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1  |  INTRODUC TION

Predicting the impact of climate change on the structure and 
composition of biological communities is a major goal of conser-
vation biology (Fredston-Hermann et al., 2018; Friedman et al., 
2020). Simplified models based on thermal tolerances of individ-
ual taxa fail to capture the response of communities because they 

cannot incorporate many other processes that influence spe-
cies distributions (Doney et al., 2012; Griffith et al., 2018; Steger 
et al., 2022; Trisos et al., 2020). A long-term perspective on the 
variability and resilience of communities is becoming increasingly 
important, as conservation strategies are faced with accelerating 
global change (Barnosky et al., 2017). Geobiological archives, such 
as well-resolved, fossil-rich sedimentary successions, can extend 
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Abstract
Preserving adaptive capacities of coastal ecosystems, which are currently facing 
the ongoing climate warming and a multitude of other anthropogenic impacts, re-
quires an understanding of long-term biotic dynamics in the context of major envi-
ronmental shifts prior to human disturbances. We quantified responses of nearshore 
mollusk assemblages to long-term climate and sea-level changes using 223 samples 
(~71,300 specimens) retrieved from latest Quaternary sediment cores of the Adriatic 
coastal systems. These cores provide a rare chance to study coastal systems that 
existed during glacial lowstands. The fossil mollusk record indicates that nearshore 
assemblages of the penultimate interglacial (Late Pleistocene) shifted in their faunal 
composition during the subsequent ice age, and then reassembled again with the re-
turn of interglacial climate in the Holocene. These shifts point to a climate-driven 
habitat filtering modulated by dispersal processes. The resilient, rather than persis-
tent or stochastic, response of the mollusk assemblages to long-term environmental 
changes over at least 125 thousand years highlights the historically unprecedented 
nature of the ongoing anthropogenic stressors (e.g., pollution, eutrophication, bottom 
trawling, and invasive species) that are currently shifting coastal regions into novel 
system states far outside the range of natural variability archived in the fossil record.
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the records of ecosystem responses to climatic shifts far beyond 
the limited timescales of direct ecological monitoring typically re-
stricted to the most recent decades (e.g., Dillon et al., 2020; Harnik 
et al., 2012; Kidwell, 2015; Tomašových et al., 2020). In particular, 
the late Quaternary geological record, which archives repeated 
landward–seaward migrations of coastal environments during 
glacio-eustatic cycles, can potentially provide direct documentation 
of long-term dynamics of marine ecosystems. These natural experi-
ments allow for contrasting empirical patterns against conceptual 
models of community response (Figure 1). For example, a commu-
nity structure can exhibit persistence (resistance sensu Grimm & 
Wissel, 1997), if it continues through the perturbation without re-
arranging into a different state (Figure 1a,d; see also Davies et al., 
2018; Grime et al., 2008; Hyman et al., 2019). Alternatively, the 
reorganization of communities can indicate resilience (also called 
engineering resilience), if a community shifts to an alternate state 
after perturbation but then reassembles (Figure 1b,e; see also 
Davies et al., 2018; Nikanorov & Sukhorukov, 2008; O’Leary et al., 
2017 and references therein). Finally, communities during intervals 

of climate change can display highly variable composition resulting 
from the stochastic processes of ecological drift and individual-
istic responses of species (stochastic pattern in Figure 1c,f) that 
can lead to novel or no-analog communities (Graham et al., 2014; 
Slišković et al., 2021).

Our understanding of long-term community dynamics in 
shallow-marine environments during the late Quaternary climate 
oscillations is mostly based on fossil assemblages representing 
sea-level highstands associated with warm interstadial and inter-
glacial periods (e.g., Davies et al., 2018; Kowalewski et al., 2015; 
Martinelli et al., 2017; Pandolfi, 1996). In contrast, few studies 
have explicitly investigated marine faunal dynamics in compara-
ble depositional environments under both glacial and interglacial 
conditions (e.g., Aronson & Precht, 2016; Kitamura et al., 2000; 
Tager et al., 2010), even though such data are necessary for distin-
guishing between alternative models of community change. In this 
study, we describe the structure of mollusk benthic assemblages 
(bivalves, gastropods, and scaphopods) populating shallow, fluvi-
ally influenced marine systems during three specific time intervals: 

F I G U R E  1  Conceptual framework. Idealized outcomes representing the patterns of community response to glacial–interglacial changes 
at the regional scale, evaluated by means of ordination analyses (NMDS) and correlation between abundances of species (black: pairwise 
comparison between the two interglacial units; green: comparisons between glacial and interglacial units). Each column shows one of the 
three idealized scenarios. Persistent pattern (a and d): Communities maintain species composition and diversity through environmental 
perturbations even though populations of constituent species shift spatially in concert with sea-level changes. Resilient pattern (b and e): 
Communities shift to an altered state during the glacial period but return to previous composition with the re-establishment of interglacial 
conditions. Stochastic pattern (c and f) unique species associations characterize communities from all three-time periods
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(1) the penultimate interglacial (between ~125 and 110 kyr), (2) the 
subsequent last glacial (between ~18 and 12 kyr cal BP), and (3) the 
Holocene interglacial (between ~7  kyr cal BP and pre-1750 CE). 
This approach allows for tracking the dynamics of faunal assem-
blages from analogous depositional settings, but during different 
climate and sea-level states thus providing a historical perspec-
tive on biotic response to long-term climate change. Here, we used 
the latest Quaternary fossil record of the Adriatic coastal systems 
(Text S1; Table S1; Appendices S1–S2) to evaluate if shallow-marine 
mollusk assemblages display a persistent, resilient, or stochastic 
pattern (Figure 1) when responding to major climatic and sea-level 
shifts over the last ~125 kyr (Figure S1).

2  |  MATERIAL S AND METHODS

The fossiliferous deposits of both interglacial periods are preserved 
in the subsurface of the present-day Po coastal plain. In contrast, 
those of the last glacial period are located more than 250 km south-
east of the studied interglacial deposits in the central and southern 
Adriatic, at the edge of the Mid-Adriatic Deep, where the shore-
line was located during the last sea-level lowstand (see Text S1;  
Figure S1).

2.1  |  Data selection criteria

Distribution and preservation of macrobenthic remains in sedimen-
tary successions representing coastal habitats are controlled by a 
multitude of environmental parameters and sedimentary processes 
(e.g., Nawrot et al., 2018; Rakocinski et al., 1991). To ensure com-
parability in terms of environmental context, sedimentation rates, 
and taphonomic regime, we restricted the analyses to samples 
from aggrading–prograding lower shoreface to foreshore sedimen-
tary bodies characterized by varying degrees of fluvial influence 
(hereafter referred as nearshore; Figure S2). This environmental 
classification of samples was mainly based on previously published 
sedimentological and micropaleontological inferences and was thus 
independent from the composition of the mollusk assemblages (see 
Table S2 for environmental and chronostratigraphic information). 
The samples (0.150–0.375 dm3 each; further details in Appendices 
S1–S2) were wet-sieved with 1 mm screen and the remains identi-
fied to species level whenever possible. To account for disarticula-
tion of bivalves, the number of isolated valves was divided by two. 
Multiple ecological descriptors of the studied assemblages (species 
dominance, sample-standardized richness, relative abundance, and 
occurrence frequency), present-day biogeographic distribution of 
constituent species (data after Poppe & Goto, 1991, 1993), and 
multivariate methods were used to compare samples represent-
ing the three selected time intervals (i.e., last interglacial—LIG, last 
late glacial—LG, and current interglacial—CIG; Tables S1–S2). The 
results were compared to a conceptual framework depicting possi-
ble patterns of community change across a glacial–interglacial cycle 

(persistent, resilient, and stochastic pattern; Figure 1). A compara-
tive assessment of ecological dynamics encompassing the entire 
land-to-deep-sea depositional profile is not possible due to lack 
of preservation or limited sampling of different segments of the 
bathymetric gradient. Freshwater/terrestrial species occasionally 
recovered in the targeted samples were excluded from the analy-
ses. The dataset for multivariate analyses was further restricted to 
samples with at least 25 specimens. To check the sensitivity of the 
results, a more conservative sample size threshold of 60 specimens 
was also used.

2.2  |  Sample bathymetric estimates

We obtained estimates of the bathymetric distribution of extant 
species from the Italian mollusk census database (Bedulli et al., 
1984). The Italian mollusk database reports, among others, water 
depth (meters), and specimen abundance (tallied separately for live 
and dead individuals) for most common mollusk species thriving 
along the Italian Peninsula. We used these data to estimate pre-
ferred water depth for species commonly found in the cored sedi-
ments. For those species, its preferred bathymetry was estimated as 
the abundance-weighted average depth. Then water depth estimate 
for each sample was computed by the mean preferred depth of the 
species found in a sample weighted by their specimen abundances 
(Wittmer et al., 2014).

2.3  |  Multivariate analyses

Prior to multivariate analyses, the species occurring in one sample 
only were removed. Subsequently, the sample-by-species matrix was 
converted to relative abundances and fourth root transformed to re-
duce the effect of hyperabundant taxa. Other commonly used trans-
formation and standardization techniques (e.g., log-transformation, 
Wisconsin double-relativization) produced comparable ordination 
outcomes (Figure S3; Table S3).

The indirect ordination was performed by nonmetric multidi-
mensional scaling (NMDS) using Bray–Curtis (BC) distance measure 
(k = 2 dimensions). Permutation-based multivariate analysis of vari-
ance (PERMANOVA) based on the same distance matrix was em-
ployed to evaluate differences in the locations of the multivariate 
groups of samples from the three compared time intervals.

2.4  |  Comparison of assemblage composition and 
model testing

Pairwise comparisons of samples using BC dissimilarity were employed 
to assess the resemblance between nearshore assemblages from the 
three periods (i.e., LIG, LG, and CIG). In addition, the observed mean 
BC distance for each of the comparisons was contrasted against a sam-
pling distribution of means obtained by randomization (based on 1000 
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iterations) under the null hypothesis that the samples came from the 
same system. For each pairwise comparison, the randomization pro-
cedure involved pooling all specimens and then randomly reassigning 
them to one of the three time intervals while maintaining the sampling 
structure of the actual data. For each of the 1000 randomized itera-
tions, mean BC distance was computed and added to the resulting re-
sampling distribution predicted under the null hypothesis.

A similar approach was used in the pairwise evaluation of total spe-
cies abundances obtained by pooling all samples within each of the 
three examined time intervals. Each of the three pairwise compari-
sons (i.e., LIG vs. LG, LIG vs. CIG, LG vs. CIG) was contrasted against a 
randomized data permutation model depicting a homogenous system 
based on the pooled species abundances for data combined across all 
compared time intervals. For each pairwise comparison, specimens 
were sampled from the pooled species distribution into the sample 
structures (i.e. the same number of samples and sample sizes as ob-
served) of the compared time intervals. The simulation was repeated 
1000 times. For each of the three pairwise comparisons, the result-
ing 1000 pairs of abundance values (one of each of the two compared 
time intervals) were obtained for each of the species considered. The 
modeled distributions of species abundances, predicted under the null 
hypothesis that samples came from a single underlying species abun-
dance, were plotted together with the observed values.

2.5  |  Bivariate analyses

Spearman's rank correlation coefficient was used to measure the 
strength of correlation between NMDS sample scores and sample-
standardized species richness (rarefied to 25 and 60  specimens), 
biogeographic affinity (relative abundance of Mediterranean-to-
Lusitanian and West African species in each sample), and sample 
water depth estimates. Lastly, we used information on the present-
day biogeographic distribution of the species as an indicator of their 
climatic affinity to better understand the relationship between 
shifts in species composition and paleoclimatic changes (Figure S1). 
In this approach, relative abundances of species grouped according 
to their current biogeographic distributions were plotted to evaluate 
changes in the biogeographic and climatic affinity of the macrofau-
nal stock across glacial–interglacial transitions.

2.6  |  Software and data access

Specific details on the parameters and bivariate and multivari-
ate statistical test and procedures implemented in this study 
are given in the captions of figures, tables, and relevant supple-
mentary online materials. All analyses were performed in R (R 
Development Team, 2018, v 4.0.5) and Excel. The “vegan” pack-
age (Oksanen et al., 2018) was used to carry out ordinations and 
PERMANOVA. Resampling models were written using standard 
base functions available in R. Codes and data are provided in the 
supporting information.

3  |  RESULTS

To evaluate macrobenthic assembly dynamics during climatic 
shifts, we used 223 nearshore samples from 18 stratigraphically 
well-constrained sediment cores (Appendix S1). The samples 
yielded cumulatively 113  species and 71,282 fossil specimens 
subdivided into three datasets: 21 LIG samples including 11,413 
fossils and 45  species, 32 LG samples including 3381 fossils 
and 60  species, and 170 CIG samples including 56,488 fossils 
and 78 species (Appendices S1–S2; Table S1). To develop cross-
validation assessments, we contrasted the results with outcomes 
of empirically calibrated resampling models simulating patterns 
expected under the null hypothesis that the recovered assem-
blages originated from the same regional pool of species (see 
model testing in Materials and Methods). In the NMDS ordina-
tion projection, CIG and LIG sample groups overlapped strongly, 
whereas LG samples plotted separately (Figure 2a). NMDS axis 
1 scores were negatively correlated with sample-standardized di-
versity estimates (Spearman's rank correlation ρ = −.81, p < .001; 
Figure 2b) and positively correlated with the proportion of 
Lusitanian specimens (ρ  =  .84, p  <  .001; Figure 2c), defined as 
those specimens that belonged to species for which the present-
day geographic ranges do not extend northward beyond the 
warm-temperate Lusitanian province. In addition, quantitative 
bathymetric estimates based on faunal composition were highly 
congruent with the independently derived estimates of water 
depth (Figure S2; Table S2), confirming that all sampled assem-
blages represented shallow-water (<10  m) habitats (Figure 2d). 
These results suggest that LG samples represented habitats and 
water depths comparable to those of the LIG and CIG interglacial 
samples but were characterized by higher species richness and 
depressed abundance of exclusively Mediterranean-to-Lusitanian 
species when compared to the interglacial samples (Figure 2b–d, 
S4). In contrast, the interglacial samples were strongly dominated 
by Lentidium mediterraneum—an infaunal filter feeder, represent-
ing more than 85% of specimens in both interglacial groups of 
samples (Table S4).

Permutational multivariate analysis of variance (PERMANOVA) 
provided further evidence for the distinct species composition 
of the LG assemblages and strong similarities between the two 
interglacials (Table S5). However, PERMANOVA results can be 
sensitive to the unbalanced sampling design (Anderson & Walsh, 
2013). Therefore, we also compared the observed BC dissimilar-
ities between individual samples from different time intervals 
with the predictions of the resampling models (Figure 3a,b). Only 
in the LIG versus CIG comparison, the observed mean pairwise 
BC dissimilarity fell within the sampling distribution of means ex-
pected if the samples from the two interglacial periods came from 
a species pool with a homogenous composition and comparable 
abundance structure (Figure 3b). In contrast, the average dissimi-
larity between LG samples and samples from either of the studied 
interglacials departed significantly from the null model predic-
tions and was much higher than the observed mean pairwise 
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distance between LIG and CIG samples (Figure 3a,c; p  =  .001). 
Moreover, when individual samples were pooled together in each 
time interval (Figure 4a–c), the two interglacials were also char-
acterized by a very similar species abundance structure, with a 
positive Spearman's rank correlation (ρ = .51; p < .001, Figure 4c 
and Table S6). Species abundances in LG and either of the inter-
glacials were not significantly correlated (ρ < .035 and p > .70 in 
both cases; Figure 4a,b and Table S6). Lastly, a comparable stock 
of species dominated the Adriatic nearshore settings during both 

interglacials (Table 1), with seven of the most dominant spe-
cies recovered from the CIG interval also belonging to the top 
10  species in the LIG samples (Table S4). LG group of samples 
shared only four of the top 10  most abundant species with the 
CIG (Table 1, Table S4).

Relative abundances of species with different biogeographic 
affinities (Figure 5) were comparable between the two intergla-
cials, but differed from those observed in the LG. Specifically, 
the LIG and CIG samples were dominated by species restricted 

F I G U R E  2  Gradient and rank correlation analyses: (a) NMDS ordination of nearshore samples containing at least 25 specimens (see also 
Figure S5 for an NMDS output based on sample size threshold of 60 specimens). Relative abundance of species was fourth root transformed. 
Samples are color-coded according to the climatic interval: green—current interglacial (CIG), light blue—last interglacial (LIG), and dark red—
last late glacial (LG). The size of each point is proportional to sample size. Convex hulls delimit the ordination space occupied by each group 
of samples. (b) Correlation between NMDS axis 1 sample scores (NMDS1) and species richness rarefied to 25 specimens. Standardized 
species richness for relatively small samples tends to be primarily driven by evenness, so the two measures are strongly correlated. 
(c) Correlation between NMDS1 and relative abundance of Mediterranean-to-Lusitanian and West African species recovered in each sample. 
(d) Correlation between NMDS1 and the sample water depth estimates based on species bathymetric preferences (see Materials and 
Methods for details). In b–d panels, rank correlation coefficient ρ is shown also for NMDS axis 2 sample scores
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to Mediterranean and Lusitanian provinces (>88% of specimens; 
Figure 5a,c). The relative abundance of this group decreased down 
to 26% during the LG period. In contrast, cosmopolitan species, 
today occurring in both (sub)tropical and cold-temperate East 
Atlantic regions, increased in relative abundance from less than 7% 

in both interglacials to 54% in the LG period. The LG samples are 
also characterized by a higher relative abundance (19%; Figure 5b) 
of Boreal species (ranging from the Mediterranean to the cold-
temperate NE Atlantic), compared to the interglacial samples (5% 
and 3% in the LIG and CIG, respectively).

F I G U R E  3  Distribution of pairwise Bray–Curtis (BC) distances between samples representing glacial and interglacial assemblages. (a) 
Current interglacial and last late glacial (CIG-LG, based on 1170 pairs of compared samples). (b) Current interglacial and last interglacial (CIG-
LIG based upon 975 pairs of compared samples). (c) Last late glacial and last interglacial (LG-LIG based on 270 pairs of compared samples). 
Red arrows mark the location of the observed mean values BC distances for each frequency distribution of the three pairwise comparisons. 
The x-axis reports BC dissimilarity range, zero value indicates that two samples have the same faunal composition, one no species in 
common. In green sampling distributions of means based on randomization (based on 1000 iterations), under the null model that the samples 
came from the same system. Pairwise comparisons are based on the same species relative abundance matrix as the one used for the NMDS 
(n ≥ 25 specimens and rare species removed)
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4  |  DISCUSSION

4.1  |  Nearshore biotic response to  
glacial–interglacial cycles

The macrobenthic assemblages from the two interglacials are sta-
tistically indistinguishable in terms of species composition (Figures 
2–5; Table 1) and characterized by high dominance and low richness 
both at the scale of individual samples (Figure 2b, Figure S4) and 
the regional species pool (Figure S6; Table 1, Table S4). However, 

they remain distinct from more species-rich glacial assemblages 
representing similar shallow-marine habitats. These results indi-
cate that Late Pleistocene interglacial nearshore associations of 
the Adriatic transitioned to a different state during the last glacial 
period, but when interglacial climatic conditions were reestab-
lished in the Holocene, these mollusk associations shifted back to 
the species composition and abundance structures characteristic 
of the previous interglacial. Minor differences between the cur-
rent and previous interglacial assemblages suggested by the ordina-
tion analysis (Figure 2a) are likely driven by sampling effects (see 

F I G U R E  4  Pairwise comparisons of species total abundances (total counts in pooled data from each interval). (a) Current interglacial and 
last late glacial (CIG-LG, upper left panel, x-axis: CIG, y-axis: LG). (b) Pleistocene interglacial and last late glacial (LIG-LG, upper right panel, 
x-axis: LIG, y-axis: LG). (c) Holocene and Pleistocene interglacials (CIG-LIG, lower panel, x-axis: CIG, y-axis: LIG). Species total abundances 
have been log-transformed. The output of the randomization model based on 1000 iterations highlights the portion of two-dimensional 
space in which the points should fall under the null model of a homogenous system. Spearman's rank correlation (ρ) for each pairwise 
comparison is reported on each panel; it is significant only for the interglacial pairwise comparison (i.e., CIG-LIG, p < .001; see also Table S6)
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NMDS results limited to larger samples only; Figure S5). Despite 
high spatial and temporal variability of deltaic habitats, the similarity 
of the two interglacial assemblages suggests that large-scale, long-
term environmental drivers overwhelmed local effects of changing 
coastal physiography or distance to the river or distributary channel 
mouths. Overall, the observed paleoecological pattern of nearshore 
assemblages is consistent with the resilient model of long-term 

community response to glacial–interglacial climate and sea-level cy-
cles (Figure 1a,d).

The observed resilient response of mollusk assemblages from 
dynamic, fluvially influenced nearshore settings (McKinney, 2007) 
is also consistent with patterns observed in other marine sys-
tems. Deep-sea benthic foraminiferal assemblages of the Santa 
Barbara Basin (USA) exhibited a similar repetitive faunal turnover 

Species (Total number of 
species = 113) Authorship CIG LG LIG

Lentidium mediterraneum (O.G. Costa, 1830) 1 3 1

Chamelea gallina (Linnaeus, 1758) 2 12 5

Donax semistriatus Poli, 1795 3 absent 7

Spisula subtruncata (da Costa, 1778) 4 1 2

Bittium reticulatum (da Costa, 1778) 5 5 8

Varicorbula gibba (Olivi, 1792) 6 15 16

Ecrobia gr. ventrosa1 (Montagu, 1803) 7 6 6

Bela formica2 (Nordsieck, 1977) 8 23 10

Peronidia albicans (Gmelin, 1791) 9 absent 14

Tritia varicosa3 (W. Turton, 1825) 10 41 32

Note: Taxonomic notes: 1 This is a group of very similar and highly variable species: Ecrobia 
ventrosa, Hydrobia acuta and Eupaludestrina stagnorum not easily distinguishable by the shell 
features; 2 Bela formica is considered taxon inquirendum previously synonymized with Bela nebula; 
3 commonly reported as Tritia pygmaea (Lamarck) a junior secondary homonym of Muricites 
pygmaeus Schlotheim.

TA B L E  1  The 10 most abundant 
species in the current interglacial—CIG 
(pre-modern Era), and their ranking in 
the other two time periods (Pleistocene 
last late glacial—LG and Late Pleistocene 
interglacial—LIG)

F I G U R E  5  Comparisons of species 
total relative abundances grouped 
according to their biogeographic 
distribution. (a) Current interglacial—
CIG; (b) last late-glacial—LG; (c) last 
interglacial—LIG. Information on the 
geographic range of mollusk species 
is after Poppe and Goto (1991, 1993). 
Abbreviations for biogeographic affinity 
of species distribution: BOR = species 
occurring in the Mediterranean, 
Lusitanian, and Boreal provinces; 
COS = species of cosmopolitan 
distribution (i.e., occurring from 
West African until Boreal provinces); 
MED/LUS = species occurring in the 
Mediterranean and/or Lusitanian 
provinces; WAF = species occurring in 
the Mediterranean, Lusitanian, and West 
African provinces
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in response to millennial-scale variations in oxygen concentrations 
related to Dansgaard–Oeschger climatic cycles (Cannariato et al., 
1999). Pleistocene coral reefs of Papua New Guinea were charac-
terized by recurring coral associations during sea-level highstands 
and compositionally distinct lowstand assemblages over the past 
416 kyr (Pandolfi, 1996; Tager et al., 2010). Interestingly, the vari-
able composition of lowstand coral associations contrasts with 
the persistence of microbenthic and calcareous algal assemblages 
from the same reef ecosystem (Tager et al., 2010). Finally, the resil-
ient response of onshore macrobenthic associations together with 
higher turnover in offshore environments was documented in the 
deep-time fossil record during higher order sea-level fluctuations 
over millions of years (Danise & Holland, 2017). Some late Cenozoic 
marine mollusk faunas underwent continuous gradual changes in 
species composition during past climate oscillations, in spite of cyclic 
recurrence of similar environments (Stanton & Dodd, 1997). Such 
a pattern is similar to the substantial shifts in plant and vertebrate 
communities frequently observed in Quaternary terrestrial ecosys-
tems, which have been linked to differential responses of individual 
species to highly dynamic environmental changes (Jackson & Blois, 
2015). Thus, rather not surprisingly, biotic responses to naturally oc-
curring climate changes during the Quaternary appear to have varied 
greatly across ecosystem types and organismal groups.

Taken together, the results of this and previous studies suggest 
that resilient patterns can be scale invariant, and more prevalent 
in communities that inhabit environmentally unstable habitats and 
may thus be preadapted to cope with long-term climate and sea-
level changes. Indeed, the studied nearshore system is dominated 
by r-selective eurythermal species capable of rapid recolonization 
whenever favorable environmental conditions return. In addition, a 
large suite of more vulnerable (i.e., less thermally tolerant) Pliocene 
Mediterranean taxa had been previously extirpated in a series of 
regional extinctions (Monegatti & Raffi, 2001). Therefore, the im-
pact of the Quaternary climate shifts has been attenuated in the 
Mediterranean Sea by a long history of major climatic fluctuations 
that had shaped the regional pool of taxa in this region.

4.2  |  Mechanisms of change and 
ecosystem resilience

Understanding how the structure and composition of past ecosys-
tem change through time allows us to depict hypothetical scenarios 
of community dynamics in the face of climate change. Broad mod-
els of community assembly fall within three categories: interaction 
assembly, environment assembly, and neutral assembly (Vellend, 
2016 and references therein). Interaction assembly model consid-
ers communities structured primarily by ecological locking among 
species due to strong interspecific interactions (e.g., predation or re-
source competition), resulting in limited membership. Environment 
assembly model regards community membership principally as the 
result of deterministic species responses to the changing physical 
environment. Finally, communities structured by stochastic (neutral) 

processes have no membership constraints, strong hysteresis, and 
high variability under comparable environmental conditions.

Before we assess those three models of community assembly, 
we should first note that in the semi-enclosed Adriatic basin, the 
transitions from interglacial to glacial periods were characterized 
by changes in the basin morphology, sea surface temperature, sa-
linity, and circulation pattern (Maselli et al., 2014; Piva et al., 2008, 
Figure S1). During the last glacial interval, the targeted portion of 
the Adriatic experienced high sedimentation rates, eutrophic wa-
ters, and frequent freshwater inflows (Asioli et al., 2001; Pellegrini 
et al., 2018). Although similar conditions were present also during 
the middle-late Holocene (Amorosi et al., 2016; Pellegrini et al., 
2021), some of the key abiotic factors are estimated to have dif-
fered strongly between glacial and interglacial periods. Salinity was 
lower during the LG period due to a more confined Adriatic basin 
and higher inflow of freshwater from the Po River (Asioli et al., 2001; 
Pellegrini et al., 2017). Moreover, the estimated sea surface tem-
peratures (SSTs) were ~6°C lower during the Last Glacial Maximum 
(LGM) compared to the Holocene climatic optimum (Capotondi, 
2004; but see also Piva et al., 2008), an offset slightly lower than 
that estimated for the Adriatic between the LGM and LIG (Hoffman 
et al., 2017, see also discussion below).

Shifts in the relative abundance of species with different bio-
geographic and climatic affinities (Figures 2c, 5; Table S4) in tar-
geted nearshore assemblages follow these environmental changes. 
Samples from all three time intervals were dominated by mollusks 
that thrive in shallow-water habitats with fine sand substrates in the 
modern Mediterranean Sea (Pérès & Picard, 1964). However, during 
LIG and CIG, species that today are restricted to subtropical to 
warm-temperate Mediterranean and Lusitanian provinces had much 
higher relative abundances (i.e., L. mediterraneum, Chamelea gallina, 
and Donax semistriatus). Assemblages from LG were characterized 
by higher richness and evenness and were dominated by species 
whose present-day biogeographic ranges extend farther northward 
into cool-temperate regions of the Eastern Atlantic (e.g., Spisula 
subtruncata, Fabulina fabula; Petersen, 1913). Notwithstanding the 
different composition and diversity structure, glacial and interglacial 
nearshore communities all share eurytopic species that thrive in flu-
vially influenced settings along an onshore–offshore gradient, such 
as Ecrobia ventrosa species complex and Varicorbula gibba.

This biotic pattern is consistent with the regional paleotem-
perature record (Figure S1d; Capotondi, 2004; Piva et al., 2008) 
and suggests that nearshore Adriatic mollusk communities most 
likely followed the environmental assembly model, where commu-
nity composition is largely determined by the overlap between their 
environmental tolerances and the local environmental conditions 
(Jackson & Blois, 2015). Thus, in LG, the dominance of cosmopolitan 
taxa characterized by broad habitat niches and thermal tolerance 
(so expected to be found across heterogeneous environments and 
more resistant to thermal stresses) suggests the predominant role 
of environmental filtering (species sorting) in driving the shifts in 
the assemblage composition rather than biotic perturbation related 
to species interactions expected during community coalescence 
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(blending of distinct communities) (Rocca et al., 2020). During the 
last glacial period, lower temperatures limited the fitness of a sub-
set of r-selected nearshore species that are characterized by explo-
sive population dynamics and can reach high densities in favorable 
conditions but are less adapted to a colder climate (e.g., L. medi-
terraneum, C. gallina; Figure 5b; Table 1, Table S4). Consequently, 
their abundance and occurrences in the northern regions of the 
Mediterranean, including the Adriatic Sea, were greatly reduced, 
in some cases limiting their distribution to the southern coasts of 
the basin. Species characterized by broader thermal tolerances (as 
suggested by their present biogeographic distribution) were able 
to thrive under colder conditions increasing richness and evenness 
of LG nearshore assemblages (Figure 5). The subsequent Holocene 
climate warming reversed this pattern by again favoring Lusitanian 
and Mediterranean species, which dominated highly variable 
shallow-marine environments in the Adriatic Sea during the last in-
terglacial period. The species that were common in LG assemblages 
are still found in nearshore settings in northern Europe, but they 
likely retracted to slightly deeper habitats in the Mediterranean 
part of their range. Such bathymetric shifts are frequently docu-
mented among marine species in response to the ongoing SST rise 
and might constitute an important driver of community reorganiza-
tion (e.g., Pinsky et al., 2013; Weinberg, 2005).

4.3  |  Conservation implications for the 
21st century

Our results together with the paleoclimate data and climate change 
scenarios point to the potential adaptive capacities of the Adriatic 
nearshore mollusk communities to the limited near-future global 
warming. During the last interglacial, SSTs in the Northern Atlantic 
(above 23.5°N latitude) were between 0.6 and 1.3 ± 0.5°C higher 
than during the pre-industrial times (Hoffman et al., 2017). However, 
within the Mediterranean basin which is considered a climatic hot-
spot sensitive to radiative forcing which amplifies climatic trends, 
paleotemperature estimates point toward higher values. Alkenone-
derived SSTs for the late LIG in the central Adriatic were estimated at 
~22°C (see Figure S1d), that is ~3.5°C higher than present-day SSTs 
(i.e., 18.5°C, that is the mean value resulting from daily estimates ob-
tained offshore southern Marche and northern Puglia regions from 
July 2011 to June 2015; see table 1 in Gizzi et al., 2016). In addi-
tion, the radiative forcing of greenhouse gasses below 4.5 W/m2, as 
predicted by representative concentration pathways (RCP) 2.6 and 
4.5, should constrain near-future, central Adriatic mean SST warm-
ing to less than 2°C (see Shaltout & Omstedt, 2014 for projected 
SST at the end of the 21st century in the Adriatic). Therefore, the 
resilience of targeted assemblages and strong similarities in many 
of the ecosystem features between the present and last intergla-
cial, suggest that efforts aimed at limiting the radiative forcing of 
greenhouses gasses below 4.5 W/m2 (i.e., RCP 4.5 scenario), should 
result in a limited impact on the Adriatic nearshore deltaic mollusk 
communities. However, other anthropogenic stressors including 

bottom trawling (Eigaard et al., 2017; Pitcher et al., 2022), hypoxic 
events (Justić, 1991), coastal landscape modifications, and aquacul-
ture (Slišković et al., 2021; Viero et al., 2019) have been affecting 
community composition of the Adriatic ecosystems since at least the 
mid-20th century. These multifaceted stressors are shifting commu-
nity composition far more strongly than natural environmental driv-
ers did during the lastest Quaternary (e.g., Gallmetzer et al., 2019; 
Kowalewski et al., 2015; Lotze et al., 2011; Tomašových et al., 2020). 
The ongoing human restructuring of these ecosystems could push 
local assemblages beyond the historical range of variability despite 
their high resilience to natural climate dynamics.

The long-term perspective offered by geohistorical archives is 
fundamental for defining ecological baselines, which in turn should in-
form conservation actions aimed at sustaining highly dynamic coastal 
ecosystems. However, restoration of environments and resource 
stocks to the pristine or pre-industrial conditions may not be feasi-
ble given the socio-economic contexts of these densely populated 
areas. Long-term conservation practices, therefore, should focus on 
maintaining connectivity among areas of relatively unaffected, nat-
ural habitats that could act as a buffer against ecosystem shifts due 
to ongoing climate warming. Such low impact areas increase habitat 
heterogeneity across different climatic zones and can serve as po-
tential thermal refugia, thus promoting resilience to climate change 
(Bernhardt & Leslie, 2013). Maintaining and possibly improving the 
quality of marine refugia in the Mediterranean Sea (Mu & Wilcove, 
2020) is thus necessary to preserve the structure and resilience of 
coastal communities and their ecosystem services (Schneider, 2018).

In summary, this study suggests that the Adriatic nearshore 
assemblages have alternated naturally between two community 
states over the last ~125 kyr and thus demonstrated a remarkable 
resilience in face of major, long-term environmental perturbations. 
The observed resilience during the most recent interglacial–glacial 
transitions is not consistent with stochastic or interaction-based 
community assembly models. Instead, the high similarity between 
assemblages representing the two interglacial periods and distinct 
composition observed in the glacial faunas suggest that, over mil-
lennial timescales, shallow-marine benthic assemblages have been 
primarily structured by environmental forcing. Over the last century, 
however, pollution, eutrophication, trawling, and invasive species 
have been affecting coastal ecosystems. Our findings suggest that 
if these impacts can be controlled, the targeted nearshore commu-
nities of the Adriatic should be resilient to the limited rise of sea sur-
face temperatures predicted for the near future. In addition to the 
international policies addressing global warming, we stress here the 
importance of the mitigation of the threats associated with human 
activities in the coastal areas at the local and regional levels.
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