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for OTRIMLE robust Gaussian mixture-based clustering

Christian Hennig1 and Pietro Coretto2,*

University of Bologna and University of Salerno

Summary

We introduce a new approach to deciding the number of clusters. The approach is applied to
Optimally Tuned Robust Improper Maximum Likelihood Estimation (OTRIMLE; Coretto
& Hennig, Journal of the American Statistical Association 111, 1648–1659) of a Gaussian
mixture model allowing for observations to be classified as ‘noise’, but it can be applied to
other clustering methods as well. The quality of a clustering is assessed by a statistic Q that
measures how close the within-cluster distributions are to elliptical unimodal distributions
that have the only mode in the mean. This non-parametric measure allows for non-Gaussian
clusters as long as they have a good quality according to Q. The simplicity of a model
is assessed by a measure S that prefers a smaller number of clusters unless additional
clusters can reduce the estimated noise proportion substantially. The simplest model is
then chosen that is adequate for the data in the sense that its observed value of Q is not
significantly larger than what is expected for data truly generated from the fitted model,
as can be assessed by parametric bootstrap. The approach is compared with model-based
clustering using the Bayesian information criterion (BIC) and the integrated complete
likelihood (ICL) in a simulation study and on two real data sets.
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1. Introduction

We introduce an approach for finding a suitable number of clusters for use with Optimally
Tuned Robust Improper Maximum Likelihood (OTRIMLE) clustering (Coretto & Hennig
2016, 2017), which attempts to find approximately Gaussian distributed clusters allowing
for some observations to be classified as noise or outliers. The approach in its general form
is very flexible and can be adapted to other clustering methods and other types of clusters,
but we focus on its use with OTRIMLE here. The approach is based on adequacy testing
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C. HENNIG AND P. CORETTO 231

of a fitted model by using parametric bootstrap. An early forerunner of this approach is
McLachlan (1987).

A key issue with choosing the number of clusters is that model assumptions never
hold precisely in reality. It is therefore important that statistical methods produce reasonable
results even if the model assumptions are violated. The problem with this is that what the
method tries to estimate is usually defined in terms of the nominal (assumed) model, and if
the model does not hold, it is not always clear what a ‘reasonable’ result would be. If clusters
are supposed to be (approximately) Gaussian, using a Gaussian mixture model for clustering
(Banfield & Raftery 1993) looks attractive. Estimation of the number of clusters for this is
often done using the Bayesian information criterion (BIC), for example in the R package
mclust (Scrucca et al. 2016). The BIC has been proven to be consistent for estimating the
number of mixture components (Keribin 2000) under some rather restrictive assumptions,
and is believed to be more generally consistent. This may be seen as an advantage, but
is in fact a problem if the aim is to interpret the mixture components as clusters rather
than just finding a good approximating Gaussian mixture for the data. A Gaussian mixture
model with a sufficiently large number of mixture components can approximate almost any
distribution arbitrarily well (for a recent precise version of this statement and a discussion
of some older versions, see Nguyen et al. 2020), and in reality, clusters are not precisely
Gaussian. This means that if the number of observations n becomes larger, a consistent
method for estimating the number of mixture components can be expected to add mixture
components in order to fit the real distribution better, and ultimately several components will
fit an approximately, but not precisely, Gaussian subset of the data that intuitively would
qualify as a single cluster, in turn overestimating the number of clusters. For the same reason,
a likelihood ratio test will reject a single Gaussian distribution for such clusters for large n
with high probability. This has also been observed in practice for the BIC (Hennig 2010).
The estimation of the number of clusters is therefore affected by violations of the model
assumptions in a more critical way than most standard statistical estimation problems.

The problem of choosing the number of clusters is notoriously difficult and has been
treated by many authors. In the mixture context, several alternatives to the BIC have been
considered. One popular alternative is the integrated completed likelihood (ICL; Biernacki,
Celeux & Govaert 2000), which as the method introduced here is meant to address the issue
that the BIC can choose too many mixture components for non-Gaussian clusters. Other
alternatives to the BIC, include the AICmix (Hui, Warton & Foster 2015) and MSCAD (Chen
& Khalili 2008), testing different model orders against each other by means of bootstrapping
the likelihood ratio (McLachlan 1987; Feng & McCulloch 1996) or theoretically (Chen, Li
& Fu 2012), and Bayesian approaches (Xie & Xu 2020), with more references in Frühwirth-
Schnatter, Celeux & Robert (2020). An alternative approach to fit non-Gaussian clusters with
Gaussian mixtures is merging of mixture components (Baudry et al. 2010; Hennig 2010;
Malsiner-Walli, Frühwirth-Schnatter & Grün 2017). Hennig & Lin (2015) use parametric
bootstraps from a null model for homogeneous data for choosing the number of clusters.
Section 4.3 of Ritter (2014) reviews versions of the BIC for robust clustering with trimming.

The precise definition of outliers/noise in cluster analysis is another issue. There is
ambiguity between noise and clusters in two respects. First, it is not clear how large a group
of outliers has to be in order to be interpreted as a cluster on its own, and second, there may
be very widely spread observations that can be well approximated by a Gaussian distribution
with a very low density everywhere, but may more appropriately be interpreted as noise

© 2021 Australian Statistical Publishing Association Inc.

 1467842x, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/anzs.12338 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



232 AN ADEQUACY APPROACH FOR THE NUMBER OF CLUSTERS

than as a cluster, depending on the subject matter and the meaning of the data. Not allowing
for a noise classification does not solve these issues as long as there are observations that
should appropriately be interpreted as outliers; integrating them into regular clusters affects
the estimation of these clusters and can also lead to misclassification of other observations.

A further issue is that to some extent more mixture components can be traded off
against more flexible covariance matrices. Covariance matrices that are too flexible are
already an issue for a fixed number of mixture components, because of potential degeneracy
or near-degeneracy of the likelihood (García-Escudero et al. 2018).

The consequence is that finding an appropriate number of clusters should not be seen as a
well-defined estimation problem of a statistical model. Rather it essentially requires decisions
by the user: how much better approximation of the data, how much simpler covariance matrix
structure that is less prone to degeneracy and what decrease of the noise proportion, would
justify adding another mixture component? A method that does not require any user input
such as the BIC should not be trusted, naively. These issues are acknowledged for example
by the authors of the R package tclust for robust trimmed clustering (Fritz, García-Escudero
& Mayo-Iscar 2012), who do not offer an automatic method for choosing the number of
clusters, but rather some graphical displays that allow the used to track the different aspects
to be traded off against each other.

On the other hand, in many situations, users do not have sufficient background knowledge
to make all the required decisions in a well-founded manner, and also, for systematically
evaluating the quality of an approach, automation that does not require manual adaptation
to every data set is required. For this reason, we not only offer an approach that allows the
user to make the required tuning decisions, but also suggest some default choices to give the
user a starting point and to enable evaluation by simulation. Ultimately, an optimal tuning
should depend on knowledge about the subject matter background and the aim of clustering.

The approach is based on the concept of ‘adequacy’ introduced by Davies (1995).
According to this concept, a model (Davies’ use of the term ‘model’ includes specific
distributions with given parameter values) is adequate for a data set, with respect to a
statistic Q, if the value of Q on the data set is ‘typical’ for data sets generated by the model.
This basically means that a significance test based on Q does not reject the model. The statistic
Q is chosen to reflect the sense in which the model needs to ‘fit’ the data in a given application
rather than following optimality considerations such as those by Neyman–Pearson; more than
one test statistic can be chosen and can be combined using Bonferroni’s correction. Unless
the distribution of Q on the model can be handled analytically, the parametric bootstrap
can be applied to approximate this distribution. The selection of the number of clusters is
a model selection problem, and Davies recommends to select the simplest model that is
adequate for the data (Davies & Kovac 2001), which could be the model with the lowest
number of mixture components, but see Section 4.4. Note that whenever a mixture with a
low number of mixture components fits the data adequately, the data could also be fit by a
model with more mixture components (one could just add small components around single
observations), which means that the data actually cannot distinguish between a model with
a small number of well-fitting mixture components and a model with a larger number of
components, despite the fact that automatic rules such as the BIC may be interpreted by
users as if this were possible. The simplest model that fits can be preferred for reasons of
parsimony, avoidance of overfitting, potentially better suitability for generalisation and ease
of interpretation.

© 2021 Australian Statistical Publishing Association Inc.
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C. HENNIG AND P. CORETTO 233

Some other work comparing a model fit on data with data generated from parametric
bootstrap comprises Wagenmakers et al. (2004), and posterior predictive checking in a
Bayesian framework (Meng 1994; Gelman, Meng & Stern 1996).

The OTRIMLE method is introduced in Section 2. Section 3 gives an outline of the
approach for deciding the number of clusters. This approach requires a number of decisions
by the user. Section 4 contains proposals for these decisions. Particularly, a statistic Q is
proposed that measures to what extent the found clusters in a data set for a given number of
clusters qualify as ‘adequate’. In Section 5, we compare the method with the BIC and ICL
for Gaussian mixtures, Gaussian mixtures with noise, mixtures of t and skew t distributions.
Section 6 concludes the paper.

We are very happy to be invited to contribute this paper to a Special Issue in honour of
Geoff McLachlan, who is a pioneer of the use of the parametric bootstrap for estimating the
number of mixture components (McLachlan 1987), mixtures of t and skew t distributions and
their use for accommodating outliers (Peel & McLachlan 2000; Lee & McLachlan 2013),
and who contributed to making statements about the approximation of arbitrary distributions
by mixtures precise (Nguyen et al. 2020). He has also contributed to inspiring and improving
work of ours by many valuable remarks, for which we are very grateful.

2. The OTRIMLE approach to robust clustering

When using mixture models for cluster analysis, usually mixtures of families of dis-
tributions are considered that formalise the idea of a homogeneous cluster. Every mixture
component is then interpreted as modelling a cluster, and the number of mixture components
corresponds to the number of clusters (there are exceptions to this, see Hennig 2010).

The most popular choice for continuous data is the family of Gaussian distributions.
A standard Gaussian mixture model assumes data x1,…,xn to be generated independently
identically distributed from a distribution with density

f (x; θ )=
G∑

g=1

�g�p(x; μg , �g), (1)

where �p(·; μ, �) is the p-variate Gaussian density with mean μ and covariance matrix �,
�g ∈ [0, 1] for j = 1, 2,…, G,

∑G
i=1 �g = 1, and θ is the parameter vector collecting all

�g , μg , �g , j = 1, 2,…, G. For given G, the parameters θ can be estimated by maximum
likelihood (ML). More precisely, a global optimum is often not available, and algorithms
such as the EM-algorithm are used that find a local optimum of the likelihood. Given
estimators (here denoted by θ̂ , �̂g , μ̂g , �̂g , j = 1, 2,…, G), probabilities that observations
xi, i = 1, 2,…, n, were generated by mixture component g can be estimated as

p̂ig = �̂g�p(xi; μ̂g , �̂g)

f (xi; θ̂ )
, (2)

and observation i can be assigned to the mixture component g that maximises p̂ig . This is
implemented in the R package mclust (Banfield & Raftery 1993; Scrucca et al. 2016), along
with a number of models defined by various constraints on the within-component covariance
matrices. The mclust-approach for deciding the number of mixture components G and the
covariance matrix model is to minimise the Bayesian information criterion (BIC),

© 2021 Australian Statistical Publishing Association Inc.
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234 AN ADEQUACY APPROACH FOR THE NUMBER OF CLUSTERS

BIC= k ln(n)−2 ln( L̂n), (3)

where k is the number of free parameters (k = (G − 1) + pG + p(p + 1)G=2 for a model
with fully free covariance matrices) and L̂n is the maximised likelihood for the model under
investigation.

It is well known that statistical methods based on a Gaussian distributional assumption
can be strongly affected by outliers, and this not different in cluster analysis. For fixed G,
outliers have to be included in a cluster, in turn affecting their mean and covariance matrix
estimators and often the classification of many further observations. In order to deal with
this, Banfield & Raftery (1993) proposed to add a so-called ‘noise component’ to the mixture
in order to collect outliers and to prevent them from affecting the Gaussian clusters. The
density then becomes

f (x; θ )=�0�+
G∑

g=1

�g�p(x;μg , �g), (4)

�� 0, �0 ∈ [0, 1], and now
∑G

i=0 �g = 1. They proposed to estimate the � as 1=M , where
M is the hypervolume of the smallest hyperrectangle to cover all data, assuming that �=0
outside that hyperrectangle. The number of clusters is still estimated by the BIC, adding the
�0-parameter to the parameter count. Although this method often works reasonably well, it
is actually not the ML estimator for � (Coretto & Hennig 2011), and neither is it breakdown
robust, because a single extreme outlier can make M arbitrarily large, preventing any other
outlier from being classified as noise (Hennig 2004). The same holds for another mixture
approach that is meant to be more robust than plain Gaussian mixtures, namely mixtures of
t distributions (Peel & McLachlan 2000).

Hennig (2004) noted that a method with a better breakdown point can be defined by
fixing � in (1). Allowing � to be positive on the whole Euclidean space makes f an improper
density, although a proper density can be defined that constrains the noise component to
occur in an unspecified set of Lebesgue measure 1=� that is assumed to cover all actually
observed data. In this way, all other parameters can still be estimated using the EM algorithm,
enjoy improved robustness properties and observations can still be clustered using (2). For
multivariate Gaussian mixtures, this has in detail been explored by Coretto & Hennig (2016,
2017) under the name ‘robust improper maximum likelihood estimator’ (RIMLE). Coretto
& Hennig (2016) propose to choose � as

arg min
�

(
D(�)+� �̂0(�)

)
, (5)

where D(�) is a measure of the Kolmogorov-type difference between the distribution function
of within-cluster Mahalanobis distances weighted by (2) between the observations and the
cluster centre, and the �2-distribution function, which should be observed for perfectly
Gaussian distributed observations. The weighting assigns all observations to the clusters
according to the estimated probability of being generated by that cluster, which particularly
means that observations that have a high estimated probability of being ‘noise’ will be
downweighted. Minimising D(�) means that � is chosen so that the estimated clusters will
look optimally Gaussian. This happens if �=0 is chosen. The parameter � is a tuning constant
that allows for tolerating more non-normality within clusters if in turn the estimated noise
probability �̂0(�) is decreased. Coretto & Hennig (2016) suggest �=1=3 as alternative to

© 2021 Australian Statistical Publishing Association Inc.
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C. HENNIG AND P. CORETTO 235

�=0. This is particularly useful for estimating the number of clusters with clusters that are
not necessarily required to be normal – see Section 5.1.

The function D(�) can degenerate and becomes meaningless if � is so large that all
or most observations are classified as noise. Therefore, using (5) requires that the average
posterior pseudo probability of observations to have been generated by the noise component
is limited, and Coretto & Hennig (2017) propose an upper bound of 0.5.

Like other methods based on Gaussian mixtures, RIMLE needs to address the issue
of a potentially degenerating likelihood due to covariance matrices with very small or zero
eigenvalues. This is done imposing the constraint

�max(θ )=�min(θ )� �<+∞, (6)

where �max(θ ) and �min(θ ) are the maximum and minimum of the eigenvalues of the covariance
matrices of the different Gaussian mixture components parameterised in θ , and � � 1 is
a constant to be chosen by the user. Based on experiments in Coretto & Hennig (2017),
� = 20 seems to be a sensible choice for standardised data (if the measurements of different
variables in the data set have different orders of magnitude, there is hardly any reasonable
way to specify �), although occasionally a user may look for either more spherical clusters
(which requires smaller �) or for even more flexibility of the covariance matrices (which
requires larger �). See García-Escudero et al. (2018) for a comprehensive discussion of
covariance matrix constraints in Gaussian mixture modelling, and particularly Section 4.1
of Ritter (2014) for robust clustering. Cerioli et al. (2018) argue that the choice of � has
impact on the number of clusters, and explore this for the case of a plain Gaussian mixture
model.

The resulting method is called ‘Optimally Tuned RIMLE’(OTRIMLE), and implemented
in the R package otrimle (Coretto & Hennig 2019). Theory including consistency for the
canonical functional, a breakdown point and detailed information about computation is given
in Coretto & Hennig (2017). A simulation study comparing OTRIMLE with plain Gaussian
mixtures and alternative robust methods is in Coretto & Hennig (2016). Likelihood-based
methods, such as BIC and ICL, should not be used for estimating the number of mixture
components with OTRIMLE, at least not in their original form, because the parameter �
is not chosen by ML and affects the comparison of models fitted for different numbers of
components in a way not covered by likelihood-based theory.

3. An adequacy approach to decide the number of clusters

We have argued in the Introduction that the problem of finding a suitable number
of clusters is essentially different from the problem of estimating the number of mixture
components. Even if a Gaussian mixture model is precisely fulfilled, a ‘submixture’ of several
poorly separated Gaussian components taken together can still be unimodal and even look
fairly close to a single Gaussian distribution. In most applications this would qualify as a
single cluster, and the number of meaningful real clusters in such a case would be smaller
than the number of Gaussian mixture components.

The problem of estimating the number of Gaussian mixture components is ill-posed
because any data set generated from a Gaussian mixture with a certain number of components
can be arbitrarily well approximated by a mixture with more components. This particularly
means that if the Gaussian mixture model assumption is not precisely fulfilled (as is always

© 2021 Australian Statistical Publishing Association Inc.
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Figure 1. Data generated from a mixture of three multivariate t3-distributions with clustering by
Gaussian mixture fitting (left side) and Gaussian mixture fitting with noise component (right side);
the number of mixture components was estimated by the BIC.

the case in reality), with enough observations a mixture with arbitrarily many components
will fit the data better than a mixture with few components, even if the latter may look
like an excellent representation of the intuitive clusters in the data. This is illustrated in
Figure 1, which shows data generated by a mixture of three multivariate t3 distributions
(generated by the setup ‘TGauss.3l’ in Coretto & Hennig 2016). The left side shows a
clustering from a plain Gaussian mixture produced by mclust with default settings. Although
there are three elliptical clusters clearly visible, the BIC estimates the number of Gaussian
mixture components as 6, because the intuitive clusters have not been generated exactly by a
Gaussian distribution. Adding a uniform noise component (right side of Figure 1) classifies
some outliers appropriately as ‘noise’, but does not help with the estimation of the number of
clusters, as the BIC still estimates six Gaussian components. A mixture of t distributions will
fit these data well with three mixture components; however, if the underlying distributions
are not exactly t distributions, it runs into similar problems – see Section 5.1. A consistent
method such as the BIC has more use for picking a mixture that fits the empirical density
well than for interpreting the resulting components as clusters.

This implies that the problem of deciding the number of clusters is not a well-defined
statistical estimation problem. It does not only rely on parameters of an assumed underlying
distribution, but also on user decisions. Even assuming that the Gaussian distribution is used
as a ‘cluster prototype’, that is, a cluster should look Gaussian or similar, the user has to
decide:

1. what is required of a data subset to be interpreted as cluster,
2. how far from a Gaussian distribution a within-cluster distribution is tolerated to be,

and
3. in case that some observations can be classified as outliers/noise, how small and

homogeneous an outlying data subset is required to be in order to be interpreted as
cluster rather than a group of outliers?

These decisions cannot be made from the data alone, and therefore user tuning is essential
for estimating the number of clusters. We believe that this is quite generally the case in

© 2021 Australian Statistical Publishing Association Inc.
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C. HENNIG AND P. CORETTO 237

cluster analysis, and that the vast majority of the literature ignores this, probably because
most users expect a solution without having to make decisions, and a solution that depends
crucially on user tuning may not be accepted as ‘objective’; see Gelman & Hennig (2017)
for a discussion of this issue.

We now introduce a general scheme for deciding the number of clusters that can
be applied to general model-based clustering methods, and that can be tuned by the user
addressing the issues above.

The scheme is based on a general approach to model selection proposed first in Davies
(1995) and more explicitly (in the context of non-parametric regression) in Davies & Kovac
(2001). The idea is that one can choose the simplest model that is adequate for the data
in the sense that it produces data that cannot be distinguished from typical data generated
by the model. Obviously, more complex models can be adequate as well, as is the case in
mixture modelling, but a more complex model will not be chosen if a simpler one exists
that is already adequate. Entry points for user tuning are:

1. the target model, that is, the model for which adequacy of the data is evaluated (in
cluster analysis this will often be a mixture model; here a Gaussian mixture model,
as we assume that the Gaussian distribution serves as ‘cluster prototype’),

2. the statistic, or potentially more than one statistics, that are used to distinguish the data
from what is expected under the model (in cluster analysis a statistic Q is required
that measures whether what is interpreted as clusters behave as clusters should behave
in the application at hand),

3. how atypical data has to look like in order to decide against the model (standard
significance levels such as 0.01 or 0.05 may be used), and

4. the formal definition of simplicity S (in cluster analysis the standard choice would be
the number of clusters, but we will penalise this with the estimated noise proportion
in order to stop the method from declaring too many observations ‘noise’).

We will work with a statistic Q that does not allow for simple analytic derivation of its
distribution for data generated by a mixture, and therefore its distribution will be approximated
by parametric bootstrap.

Let X = (x1,…, xn), xi = (xi1,…, xip)� ∈Rp, i = 1,…, n be the data set and CG(X) be
the output of the clustering method C with G clusters on X. Here is the general scheme:

1. Choose a target model, a clustering method that fits the target model, a statistic Q
that measures clustering quality, and a statistic S measuring the simplicity of a fit. In
practice also, a maximum number Gmax of clusters and a number of bootstrap resamples
B are required.

2. For G = 1,…, Gmax, compute a fit (clustering) of X with G clusters.
3 For G = 1,…, Gmax, generate B data sets DG,b, b = 1,…, B from the fitted model.

4. For given G, the clustering is adequate for the data if Q(CG(X)) is consistent with the
empirical distribution of Q(CG(DG,b)); see Section 4.3.

5. The final number of clusters is chosen as arg minG adequate S(G). In the simplest case
S(G) = G, and the scheme can be stopped once an adequate G is found.

A possible outcome of the scheme is that no clustering is adequate. This is informative
for the user in its own right, and means that the data are not compatible with the target
model, at least not for G � Gmax. There are various options to enforce a clustering if it is
required anyway. One could try a larger Gmax, choose the best found clustering according

© 2021 Australian Statistical Publishing Association Inc.
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238 AN ADEQUACY APPROACH FOR THE NUMBER OF CLUSTERS

to C(G), or ((C(X) − mQG))=sQG (see Section 4.3 for the definition), or try a non-model
based clustering method.

4. Key decisions and tuning

We illustrate the general approach by using it for deciding the number of clusters with
OTRIMLE. The number of bootstrap replications B and the maximum number of clusters
Gmax should optimally be as large as possible, but the method is computationally intensive,
so they need to be limited for pragmatic reasons. The choice of Gmax should also depend on
potential background information about a realistic or required number of clusters. Variable
B should be at least around 20 to give the method some stability, but B = 100 and higher
would be better. The further choices are less straightforward.

4.1. Data generation from the target model

The target model in case of OTRIMLE should be a Gaussian mixture with noise, similar
to (4), but (4) in the given form is not a proper probability model without constraining the
set where noise (i.e. observations from mixture component zero) can occur.

With all parameters estimated by OTRIMLE and assuming the noise to be constrained to
an unspecified set of Lebesgue measure 1=�, the estimated posterior probability of observation
xi, i =1,…, n, to be noise is

p̂i0 = �̂0�

f (xi; θ̂ )
.

For data generation from the target model for the parametric bootstrap, an observation is
assigned to the noise with probability �̂0, and given that it is assigned to the noise, we
propose to resample it from the existing data set with the noise distribution defined by

P̂r0{xi}= p̂i0
n∑

h=1
p̂h0

,

so that the probability of every observation to be drawn as noise is proportional to its
estimated probability to be noise in the data set. Non-noise data are generated in a standard
way from the estimated Gaussian mixture.

4.2. The clustering quality statistic

The clustering quality statistic Q is meant to formalise what a ‘good’ clustering is. We
do not insist on a precisely Gaussian shape, but we assume that the clusters of interest here
should be elliptical and unimodal with density decreasing from the mean symmetrically in
all directions. In such a case, the use of the Gaussian distribution as a cluster prototype and
the Gaussian mixture approach seem justified.

The Q proposed here measures in a non-parametric way to what extent the clusters have
such a shape. We start from a one-dimensional measure for a single cluster. For p>1, within-
cluster principal components (PCs) are computed, and the values of the one-dimensional
measure are then aggregated over all PCs and over all clusters to compute the overall Q. The
definition is not motivated by any model-based optimality theory, but rather custom-made

© 2021 Australian Statistical Publishing Association Inc.
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C. HENNIG AND P. CORETTO 239

in order to express exactly what is required. It is based on a test for unimodality by Pons
(2013, p. 79).

Assuming one-dimensional data standardised to have mean zero and variance one in
cluster g =1,…, G, we use the following definition:

1. Choose a kernel density estimator and q points z1 < z2 < · · ·< zq symmetrically around
the mean. Our software uses the default of the R function density, q=100, and the 100
points are chosen as p-quantiles of the standard Gaussian distribution with p ranging
from 0.005 to 0.995 in equidistant manner.

2. Compute kernel density estimators at the quantiles f̂ (z1),…, f̂ (zq) based on a weighted
sample in which xij has a weight according to (2).

3. Let f̂ (1) � f̂ (2) � · · ·� f̂ (q) be the sorted version of f̂ (z1),…, f̂ (zq).

4. For h=1,…, q=2, let f̂ *h =
(

f̂ 2h−1 + f̂ 2h
)

=2. This implies that f *1, f *2,…, f *(q=2), f *(q=2),

…, f *1 are a symmetric versions of the original f̂ (z1),…, f̂ (zq).
5. Compare the symmetrised kernel density with the mean (ql and qr refer to the left and

right side of the mean respectively):

ql =
q=2∑
i=1

( f̂ (zq=2+1−i)− f̂ *i)2, qr =
q=2∑
i=1

( f̂ (zq=2+i)− f̂ *i)2.

Aggregating: Q̃g =
√

1
q (ql +qr).

The process is illustrated in Figure 2. If the estimated density already decreases mono-
tonically and symmetrically from the mean, we have Q̃g = 0, which is the best possible
value.

For aggregating Q̃g-values over different clusters, it is important to take the size of
the estimated clusters, that is, �̂g , g = 1,…, G, into account in order to avoid the overall
measure being dominated by a highly unreliable value from a small clusters. The rationale
is not to give bigger clusters more weight, because this is about estimating the number of
clusters, so small clusters that are bad should not be tolerated. However, Q̃g can also be
expected to be more variable for even valid small clusters, and this needs to be accounted
for. Therefore we use

QÅ
g = Q̃g −En �̂g Q̃g√

varn �̂g ( Q̃g)
,

where the expectation Em and variance varm are computed assuming m i.i.d. observations
from an N(0, 1)-distribution in the corresponding cluster. These values can be simulated
to very high precision and interpolated to allow for non-integer m. This idea is similar to
‘pivoting’ in bootstrap inference (Hall 1992).

For p-dimensional clusters with p > 1, within-cluster PCs are computed first, based on
the weighted within cluster data with weights according to (2) again. For j = 1,…, p, let
Qjg be QÅ

g computed on the jth standardised within-cluster PC of cluster g. Aggregating
information from the PCs,

Qg = 1

p

p∑
j=1

(Q2
jg)1(Qjg > 0),

© 2021 Australian Statistical Publishing Association Inc.
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240 AN ADEQUACY APPROACH FOR THE NUMBER OF CLUSTERS
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Figure 2. Illustration of the one-dimensional measurement of cluster quality. Left side: Suppose this
is the kernel-estimated density for the weighted data set within the first estimated cluster at z1,…, zq,
obviously not looking unimodal. Middle: Density values at z1,…, zq are ordered from the largest to
the smallest. Pairs of density values (the two largest ones, then the third and fourth largest and so on)
are averaged, and the resulting density values are shown on the right side of the mean at zq=2+1,…, zq

from largest to smallest. Right side: The same values are also put on the left side of the mean in
descending order from the mean to the outskirts, producing a density symmetric about the mean. Q̃g

is the root of the averaged squared difference between these.

where 1(·) denotes the indicator function. The rationale here is that (a) if Qjg �0, it means
that on the jth PC, the symmetric unimodality statistic behaves as expected under a Gaussian
distribution or even better, so there is no indication whatsoever against this being a cluster, and
(b) squaring positive Qjg will emphasise problematic issues in certain PCs. The contribution
of the first PCs is not upweighted in the definition of Qg , because potential issues with
unimodality are of interest along all PCs in the same way, although one could intuitively
expect that issues occur more often along the first PC.
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C. HENNIG AND P. CORETTO 241

Finally, for the same reason, squares are applied when aggregating over the clusters
in order to make q sensitive against substantial issues in any cluster:

Q(G)=
√√√√ G∑

g=1

(Q2
g).

A number of alternatives choices of Q could be considered. Other tests for unimodal-
ity have been proposed (Silverman 1981; Hartigan & Hartigan 1985; Siffer et al. 2018).
The statistic Q as defined above was chosen because it does not only measure unimodal-
ity but also symmetry (elliptic shape is measured to some extent by assessing the
symmetric shape in all PC directions), and it allows for relatively straightforward aggre-
gation over different mixture components and dimensions, because it measures deviations
from the symmetric unimodal shape directly. Measuring unimodality for multivariate data
is hard, and it cannot be ruled out that violations are only apparent in directions other
than the PCs. Multimodality can often be expected to lead to increased variance (Siffer
et al. 2018), and therefore the first PCs are good candidates for detecting it, but exceptions
exist.

It may be possible to adapt other unimodality statistics to our approach as well. Also,
Q could be defined in different ways to measure different cluster characteristics of interest.
As a simple variant the symmetry requirement can be dropped by centring step 5 at the
maximum estimated density mode rather than the mean, and compare the estimated data
density with the un-symmetrised sorted density values on the left and right side of the
mode, respectively, which is the original proposal by Pons (2013, p. 79). The statistic Q
could also take into account classification entropy as the ICL does. More than one statistic
can be employed at the same time to measure multiple features of the clusters (Akhanli &
Hennig 2020). Elaboration of these ideas is left to future work. Section 6 has some more
discussion.

4.3. Bootstrap adequacy

Because the method is computer intensive and precise quantiles may require a too large
B, G will be defined to be adequate if

Q(G)−mQG

sQG
� c, (7)

where mQG and sQG are location and scatter statistics of the empirical distribution of Q(G) for
data generated from the fitted model. We have observed that with OTRIMLE (as potentially
with other clustering methods) Q(G) may produce outlying values. Certain fitted distributions
may generate data sets that are quite ambiguous regarding the optimal clustering and the num-
ber of clusters. Such outlying values normally indicate a very bad clustering, and Q(G) on the
original data set should not be assessed as adequate just because certain Q(G) on bootstrapped
data are even worse. For this reason, mQG and sQG should be chosen robustly. We suggest the
robust 	-estimator for location and scale (Maronna & Zamar 2002). With appropriate con-
sistency factor, this is consistent if the parametric bootstrap distribution of Q(G) is Gaussian
(we currently do not have a proof for this, so this is just heuristic; Chebyshev’s inequality can
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242 AN ADEQUACY APPROACH FOR THE NUMBER OF CLUSTERS

be used for guidance with general distributions), allowing for a standard interpretation of the
constant c.

The statistic Q is assumed to be defined so that lower values imply a better clustering
quality, and adequacy will only be rejected if Q(G) is too large. Choosing, for example,
c = 2 then means that if Q(G) on bootstrapped data follows a Gaussian distribution, the
probability that adequacy is rejected is about 0.023.

4.4. The simplicity measure

The simplest choice for the simplicity measure S is S(G) = G; a model is seen as
simpler if it has fewer clusters. This is appropriate for standard non-robust clustering, but it
is problematic if it is allowed to classify a number of observations as ‘noise’. With OTRIMLE,
as well as with trimmed clustering and the noise component in mclust, it would be possible
to declare all observations ‘noise’ that make clustering ambiguous or belong to small clusters,
in which case a high-quality clustering with small G for the remaining observations could
be found easily. For this reason, and because it is generally ambiguous whether observations
that belong to small groups in some distance from the bigger clusters should be declared
noise or clusters on their own, too much noise should be penalised. We propose

S(G)=G + �̂0

p0
, (8)

where p0 is a constant chosen by the user. It specifies the smallest percentage of additional
noise that the user is willing to trade in for adding another cluster, that is, if p0 =0.05 (which
we use as a default), it means, say, that a clustering with G =6 and �̂0 =0.04 is assessed
as ‘simpler’ as a clustering with G = 5 and �̂0 = 0.1. The former clustering will then be
preferred by our method if both clusterings are adequate. Particularly, this will normally
imply that clusters with �̂0 < p0 are not found, because they could simply be declared noise
and the resulting clustering would be ‘simpler’ and as adequate, although there may be
exceptions in case that the smallest cluster has a high-quality Qg compared to the other
clusters.

5. Experiments

The adequacy approach to choose the number of clusters with OTRIMLE (called AOTRI
in the following) is compared to different mixture model-based methods in a simulation
study and on two data sets of scientific interest, one with and the other one without given true
G. There is always a tension between stating that a method requires user tuning dependent
on the specific situation, and running it in a default fashion on artificial data sets, but we
think that both of these have their justification. Where user decisions can be used with
convincing justification to adapt the method to what is required in a given application, this
is certainly recommended. However, in many situations, the user does not have a clear idea
how to make some or all of these choices, and therefore defaults are often useful. They
are also required in order to compare the method in a ‘neutral’ fashion with others. In the
following, we choose p0 =0.05 in (8), that is, we prefer a solution with one cluster more if
that reduces the estimated noise by 0.05 or more. We did some experiments with p0 =0.02
(not shown), but results were rarely different. We choose c=2 in (7) as maximum value of
the standardised clustering quality for the model to still count as ‘adequate’. The maximum
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C. HENNIG AND P. CORETTO 243

eigenvalue ratio for covariance matrices was chosen as �=20. Variables were standardised
before clustering in order to allow for a scale-independent interpretation of � except where
explicitly mentioned.

We looked at both �=0 and �=1=3 in (5), the latter called AOTRIB, and meaning that
for fixed G more non-Gaussianity within clusters is tolerated if that reduced noise. Results
were occasionally different. Note that � trades non-Gaussianity against noise for fixed G,
whereas c tunes trading non-Gaussianity against non-adequacy of the non-noise, usually
leading to a larger G (if anything changes at all, which it often does not).

We chose Gmax =10 in the simulations. This choice does not matter, however, as long
as the finally chosen G has a value of S(G) < Gmax +1 in (8), because then it will be chosen
regardless of results for higher G. As far we have seen, for all data sets, larger Gmax could
not have changed results for this reason; for the BIC and ICL this can never be known,
which is an advantage of our approach.

The number of bootstrap replicates is chosen as B = 30 in the computer intensive
simulations, but B =100 in Sections 5.2 and 5.3.

Declaration of selection bias. As this paper introduces a new method, as a proof of
concept, we need to show some situations in which it works well. We looked at some other
data sets and data generating mechanisms (although usually with a very small number of
test runs). In many cases, there was no big difference between the different methods, and
sometimes mclust with or without noise, or a mixture of t distributions or skew t distributions
worked better, though never all of them. Sometimes nothing worked well. So we do not
claim that AOTRI/AOTRIB is universally the best, just where we show it is.

5.1. Simulation study

In this study, we compare AOTRI and AOTRIB with some mixture model-based cluster-
ing methods that estimate the number of clusters using the BIC or the ICL. More precisely,
we use the R package mclust with default settings for fitting a Gaussian mixture with
BIC and ICL (GBIC, GICL), and with noise component (GNBIC); the noise component
is initialised by the R function NNClean in package prabclus with parameter nnk=5

(Byers & Raftery 1998). We use the R package teigen (Andrews et al. 2018) for fit-
ting mixtures of multivariate t distributions using the BIC and ICL (TBIC, TICL). We
use the R package EMMIXskew for fitting mixtures of skew t distributions (Wang, Ng
& McLachlan 2009; Lee & McLachlan 2013; SKTBIC). We use fully flexible covariance
matrices and degrees of freedom if possible, but sometimes EMMIXskew does not deliver
a solution with the default settings, in which case we try out more constrained covari-
ance matrix models as offered by EMMIXskew until a valid solution is found, which in
the simulations ultimately always was the case. 100 data sets have been generated from
each DGP.

We consider the chosen number of clusters and the adjusted Rand index comparing the
resulting clustering with the true clustering (ARI; Hubert & Arabie 1985). This becomes 1 for
perfect correspondence, and 0 is its expected value for comparing two random clusterings.
For the AOTRI variants and GNBIC, the noise component is included as a cluster in the
computation of the ARI with one exception. In a real situation, classifying observations as
‘noise’ indicates that cluster membership is unclear, and on this basis these observations
could be excluded from the computation of the ARI, but this could be seen as an unfair
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244 AN ADEQUACY APPROACH FOR THE NUMBER OF CLUSTERS
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Figure 3. First two dimensions of data from simulated DGP 1, generated from a mixture of three
multivariate Gaussian distributions.

advantage for these methods, because the other methods are assessed based on all observations
including those that are hardest to classify. Therefore, we decided to include the noise in
the ARI computation, although we show both results for DGP 4. A number of alternatives
to the ARI have been proposed in the literature. For some experiments we also evaluated VI
(Meila 2007) and BCubed (Amigo et al. 2009), but both Pearson and Spearman correlations
between any two of the three indexes were larger than 0.96, so we present results with the
ARI only here.

We simulated data from four DGPs. DGP 1 is a plain Gaussian mixture with G = 3
components, all with probability 1

3 . There are n=1000 observations in p=10 dimensions.
The means and covariance matrices of the first two variables (see Figure 3) are: μ1 = (−3, 0)�,
�1[1, 1] =�1[2, 2] = 1, �1[1, 2] = 0.5; μ2 = (8, 0)�, �2[1, 1] =�2[2, 2] = 2, �2[1, 2] =−1.5
μ3 = (5, 9)�, �3[1, 1]=�3[2, 2]=2, �3[1, 2]=1.3. The third to tenth variable are generated
from N(0, 1) independently of the others. Standardising the variables implies downweighting
of the cluster structure compared to the non-informative third to tenth variables, causing
problems for all methods including GBIC and GICL of which the model assumptions are
fulfilled here, and therefore for DGP 1 and DGP 2 variables were not standardised before
clustering.

The results for DGP 1 are shown in Figure 4 (see Table 1 for the mean ARI values).
GICL produces perfect results here, as does, somewhat surprisingly, SKTBIC. TBIC and
TICL perform substantially worse, TICL being the better of the two. What happens here
is analogous to the problem shown in Figure 1; as the clusters are not t distributed, the
methods often add mixture components to approximate the Gaussian distributions better by
t distributions. The remaining methods including the two AOTRI methods almost always
find the correct clustering, with a few exceptions.

DGP 1 serves as a baseline for DGP 2, which is identical to DGP 1, except that one
observation from cluster 1 has its value in the third variable replaced by 1000, and therefore
is now a gross outlier. The results for DGP 2 are shown in Figure 5 and Table 1. The AOTRI
variants produce even slightly better results than in DGP 1; the added extreme outlier may
occasionally stop truly Gaussian observations from being classified as noise. The outlier
also seems to regularise TBIC and TICL to some extent, although their results are still not

© 2021 Australian Statistical Publishing Association Inc.
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Figure 4. Left side: Distribution of numbers of clusters by method for DGP 1 (true G =3) over 100
simulation runs. Right side: Corresponding distributions of adjusted Rand index values.

excellent. The result of SKTBIC is still very good, typically adding a cluster for the outlier
alone, and the robustness of GNBIC looks satisfactory. On the other hand, GBIC deteriorates
strongly, and GICL worsens significantly as well. The effect of the outlier on these methods
is in many cases that the choice of the covariance matrix model is affected and a model is
used that requires more mixture components to fit the clusters.

DGP 3 with n=2000, p=20 was designed to deviate from the model assumptions in a
way that does not make the clusters look strikingly different from Gaussian ones, but with
some heavier tails. Again the clustering structure is present only in the first two variables,
but these are now t3 distributed; the third to twentieth variable are again standard Gaussian;
outliers as occasionally generated by t3 distributions are now in the same variables that also
have the clustering structure, as opposed to DGP 1 and 2. See the supplement of Coretto
& Hennig (2016) for full details. Figure 1 shows the first two variables generated by this
DGP. Results are shown in Figure 6 and Table 1.

AOTRI estimates G = 3 correctly for 88 data sets (AOTRIB for 87), and gets the
clustering almost completely right in these cases, which does not hold for any of the other
methods. In the other cases, they estimate either G =2 or G =4. At least in the latter case,
the ARI-values are still very high. As this DGP has t as well as Gaussian distributions, the
model assumptions of none of these methods is perfectly fulfilled. They estimate G =4 in
almost all cases, adding a fourth mixture component that collects observations so that the

Table 1. Average adjusted Rand index values over 100 simulation runs. The last line gives
the values for DGP 4 excluding the observations that were classified as noise.

Method ARI AOTRI AOTRIB GBIC GICL GNBIC TBIC TICL SKTBIC

DGP 1 0.955 0.963 0.945 0.999 0.989 0.631 0.842 0.999
DGP 2 0.967 0.976 0.632 0.844 0.918 0.901 0.906 0.968
DGP 3 0.947 0.957 0.861 0.864 0.845 0.853 0.862 0.636
DGP 4 0.718 0.801 0.662 0.675 0.699 0.654 0.662 0.838
DGP 4b 0.919 0.822 0.662 0.675 0.716 0.654 0.662 0.838
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Figure 5. Left side: Distribution of numbers of clusters by method for DGP 2 (true G =3) over 100
simulation runs. Right side: Corresponding distributions of adjusted Rand index values.

three main components look closer to the assumptions. SKTBIC estimates G = 2 with a
worse ARI in most cases.

DGP 4 with n = 660, p = 6 brings together different shapes of distributions in the
same data set, as is the case in some real applications. Cluster structure occurs on the
first four variables, the fifth variable is standard Gaussian, the sixth is t2, generating some
outliers. There are two Gaussian clusters with sizes 250 and 150, an independent product
of exponential variables with 70 observations, a shifted multivariate t2 distribution with 70
observations and a tight uniform with 100 observations, therefore G =5. There are 20 ‘true’
noise points, 10 of which are generated by a wide uniform distribution and 10 by a wider
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Figure 6. Left side: Distribution of numbers of clusters by method for DGP 3 (true G =3) over 100
simulation runs. Right side: Corresponding distribution of adjusted Rand index values.
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Figure 7. Data simulated from DGP 4 with true clustering. ‘N’ denotes noise, half of which was
generated by a uniform and half by a t3, see Hennig (2007).

spread t2 (see Figure 7). This was taken from Hennig (2007), where details are given. Only
the uniform cluster was added, centred at (2, 0, 4, 4) with range 0.4 on the first four variables.

For the results, see Figure 8 and Table 1. The best performance is shown by SKTBIC
regarding choosing G and also regarding the plain ARI. AOTRI and AOTRIB have a tendency
to underestimate the number of clusters. This can mainly be explained by the fact that the
strongly asymmetric exponential cluster is not well represented by a mode at the mean, and
therefore the Q-criterion will prefer solutions that classify this as noise. This is not a proper
cluster in the sense defined by Q (as long as its asymmetric version is used) and should
arguably not be counted when operating with a symmetric prototype idea of a cluster. We
also give ARI-results not involving the observations classified as noise in Table 1 (DGP
4b). Regarding these, AOTRI and AOTRIB perform better than the SKTBIC; if in a real
application it is acceptable to not classify and interpret the observations classified as ‘noise’,
AOTRI classifies the remaining observations very reliably. Regarding the number of clusters

© 2021 Australian Statistical Publishing Association Inc.
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Figure 8. Left side: Distribution of numbers of clusters by method for DGP 4 (true G =5) over 100
simulation runs. Right side: Corresponding distribution of adjusted Rand index values.

and raw ARI, AOTRIB with �=1=3 is almost as good as SKTBIC and clearly better than
AOTRI. The latter is better when estimated noise is discounted. This is largely due to the
larger estimated noise proportion: Observations that are not identified as noise by AOTRI
are those that are easier to classify. GBIC, GICL and GNBIC tend to fit some non-Gaussian
clusters with more than one Gaussian component, and overestimate G in this way. The ICL
does not help much here. TBIC and TICL produce a large variance of the ARI and the
estimated G, sometimes over- and sometimes underestimating it.

Overall AOTRI and AOTRIB show the best performance, although they are not best
for every single DGP and run into occasional problems. The remaining methods all have
some strength and some weaknesses; SKTBIC does very well except in DGP 3. GBIC and
GNBIC overestimate G in case of non-Gaussian clusters, with deteriorating effect on the
ARI. GICL does somewhat better, but does not solve the issue completely. TBIC and TICL
do fairly well for DGPs 2 and 3 but are much weaker in DGPs 1 and 4.

5.2. Olive oil data

The first real data set is from Forina et al. (1983). The data set contains p=8 chemical
measurements on n = 572 different specimen of olive oil produced in G = 9 regions in
Italy (northern Apulia, southern Apulia, Calabria, Sicily, inland Sardinia and coast Sardinia,
eastern and western Liguria, Umbria). It has been used several times for benchmarking
of supervised and unsupervised classification methods. Interpreting the regions as the true
clusters, some of them have a clearly non-Gaussian shape, and there are some outliers.

Assuming that a researcher analysing these data knows that clusters can be rather small
(the smallest true cluster contains 4.4% of the observations) we analyse this using p0 =0.02.
The AOTRI results are visualised in Figure 9. This shows that G =3 and G �6 are adequate.
G = 9 has a substantially lower noise proportion than the lower numbers of clusters. It is
therefore the G with the smallest S(G) out of the adequate ones, and is chosen as optimal, so
that G is estimated correctly. It still classifies more than 22% of the observations as noise.

© 2021 Australian Statistical Publishing Association Inc.
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Figure 9. AOTRI results for olive oil data. Left side: Density-based clustering quality criterion Q(G)
for the different numbers of clusters. The connected lines refer to the clustering of the original
data set, the circles to the clustering of bootstrapped data sets. The red ‘X’ denotes the cutoff point
for a clustering to be adequate. Right side: Noise proportions, and ordering of numbers of clusters
according to S(G).

This seems high, but other methods have issues with correctly classifying these obser-
vations as well. The ARI between this solution and the true regions is 0.762, including the
observations classified as noise; without them it is 0.930. AOTRIB estimates G =8 with only
5.6% of the observations classified as noise, and it achieves a better ARI of 0.808 including
the noise.

GBIC and GICL both estimate the same model with G = 10 and an ARI of 0.552 at
the upper end of the range of tried out G-values. Introducing a noise component as GNBIC
does improves this to 0.599 with G =8 including the noise, or 0.607 without it. TBIC and
TICL agree on G = 5. The ARI is rather good at 0.773. SKTBIC estimates G = 7 and an
ARI of 0.548.

5.3. Districts of the city of Dortmund

A data set characterising the 170 districts of the German city of Dortmund is presented
in Sommerer & Weihs (2005). This data set does not come with true cluster labels. We used
a version consisting of five sociological key variables and transformed them in such a way
that fitting Gaussian distributions within clusters makes sense. The resulting variables are
the logarithm of the unemployment rate (‘unemployment’), the birth/death balance divided
by number of inhabitants (‘birth.death’), the migration balance divided by number of in-
habitants (‘moves.in.out’), the logarithm of the rate of employees paying social insurance
(‘soc.ins.emp’), and the percentage of foreigners among all unemployed and dependently
employed persons (‘foreigners’).

Figure 10 shows that there is an extreme outlier in the scatterplot of ‘birth.death’
and ‘moves.in.out’ (called ‘Romberg Park’, a park district with a clinic), with some more
outlier candidates. The scatterplots of ‘soc.ins.emp’ with ‘unemployment’ and ‘foreigners’,
respectively, show some potential non-homogeneous structure.

© 2021 Australian Statistical Publishing Association Inc.
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Figure 10. District of Dortmund data with clustering by AOTRI.

Figure 11 shows that the clusterings for G between 2 and 7, 9, and 10 are assessed
as adequate, but that there are very high noise proportions for G < 6. Therefore AOTRI
assesses G = 6 as optimal. As far as the clusters can be assessed from Figure 10, they
seems sensible, with clusters 5 and 6 showing a particularly clear profile, although one
may wonder whether the data could be represented by a lower number of clusters. The
outliers seem well detected. Figure 10 and cluster-wise boxplots (not shown) show that
the different clusters have distinct profiles in terms of the five variables. Cluster 5 has
the highest values of ‘unemployment’, ‘foreigners’ and ‘birth.death’. Cluster 6 has high
‘social.ins.emp’ and is quite homogeneous on a number of other variables. Cluster 2 is
highest on ‘moves.in.out’ and lowest on ‘social.ins.emp’. Cluster 3 is lowest on ‘foreigners’
and joint lowest on ‘unemployment’. Cluster 4 is lowest on ‘moves.in.out’ and has otherwise
fairly homogeneous values in the middle of the range. Cluster 1 is more difficult to interpret,

© 2021 Australian Statistical Publishing Association Inc.
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Figure 11. AOTRI results for Dortmund data. Left side: Density-based clustering quality criterion
Q(G) for the different numbers of clusters. The connected lines refer to the clustering of the original
data set, the circles to the clustering of bootstrapped data sets. The red ‘X’ denotes the cutoff point
for a clustering to be adequate. Right side: Noise proportions, and ordering of numbers of clusters
according to S(G).

with homogeneous mid-range values for ‘social.ins.emp’and ‘foreigners’and a large variance
including the lowest values of ‘birth.death’.

AOTRIB finds the same outliers as AOTRI, but prefers G = 3 (with noise proportion
0.018, whereas AOTRI estimates this as 0.206 for G = 3), putting the observations in the
lower density region in the upper right of ‘unemployment’ vs. ‘soc.ins.emp’, together, and
splits the rest into two bigger clusters, one of which is almost identical to AOTRI’s cluster
3. This seems data analytically reasonable with the clusters more visibly distinct, although
it encodes rougher information on the structure of the districts. GBIC and GICL choose
the same model with G = 4 as optimal. This includes a large variance cluster joining the
outlier Romberg Park with some districts that have high ‘foreigners’ values and does not
make much sense. TBIC and TICL choose G = 2, just distinguishing the main bulk of
the data from a group collecting atypical observations in various directions. SKTBIC fits the
whole data set by G =1. All of these seem to be of little use for the understanding of the
city districts. GNBIC with noise components selects a reasonable solution with G =4.

Overall the simulations and data examples illustrate that AOTRI/AOTRIB can give
reasonable and useful results in a variety of situations in which several competitors have
difficulties.

6. Conclusion

The problem of choosing the number of clusters is very difficult, particularly in appli-
cations in which observations occur that do not belong to any cluster. It is often treated as
an estimation problem regarding the true number of mixture components in a parametric
mixture distribution, for example a Gaussian mixture, but then clusters that make interpre-
tative sense and are even slightly non-Gaussian are often fitted by more than one mixture
component.

An appropriate decision rule for the number of clusters in a Gaussian mixture context
involves a decision about what kind of non-Gaussian data subset still qualifies as a cluster.

© 2021 Australian Statistical Publishing Association Inc.
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252 AN ADEQUACY APPROACH FOR THE NUMBER OF CLUSTERS

This is formalised by our clustering quality statistic Q. The observed value of Q is compared
to what is expected if data are indeed generated by a Gaussian mixture with the estimated
parameter values. If an underlying distribution of a cluster has a tendency to produce better
clusters than a Gaussian according to Q (which is the case for distributions such as the t
distribution, for which the density goes down faster from the mean than for the Gaussian), the
procedure will accept such clusters. Some users may be willing to accept certain potentially
unimodal clusters even though they look somewhat worse than what is expected from the
Gaussian. This could be achieved by changing the cutoff value c for adequacy to something
larger, say from 2 to 3 or 4. However, this would allow for clusters that look less unimodal.
Another possible modification is to re-define Q in order to allow for asymmetric clusters,
although it may then be better to start with a mixture of skew distributions.

Readers may wonder whether the Gaussian mixture model is a good starting point if it is
of interest to fit non-Gaussian clusters by a single mixture component. The answer is that this
is appropriate if the interest is in finding clusters that are roughly Gaussian-shaped, which we
define here as unimodal, and approximately elliptical. We want to avoid modelling clusters
that share enough key characteristics with the Gaussian, at least approximately, by more than
one mixture component, which is the reason why we do not choose Q as a likelihood ratio or
a goodness-of-fit statistic for a Gaussian distribution. Furthermore in many applications, it
is desirable to have a distribution with light tails as a cluster prototype distribution, because
distributions with heavier tails generate observations with larger probability that are far from
the main bulk of the data, and are therefore often more appropriately interpreted as outliers
rather than cluster members – see McLachlan & Peel (2000, p. 231 ff.) for mixtures of t
distributions.

It is ultimately up to the user to decide what kind of clusters is required in a given
application. Without such decisions, the data on their own do not provide sufficient information
about the clustering structure required to fit them; there are severe identifiability problems
when choosing a mixture model. Most (if admittedly not all) of the required tuning of the
method proposed here can be directly related to such decisions and can therefore be seen
as a feature rather than a drawback.

The general adequacy approach presented here can be used for choosing the number of
clusters for other clustering methods, as long as a model is given that formalises a prototype
clustering structure of interest to which parametric bootstrap can be applied. The clustering
quality statistic Q can be chosen in different ways, formalising other concepts of admissible
clusters, or even the same concept in alternative ways. One could also attempt to select
parameters such as � and � in this way, although this is probably more difficult due to the
continuous nature of these parameters. This is left to future work.

The approach as presented here along with the accompanying plots shown in Sections
5.2 and 5.3 is implemented in the R package otrimle.
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