.082	BV	0.5315	9539.87891	270.45291	25.7755
2	14.540	VB	0.6315	9531.51367	226.25156	25.7529
3	17.590	BB	0.7061	9286.42773	201.33719	25.0907
4	20.769	BV	1.4861	8653.54199	85.69472	23.3808

3.70114e4 783.73637 Totals :

Data File H:\HPLC\1\DATA\GC\GC_389_2.D Sample Name: GC_389

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 05/05/2022 16.49.21


: C:\CHEM32\1\METHODS\DEF_LC.M : 05/05/2022 16.49.02 by Giovanni Acq. Method Last changed

(modified after loading)

Analysis Method: H:\HPLC\1\METHODS\DEF_LC.M Last changed : 21/05/2022 14.11.49

(modified after loading)

: GC_389, 0.5 mL/min, 98:2 hex:ipr, 25°C, OD-H Sample Info

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]	Area [mAU*s]		
1	12.921	BV	0.7794	263.05069	4.55725	0.5297
2	14.288	VB	0.5767	4019.73462	105.45032	8.0942
3	17.188	BV	0.7050	4.24463e4	915.39722	85.4701
4	20.359	VV	1.4307	2933.07007	29.84169	5.9061

4.96621e4 1055.24648 Totals :

Data File H:\HPLC\1\DATA\GC\GC_385_RID_5.D

Sample Name: GC 385 rid

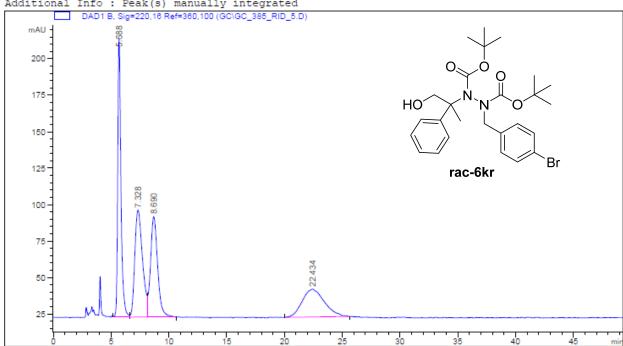
Acq. Operator : Giovanni

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 29/03/2022 10.57.33

: C:\CHEM32\1\METHODS\DEF LC.M Acq. Method Last changed : 29/03/2022 10.05.29 by Giovanni

(modified after loading)


Analysis Method: H:\HPLC\1\METHODS\DEF LC.M Last changed : 07/05/2022 14.02.09

(modified after loading)

: GC_385_rid, 1 mL/min, 90:10 hex:ipr, 25°C, Lux 5u cellu Sample Info

lose-2

Area Percent Report

Sorted By Signal

Multiplier: : 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]		Height [mAU]	%
1	5.688	VV	0.2934	3714.81152	190.60124	29.4185
2	7.328	VV	0.7050	3387.54224	73.32783	26.8268
3	8.690	VB	0.6535	2960.59082	68.86859	23.4456
4	22.434	BB	1.6152	2564.52075	19.18918	20.3091

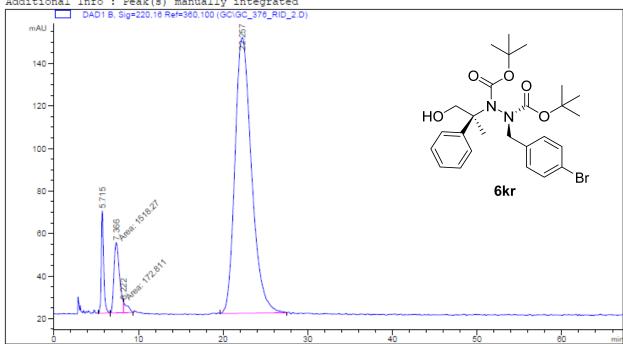
Totals : 1.26275e4 351.98684 Data File H:\HPLC\1\DATA\GC\GC_376_RID_2.D

Sample Name: GC 376 RID

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 29/03/2022 13.01.29 Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 29/03/2022 12.57.10 by Giovanni

(modified after loading) Analysis Method: H:\HPLC\1\METHODS\DEF LC.M


Last changed : 07/05/2022 14.10.49

(modified after loading)

: GC_376_RID, 1 mL/min, 90:10 hex:ipr, 25°C, Lux 5u cellu Sample Info

lose-2

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]	Area [mAU*s]		Area %
1	5.715	BB	0.2904	950.22357	48.12112	4.6728
2	7.366	MF	0.7660	1518.27429	33.03587	7.4662
3	8.222	FM	0.5561	172.81067	5.17892	0.8498
4	22.257	BB	1.8979	1.76941e4	129.67358	87.0113

2.03354e4 216.00949 Totals :

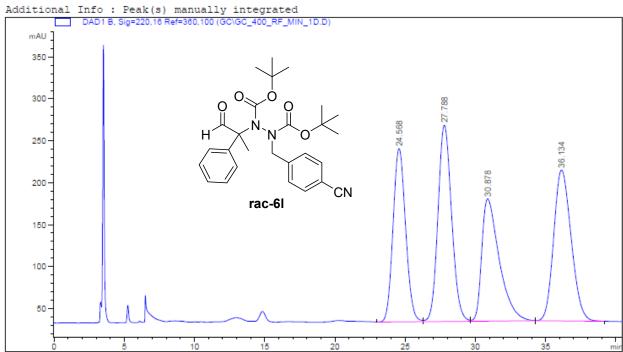
Data File C:\CHEM32\1\DATA\GC\GC_400_RF_MIN_1D.D

Sample Name: GC 400 rf min

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 18/03/2022 10:04:28

: C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method Last changed : 18/03/2022 09:31:54 by Giovanni


(modified after loading)

Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M Last changed : 03/05/2022 10:49:20 by Chiara

(modified after loading)

: GC_400_rf_min, 1 mL/min, 90:10 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

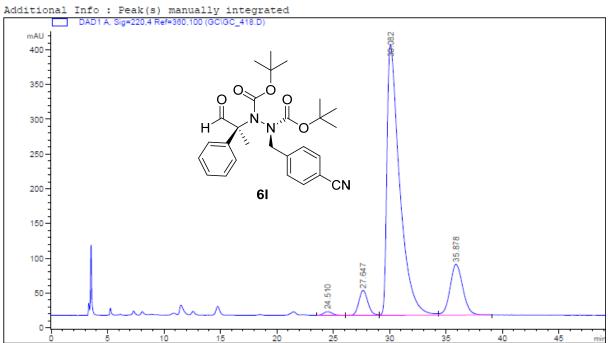
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	24.568	BV	0.9609	1.28655e4	206.47943	22.6232
2	27.788	VV	1.0316	1.58008e4	234.06561	27.7847
3	30.878	VB	1.2935	1.26204e4	145.85873	22.1921
4	36.134	BB	1.3308	1.55820e4	179.84575	27.4000

Totals : 5.68686e4 766.24953 Data File H:\HPLC\1\DATA\GC\GC_418.D

Sample Name: GC_418

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 06/05/2022 16.24.53

: C:\CHEM32\1\METHODS\DEF_LC.M : 06/05/2022 16.23.51 by Giovanni Acq. Method Last changed

(modified after loading)

Analysis Method : H:\HPLC\1\METHODS\DEF LC.M Last changed : 21/05/2022 14.11.49

(modified after loading) Sample Info : GC_418, 1 mL/min, 90:10 hex:ipr, 25°C, IC

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=360,100

				Area [mAU*s]	Height [mAU]	Area %
1	24.510	VB	0.8072	292.92017	5.31335	0.7620
2	27.647	BV	0.8593	1989.95520	35.86528	5.1770
3	30.082	VV	1.1524	3.04310e4	389.10516	79.1676
4	35.878	VB	1.1941	5724.81250	73.06770	14.8934

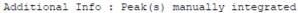
Totals : 3.84387e4 503.35150 Data File H:\HPLC\1\DATA\GC\GC_401_RF_MIN_4.D

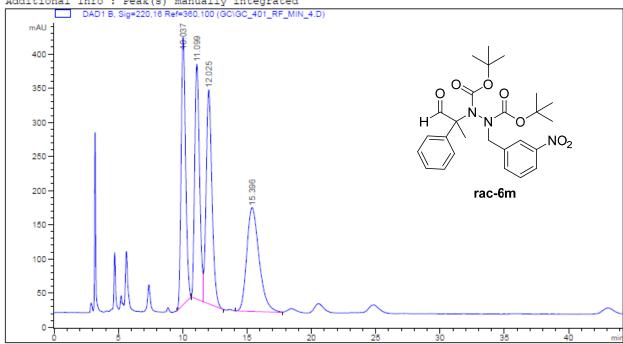
Sample Name: GC 401 RF MIN

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 01/04/2022 12.30.28

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 01/04/2022 12.16.07 by Giovanni


(modified after loading)


Analysis Method: H:\HPLC\1\METHODS\DEF LC.M Last changed : 07/05/2022 14.10.49

(modified after loading)

: GC 401 RF MIN, 1 mL/min, 90:10 hex:ipr, 25°C, Lux 5u ce Sample Info

llulose-2

Area Percent Report

Sorted By Signal

Multiplier: 1.0000 : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

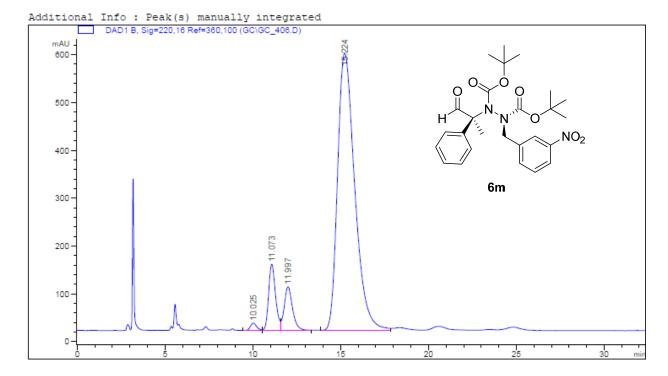
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]		Height [mAU]	%
1	10.037	BB	0.3726	9422.60742	391.78265	24.4395
2	11.099	BV	0.4078	9071.34180	343.88449	23.5284
3	12.025	VB	0.4813	9911.47363	313.10593	25.7074
4	15.396	BV	1.0271	1.01495e4	151.97836	26.3247

Totals : 3.85549e4 1200.75143 Data File H:\HPLC\1\DATA\GC\GC_406.D

Sample Name: GC 406

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1


Injection Date : 05/04/2022 15.54.52

Analysis Method : H:\HPLC\1\METHODS\DEF_LC.M Last changed : 07/05/2022 14.10.49

(modified after loading)

Sample Info : GC_406, 1 mL/min, 90:10 hex:ipr, 25°C, Lux 5u cellulose

-2

Area Percent Report

Sorted By : Signal

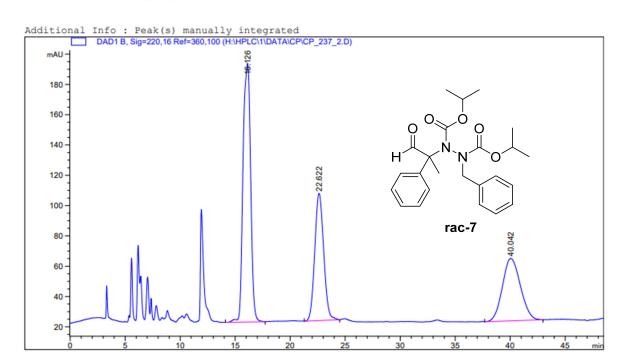
Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

t Area %
502 0.8082
240 8.2010
885 6.4617
292 84.5291

Totals: 4.64634e4 824.07919

Data File H:\HPLC\1\DATA\CP\CP_237_2.D


Sample Name: CP_237_2

Acq. Operator : Chiara
Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 21/03/2022 10:00:30

(modified after loading)
Sample Info : CP_237_2, 1 mL/min, 90:10 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

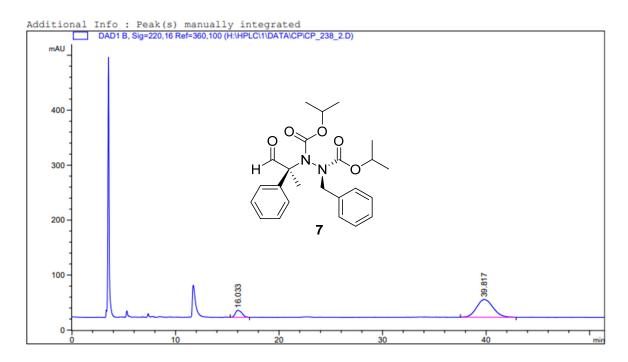
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.126	BB	0.6750	8181.92627	170.75758	46.5221
2	22.622	BB	0.8831	4731.23242	84.00115	26.9016
3	40.042	BB	1.6944	4674.01611	41.17331	26.5763

Totals: 1.75872e4 295.93204

Data File H:\HPLC\1\DATA\CP\CP 238 2.D

Sample Name: CP_238_2


Acq. Operator : Chiara

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 21/03/2022 10:51:00
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 21/03/2022 10:49:26 by Chiara (modified after loading) Analysis Method: H:\HPLC\2\METHODS\DEF LC.M

Last changed : 06/06/2022 15:17:37 (modified after loading)

: CP_238_2, 1 mL/min, 90:10 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

: 1.0000 : 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

	RetTime			Area	Height [mAU]	Area	
					[mAO]		
	16.033				12.65098		
2	39.817	BB	1.4642	3560.00342	32.39307	86.4823	

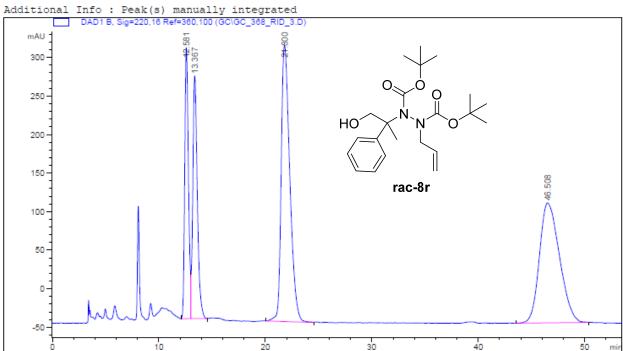
4116.45233 45.04405 Totals :

Data File C:\CHEM32\1\DATA\GC\GC 368 RID 3.D

Sample Name: GC 368 rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 22/03/2022 17:31:10


: C:\CHEM32\1\METHODS\DEF_LC.M Acq. Method Last changed : 22/03/2022 17:06:28 by Giovanni

(modified after loading) Analysis Method: C:\CHEM32\1\METHODS\DEF LC.M Last changed : 03/05/2022 10:51:32 by Chiara

(modified after loading)

: GC_368_rid, 1 mL/min, 97.5:2.5 hex:ipr, 25°C, IC Sample Info

Area Percent Report

Sorted By Signal

1.0000 Multiplier: Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

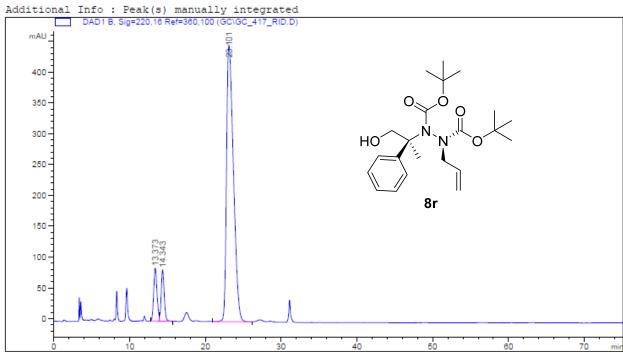
				Area [mAU*s]	Height [mAU]	Area %
1	12.581	BV	0.3729	8461.94434	351.49106	14.5415
2	13.367	VB	0.4481	9285.16797	314.79404	15.9561
3	21.800	BV	0.8519	2.01369e4	358.18231	34.6044
4	46.508	BB	1.8148	2.03078e4	155.58533	34.8980

Totals : 5.81918e4 1180.05273 Data File H:\HPLC\1\DATA\GC\GC_417_RID.D

Sample Name: GC 417 rid

Acq. Operator : Giovanni Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 04/05/2022 12.55.12


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 04/05/2022 12.50.07 by Giovanni Last changed

(modified after loading)

Analysis Method: H:\HPLC\1\METHODS\DEF LC.M Last changed : 21/05/2022 14.11.49

(modified after loading)

: GC_417_rid, 1 mL/min, 97.5:2.5 hex:ipr, 25°C, IA Sample Info

Area Percent Report

Sorted By Signal

Multiplier: : 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

Peak RetTime # [min]	Type Width [min]		Height [mAU]	Area %
1 13.373 2 14.343 3 23.101	VB 0.428	76 2614.81958 30 2304.41504 53 2.83329e4	82.99025	6.9301

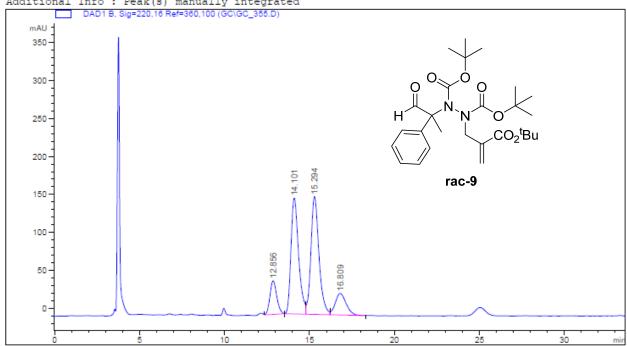
Totals : 3.32521e4 617.07441 Data File H:\HPLC\1\DATA\GC\GC 355.D

Sample Name: GC 355

Acq. Operator : Giovanni

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 17/12/2021 15.41.03


Acq. Method : C:\CHEM32\1\METHODS\DEF LC.M : 17/12/2021 14.54.51 by Giovanni Last changed (modified after loading)

Analysis Method: H:\HPLC\1\METHODS\DEF LC.M Last changed : 07/05/2022 14.10.49

(modified after loading)

: GC_355, 1 mL/min, 98:2 hex:ipr, 25°C, IC Sample Info

Area Percent Report ______

Sorted By Signal

Multiplier: 1.0000 : 1.0000 Dilution: . Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	[min]		[min]	Area [mAU*s]		Area %
1	12.856	VB	0.4324	1228.60205	44.18421	9.9325
2	14.101	BV	0.4758	4765.50781	152.84039	38.5261
3	15.294	VV	0.4998	5114.30322	155.46941	41.3459
4	16.809	VB	0.6908	1261.14856	28.36058	10.1956

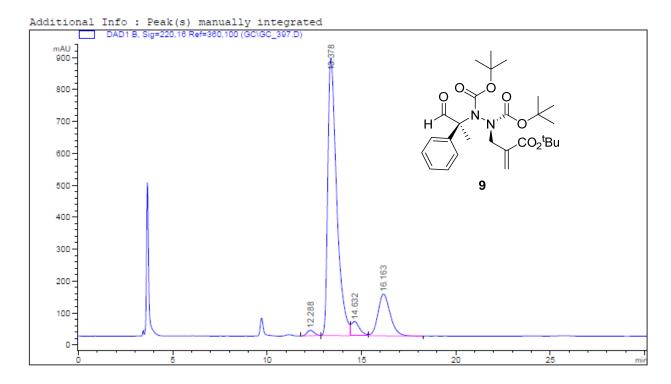
Totals : 1.23696e4 380.85459 Data File H:\HPLC\1\DATA\GC\GC_397.D

Sample Name: GC 397

Acq. Operator : Giovanni Acq. Instrument : HPLC-1

Acq. Instrument : HPLC-1 Location : Vial 1

Injection Date : 11/03/2022 17.15.19


Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 11/03/2022 17.10.50 by Giovanni

(modified after loading)

Analysis Method : H:\HPLC\1\METHODS\DEF_LC.M Last changed : 07/05/2022 14.10.49

(modified after loading)

Sample Info : GC_397, 1 mL/min, 98:2 hex:ipr, 25°C, IC

Area Percent Report

Sorted By : Signal

Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

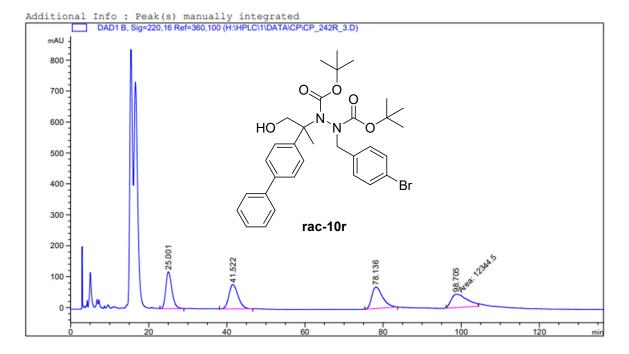
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

				Area [mAU*s]	Height [mAU]	Area %
1	12.288	BB	0.4159	454.48734	17.21891	1.2502
2	13.378	BV	0.4958	2.86133e4	869.67395	78.7122
3	14.632	VV	0.4677	1395.18188	43.79060	3.8380
4	16.163	VB	0.6886	5888.84521	130.95662	16.1996

Totals: 3.63518e4 1061.64008

Data File H:\HPLC\1\DATA\CP\CP_242R_3.D

Sample Name: CP_242R_3


Acq. Operator : Chiara Acq. Instrument : HPLC-1

Location : Vial 1

Injection Date : 17/05/2022 10:14:46

Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 17/05/2022 09:44:18 by Chiara Last changed (modified after loading) Analysis Method: H:\HPLC\2\METHODS\DEF_LC.M Last changed : 01/06/2022 09:29:28 (modified after loading)

: CP_242R_3, pulito con colonna e ridotto, 1 mL/min, 98:2 hex:ipr, 25°C, Lux Cellulose Sample Info

Area Percent Report

Sorted By Signal

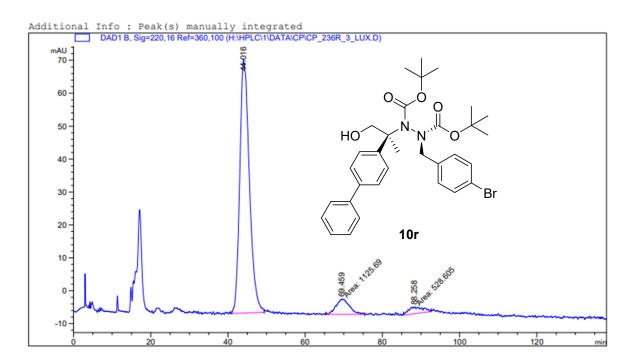
Multiplier: : 1.0000 Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=220,16 Ref=360,100

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	
1	25.001	BB	1.6558	1.27946e4	118.86250	24.9910
2	41.522	BB	2.1606	1.27472e4	78.33117	24.8982
3	78.136	BB	2.3740	1.33108e4	69.32594	25.9991
4	98.705	MM	4.7758	1.23445e4	43.07943	24.1117

Totals : 5.11970e4 309.59903 Data File H:\HPLC\1\DATA\CP\CP_236R_3_LUX.D

Sample Name: CP_236R_3



Acq. Operator : Chiara Acq. Instrument : HPLC-1

Injection Date : 17/05/2022 13:10:17
Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M : 17/05/2022 12:31:35 by Chiara Last changed (modified after loading)

Analysis Method: H:\HPLC\2\METHODS\DEF_LC.M Last changed : 01/06/2022 09:31:13 (modified after loading)

Sample Info : CP_236R_3, 1 mL/min, 98:2 hex:ipr, 25°C, Lux Cellulose

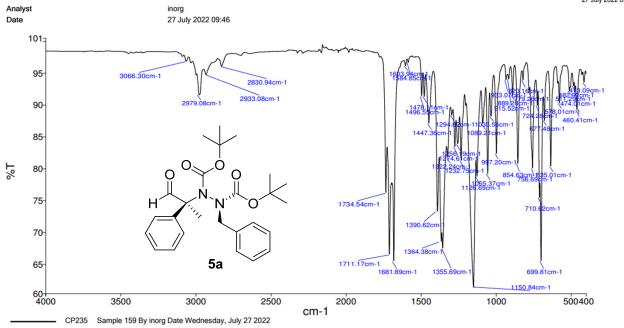
Location : Vial 1

Area Percent Report ______

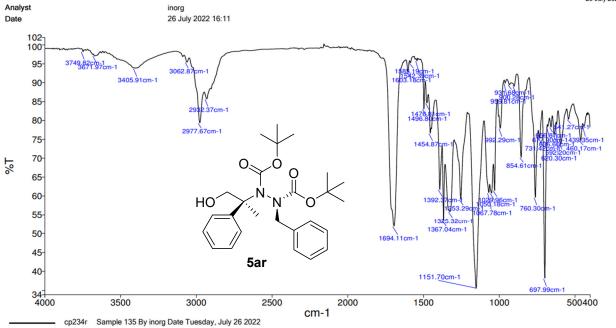
Sorted By Signal

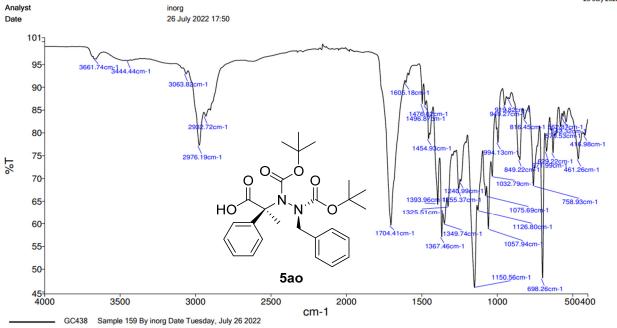
Multiplier: 1.0000 : 1.0000 Dilution: Use Multiplier & Dilution Factor with ISTDs

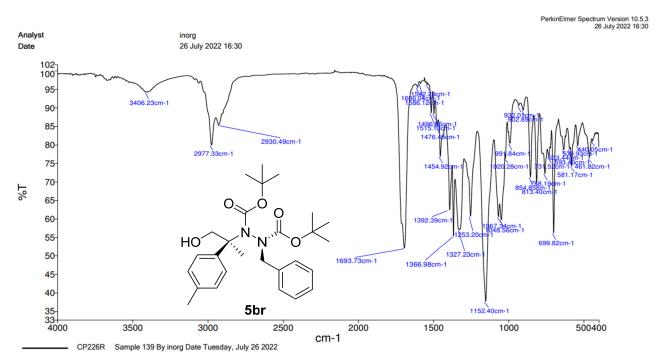
Signal 1: DAD1 B, Sig=220,16 Ref=360,100

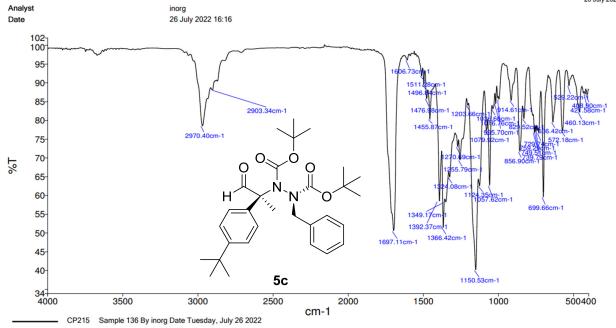

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	44.016	BV	2.2391	1.33638e4	77.06377	88.9847
2	69.459	MM	4.0484	1125.68591	4.63424	7.4955
3	88.258	MM	4.2324	528.60461	2.08156	3.5198

1.50181e4 83.77956 Totals :

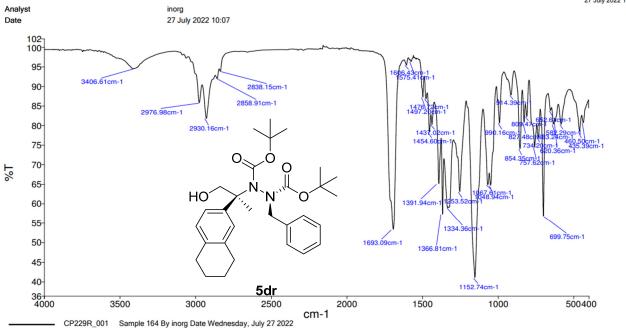

IR traces

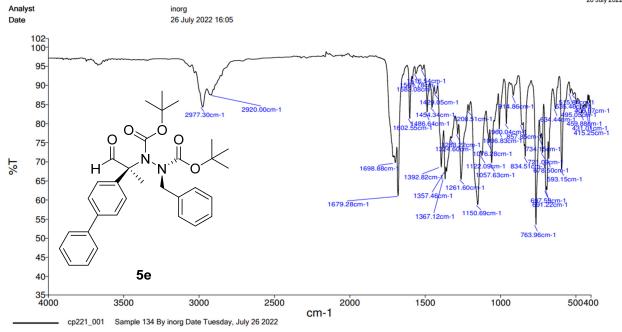

5a

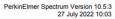

PerkinElmer Spectrum Version 10.5.3 27 July 2022 09:46

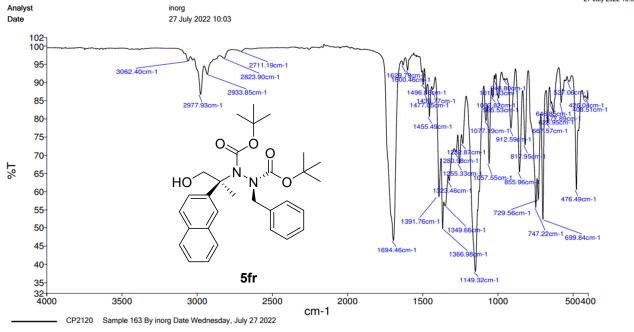


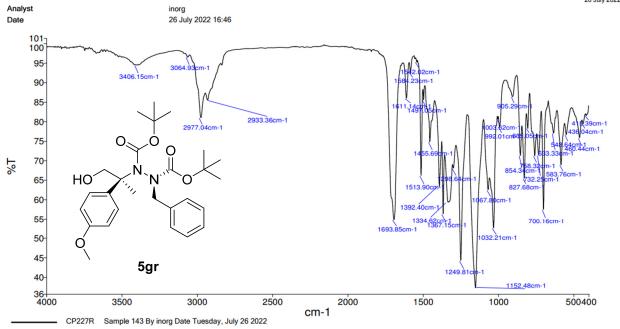
PerkinElmer Spectrum Version 10.5.3

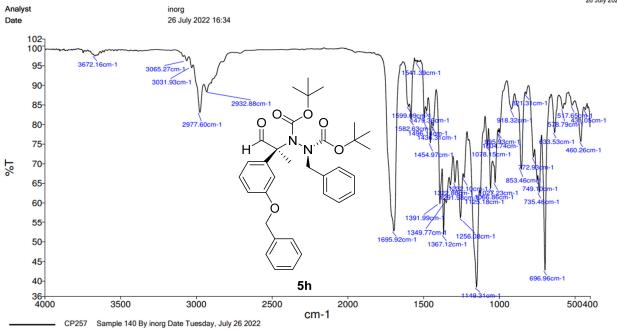


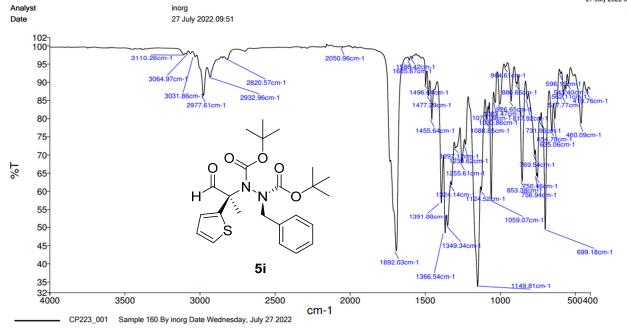


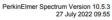


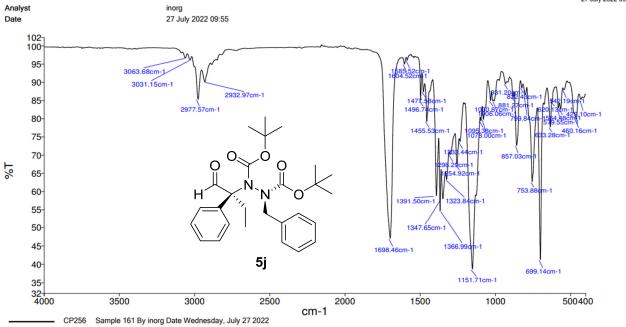


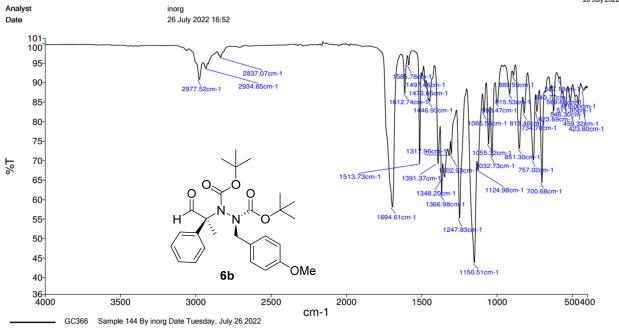

PerkinElmer Spectrum Version 10.5.3 27 July 2022 10:07

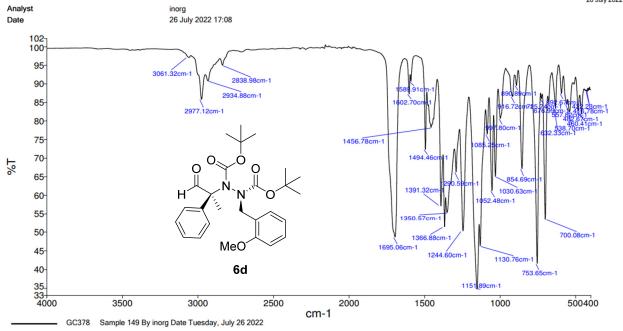


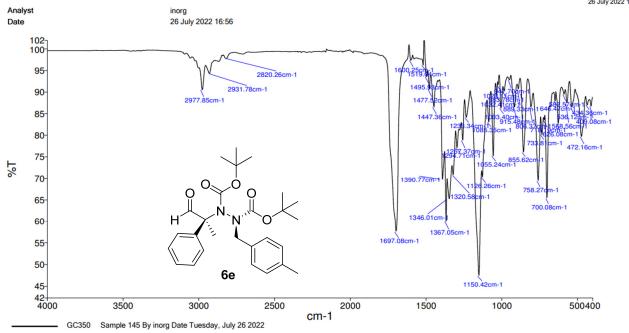


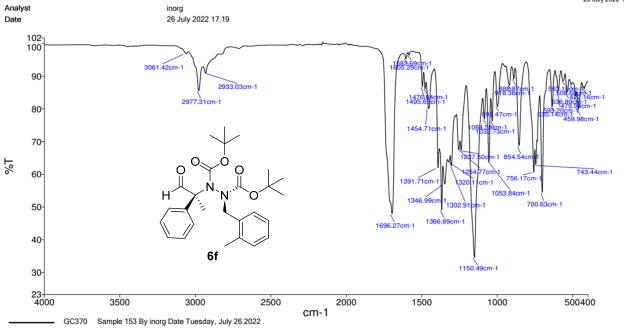





PerkinElmer Spectrum Version 10.5.3 26 July 2022 16:34






PerkinElmer Spectrum Version 10.5.3 26 July 2022 17:23

