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Abstract—Multilevel modeling is increasingly relevant in the
context of modelling and simulation since it leads to several
potential benefits, such as software reuse and integration, the split
of semantically separated levels into sub-models, the possibility
to employ different levels of detail, and the potential for parallel
execution. The coupling that inevitably exists between the sub-
models, however, implies the need for maintaining consistency be-
tween the various components, more so when different simulation
paradigms are employed (e.g., sequential vs parallel, discrete vs
continuous). In this paper we argue that multilevel modelling is
well suited for the simulation of human mobility, since it naturally
leads to the decomposition of the model into two layers, the
”micro” and ”macro” layer, where individual entities (micro) and
long-range interactions (macro) are described. In this paper we
investigate the challenges of multilevel modeling, and describe
some preliminary results using prototype implementations of
multilayer simulators in the context of epidemic diffusion and
vehicle pollution.

Index Terms—Multilevel simulation, Mobility models, Agent-
based models, Hybrid simulation.

I. INTRODUCTION

Multilevel modeling is a methodology that refers to the

hierarchical decomposition of a system into multiple, coop-

erating models. This approach received increasing interest in

recent years, due to the need to create scalable modeling

and simulation solutions devoted to the study of complex

systems, that in many situations require a high level of

detail and are composed of a large number of entities [1].

Multilevel modeling is often referred to as multilayer modeling

or simply hierarchical modeling. Due to the lack of formal

definitions, through this paper we will use the terms multilevel

or multilayer modelling interchangeably, to denote hierarchical

models1 where:

• sub-models can be of different types (e.g., continuous,

discrete and/or hybrid models);

1We also allow models with one level, i.e., ”flat” hierarchies.

• sub-models may have a different level of detail, e.g., in

terms of spatial or temporal resolution; sub-models are

allowed to change the level of detail at run time.

The advantages and limitations of hierarchical modeling and

simulation have already been studied in the past [2], mainly

in the context of sequential models (more details will be

provided shortly). Hierarchical modeling is based on one of

the cornerstones of computer science, that is, the principle of

decomposition. Breaking complex entities into smaller pieces

makes the system easier to build and understand.

Decomposition of a complex model also brings another, less

obvious advantage: the different sub-models can be executed

by independent simulators. Different paradigms (e.g., contin-

uous, event-driven discrete, time-stepped discrete, and so on)

can coexist both on different layers and/or on different models

of the same layer. Additionally, some of the models might be

executable in parallel, allowing the application of Parallel and

Distributed Simulation (PADS) techniques [3].

Multilevel Modeling and Simulation (MS) involves more

than just decomposition: in fact, the possibility of employing

different levels of detail plays an even more important role.

The concept of Level of Detail (LoD) is model-specific, but

typically refers to spatial or temporal resolution, and/or the

amount of state variables that are used to encode the state of

a (sub-)model. Spatial and temporal resolution are the density

of (simulated) space and time subdivisions, respectively; the

idea of tuning the spatial or temporal resolution is widely

used in physics and engineering to study continuous systems

such as weather patterns, air flow around vehicles, or the

diffusion of heat inside a combustion engine, just to name

a few [4]. Continuous phenomena must be discretized in

order to be solved numerically, and a finer subdivision in

space and/or time usually (but not necessarily) leads to more

accurate results. The amount of state variables is another

factor impacting the accuracy of a model. To give an example,

when studying the diffusion of an epidemic we might take



into account either the number of susceptible, infected and

recovered individuals, or we might model each person as an

autonomous agent with a complex behavior that depends on

age, occupation, residence, and so forth. In the former case,

we get a coarse but very compact representation of the system

using just a handful of scalar values; in the latter case, we get

a more detailed model requiring a considerably larger state

space.

It is obvious that always using the maximum LoD can be

computationally impractical. It is also evident that choosing

the ”right” LoD can be difficult or even impossible. For

example, models that involve human interactions, such as those

studying the diffusion of a contagious disease, tend to be

highly sensitive to the population density within an area [5].

Therefore, it seems appropriate to use a finer spatial subdi-

vision in densely populated areas, and a coarser subdivision

in sparsely populated ones. Unfortunately, in some scenarios

the population density may change over time, so that it is

impossible to predict exactly where a finer subdivision is

required. In these situations, the possibility of dynamically

changing the LoD as the simulation evolves is highly desirable.

Multiscale models naturally allow the use of different LoDs

at the different levels; sub-models can also dynamically tune

their LoD to effectively focus on interesting local phenomena,

with no or minimal impact on the rest of the simulator.

Despite the advantages discussed above, decomposition

brings with it some issues that need to be addressed. First

of all, one needs to decide how the system should be split

into modules, and how the modules interact. Interactions are

particularly problematic as they may impose a significant

overhead: if a system is split into N modules, and each

module needs to talk to each other, the number of interactions

is O(N2) so that doubling the number of modules will increase

the number of interactions four-fold.

Also, the use of a multilevel methodology requires extra

effort for achieving consistency among models. A first problem

arises when continuous and discrete simulators need to inter-

act. One of the problems is the conversion between continuous

and discrete variables, which can lead to known issues. An

example is when discrete variables describing a population

are provided as input for a continuous model that manipulates

such values and then retrieves again a discrete output. During

the cast operations, a loss could occur due to the discretization

of the variables, leading to a population loss that can be more

or less significant depending on the size of the population.

In this paper we assess whether multilevel models are suit-

able for analyzing scenarios involving human mobility. This

application area has been selected due to its increasing rele-

vance for studying such diverse scenarios as the propagation of

contagious diseases, quantifying the environmental impact of

different policies encouraging smart mobility, better planning

of transportation systems to improve efficiency, reduce costs

and reduce pollution, and so on. To this aim, in Section II

we review some related scientific literature. In Section III

we describe in detail a multilevel modeling paradigm that

will be applied to two simple case studies: the study of

epidemics (Section IV-A) and smart transportation systems

(Section IV-B). The case studies are proof-of-concepts, in-

tended to test the feasibility of the proposed approach. Finally,

conclusions and future research directions will be illustrated

in Section V.

II. BACKGROUND AND RELATED WORKS

Multilevel modeling has been largely used in the field

of modelling and simulation. The SHARPE tool [6] is an

early – and still widely used – software package that enables

multiple modeling notations to be used to describe a complex

system. SHARPE mainly deals with formal notations such as

block diagrams, reliability graphs, queueing networks, Markov

chains, Petri nets and so forth. It allows the users to choose

the number of levels, the type of model at each level, and how

information is exchanged between levels, to perform analyses

about the reliability and availability of large systems [7].

The areas of application for multilevel modelling are very

wide, ranging from chemical and biological investigations to

scenarios linked with mobility and human activities. In recent

years, due to the unfortunate COVID-19 outbreak, a lot of

studies were carried out in the epidemiological field. In [8]

within-host and between-host models are coupled, with the

former describing the evolution of the disease at the cell

level and the latter depicting contagion dynamics. Other works

employ one level to model human mobility, while another one

is in charge of describing the evolution of the outbreak in the

local areas. These models enable to simulate the diffusion of

pathogens outside of the source place. For example, in [9] a

model represents the bidirectional recurrent commuting flows

that couple two populations, while SIR (i.e., compartmental

model where people are either susceptible, infected or recov-

ered) describes the local evolution of the epidemic. In the pro-

posed approach, each individual was characterized by a contact

rate typical of the belonging subpopulation, thus enabling

to take into account the heterogeneity of the characteristic

contact rates in different subpopulations. Similarly, in [10]

dynamics of COVID-19 spread are investigated by using a

bipartite graph, composed of census block groups (CBG,

i.e., geographical units typically containing some thousands of

individuals) and points of interests (POI), where the weights

of the edges indicate the number of visitors from a CBG to

a POI based on real anonymized data. Again regarding epi-

demiological scenarios, in [11] one layer is employed to model

the spread of opinion regarding social distancing rules, with

individuals either being (i) in favour of restrictions, (ii) averse

to social distancing limitation or (iii) uninformed. Uninformed

individuals according to the model are potentially influenced

by both factions, and choose their opinion depending on

their social connectivity. This level is directly coupled with

the epidemic level, because the number of people actually

respecting restrictions strongly affects the infection rate.

Another area where a multiscale approach is frequently used

is human mobility, with typical investigations being linked

with urban traffic, pedestrian mobility or people’s access to

public events. In these scenarios, micro models describe the



movements of single individuals, while macro models consider

the distribution of people or vehicles over a larger space [12].

A common methodology is to describe the macro and the mi-

cro behaviour with partial differential equations and Ordinary

Differential Equations (ODEs), respectively. However, agent-

based models might be used to depict the behaviour of single

individuals, characterizing them with specific features. For

instance, in a traffic simulation, a micro model would be in

charge of representing how a car reacts to preceding vehicles,

with actions like accelerating, braking or steering influencing

the behaviour of the other actors [13]. A macro model, on the

other hand, would deal with the traffic flow, employing mea-

sures such as density (number of vehicles per unit road length

at any instant of time), space mean speed (the average speed

of the vehicles in a certain road section), and flow (number of

vehicles passing through a point in a certain amount of time).

Such frameworks could either be used to study solutions for

improving traffic circulation, or for investigating smart city and

smart transportation services such as car sharing applications.

In [14] the microscale is represented by a car-following model

flanked by a model representing driver’s lateral control, while

the macroscale traffic flow is defined by a system of partial

differential equations. In between, there is an additional scale

(i.e., mesoscale) describing with a distribution function the

probability of having a vehicle within certain space ranges and

speed ranges at a given time. Another example is [15], where

the intersections between trains tracks and pedestrian spaces

are simulated following a discrete-continuous simulation ap-

proach. In this work, continuous models were employed to

mimic the train travel, its transition between zones and the

related scanning operations, while a discrete approach was

used to simulate the movements of pedestrians.

III. MULTILEVEL MODELING

Multilevel modelling is a methodology that allows complex

models to be built hierarchically. Each node of the hierarchy

has some form of control over the nodes at lower level,

that may range from simple orchestration to more complex

scenarios where each level has a different ”view” of the system

based on a different level of detail (some actual examples will

be given in Section IV).

Fig. 1: Multilayer model using different types of sub-models

and execution policies.

Figure 1 shows a schematic representation of a multilevel

model. Different types of models can coexist in the hierar-

chy (e.g., time-stepped, agent-based, continuous), as well as

different execution policies (sequential or parallel/distributed).

The role and type of each component of the hierarchy, and the

structure of the whole hierarchy, are model-specific. In general,

we expect that sub-models that are lower in the hierarchy (i.e.,

towards the leaves) are more detailed than those at the top

(towards the root). It may also be possible that intermediate

nodes act as pure coordinators of their children, for example

executing them in parallel if possible. The hierarchy does not

need to be static, either: a node might spawn sub-models when

needed, for example to ”focus” on some interesting emerging

pattern that requires detailed study.

We can therefore classify each sub-model across the follow-

ing three dimensions:

• Type of model (continuous, discrete, mixed): this attribute

refers to the representation of time.

• Execution policy (sequential or parallel): this attribute

tells how a sub-model is executed.

• Level of detail (low, high, adaptive): this attribute refers

to the amount of state variables that are used to represent

the state of a sub-model.

a) Advantages.: Multilevel models provide various ben-

efits. A complex model built upon independent and reusable

blocks might be faster to develop. From the software engi-

neering point of view, each building block can be developed

independently, or taken from a library of existing models

that have already been validated, therefore saving considerable

time (however, integration tests still need to be performed).

A multilevel structuring favors the parallel execution of

sub-models that have no inter-dependencies. Simulation of

spatially-located entities (situated agents) naturally leads to

some form of spatial decomposition, where the simulated

space is partitioned across different simulators. If the partitions

are independent, some ”cheap” parallelism can be achieved by

simply running the sub-models on different execution units

(processors or cores). Problems arise if entities, e.g., those

situated along the border of different partitions, need to inter-

act. In these cases, it is sometimes possible to let the higher-

level model take care of these interactions. Individual sub-

models might also be natively capable of parallel execution,

e.g., because they have been built upon a parallel/distributed

framework [16].
b) Challenges.: Multilevel modeling poses several chal-

lenges, some of which are still being investigated by the M&S

research community. First and foremost, identifying an ”opti-

mal” partitioning – for some suitable definition of ”optimal” –

can be difficult. As already said, models that exhibit a spatial

structure naturally lead to partitioning the simulated space

into connected, non-overlapping regions handled by different

sub-models. Even in those simple scenarios, the partitioning

problem remains nontrivial [17].

The interaction among different models is a major issue. Al-

though standard interfaces for interoperation across simulators

have been proposed [18], they are quite large and cumbersome



to implement. A more lightweight approach is to use wrappers

file to (i) schedule the execution of the various components,

(ii) manage the I/O operations and the exchange of information

among the various tools and (iii) ensure consistency of data

and state variables.

During the execution of a model, it is often necessary to

use one or more streams of (pseudo-)random values. It is

common practice to generate pseudo-random numbers from

one initial seed to ensure the repeatability of the results. In a

parallel or distributed setting, each model has its own random

stream. It is therefore necessary to ensure that (i) the random

streams do not overlap, i.e., the initial seeds (or the pseudo-

random generator) are chosen so that the random streams are

independent, and (ii) the result of the multilevel model is not

affected by the order in which the sub-models are executed.

c) Implementation.: We now describe a possible real-

ization of multilevel MS, focusing our attention on human

mobility. The choice of this application area is motivated

by its increasing relevance, e.g., to study the propagation

of infectious diseases, to investigate better and ”smarter”

transportation systems, or to fight pollution by reorganizing

the way people commute to work or study.

Traditionally, human mobility has been studied using either

agent-based or continuous models based on ODEs [19]. Agent-

based models allow developers to accurately describe the

behaviour of the actors involved. ODE-based models describe

the aggregate behavior of a possibly large number of agents

by taking into consideration ”average” behaviors. ODE-based

models are simpler (and possibly less accurate, particularly

when there is a non-negligible probability that agents deviate

from the average behavior), and can be evaluated much more

efficiently because their performance is independent from the

number of individuals.

The easiest way to implement an agent-based simulation is

to manage the time discretely, in order to facilitate the coor-

dination and the interactions among the agents, which occur

in certain time-steps. On the other hand, ODE models are

continuous. Coupling discrete and continuous models can be

problematic; we employ the standard solution of considering

the execution of the continuous sub-models as time intervals

that stretch inside the sorted list of events of the discrete

models. If a discrete model D has a continuous model C as a

sub-model, then D starts the execution of C when needed (say,

at simulated time Tn). C is configured to compute its state up

to a simulated time that does not exceed the instant Tn+1 of

the next event scheduled for D. Therefore, the result of the

sub-model C is made available to D at its next time step. A

similar mechanism is used if C has D as sub-model: the caller

executes the callee up to a future time that does not exceed

the minimum of the duration of the continuous phenomena

and the time instant of the next discrete event.

To demonstrate the feasibility of a multilevel approach in

the context of human mobility, we have developed a prototype

framework based on LUNES [20], NetLogo [21] and custom-

built compartmental models based on ODEs. In our prototype

implementations, we use JSON-formatted data stored in tem-

porary files to exchange information between models.

The Large Unstructured NEtwork Simulator (LUNES) is a

time-stepped agent-based simulator developed by Parallel and

Distributed Simulation Research Group of the University of

Bologna [22]. The tool provides a scalable and customizable

simulation environment where users can define the behavior

of the simulated entities and the data that is exchanged

between agents. The software relies on the GAIA/ARTÌS

middleware [17], which manages communication between log-

ical processes, supporting parallel and distributed execution,

migration of simulated entities, and load balancing both for

computation and communication.

NetLogo is a multi-agent modelling environment based on

the Logo programming language. NetLogo provides an inte-

grated graphical environment to develop, execute and debug

agent-based simulations. NetLogo models are built around

turtles (i.e., situated agents) that can move around 2D or

3D space, and patches representing portions of space that do

not move but can hold location-specific state data. NetLogo

supports real-time plotting and graphing facilities to display

metrics of interest in real time. NetLogo also supports a form

of multilevel modelling through the LevelSpace extension that

allows modelers to construct multilevel agent-based models

within the NetLogo modeling environment [23]. LevelSpace

allows the execution and management of multiple models in

parallel. However, execution of models of different types (e.g.,

a continuous model within NetLogo) is not supported natively,

since the language does not provide a native way to call

external applications. This problem can be solved by launching

NetLogo through pyNetLogo [24], a Python interface to Net-

Logo, allowing the developers to start a NetLogo model and

to call its functions from a python script; execution of sub-

models is then delegated to pyNetLogo rather than NetLogo

itself.

Finally, the custom-built continuous models are based on the

classic compartmental models, where the population is labelled

with a unique feature, and where usually a set of ordinary

differential equations defines the transition rule between com-

partments. This approach is widely used in epidemiology [25].

In our use cases, we developed the compartmental models

in Python, employing the scipy library [26] to manage the

differential equations.

The top of Figure 2 classifies the building blocks above

(NetLogo, LUNES and the scipy continuous model) with

respect to the taxonomy introduced at the beginning of this

section. NetLogo is a sequential, discrete simulator that is

suitable for implementing detailed models, since the behavior

of each agent (turtle, in NetLogo terminology) can be accu-

rately programmed. LUNES is a parallel discrete simulator

that, like NetLogo, allows very detailed system specifications

by programming the behavior of agents using the C language.

Finally, our custom continuous model provides coarse systems

specifications using a set of Ordinary Differential Equations.

The bottom of Figure 2 classifies the two case studies

that will be described in the next Section. The case studies

implement simple multilevel models to analyze pollution due



Fig. 2: Top: Classification of the simulators used in the case

studies. Bottom: classification of the models used in the case

studies.

to different urban transportation strategies, and the diffusion

of an epidemic. Both are mixed models since continuous and

discrete simulators are used at different levels. The pollution

case study is slightly more detailed and uses a sequential

execution policy for all levels, while the epidemic model

makes use of PADS techniques with the ability to dynamically

tune the LoD at run-time.

IV. CASE STUDIES

In this section we describe two case studies that demon-

strate the multilevel methodology described above and whose

structuring is schematized in Figure 3. The case studies are

not intended to be accurate or realistic; they are intended

only to demonstrate that multilevel models can be ”natural”

description of scenarios involving human mobility, and how

multilevel models can be implemented in practice. To foster

the reproducibility, all the source code used in this perfor-

mance evaluation is freely available on https://github.com/

luca-Serena/Multilevel-use-cases with a Free Software license.

Fig. 3: Rationale of the multilevel models for our use cases.

A. Epidemic Modeling

The first case study is the simulation of an epidemiological

scenario. The model employs two levels, one based on LUNES

and in charge of describing the mobility of individuals, and

the other based on a continuous SEIR model describing the

diffusion of the epidemic through time. A model like this could

be used to evaluate the effectiveness of mobility restrictions

to limit the diffusion of an epidemic. For example, we might

compare no-lockdown, full lock-down, or restrictions based

on the job of the individuals where only essential workers

(e.g., healthcare personnel, food chain employees, bus drivers)

were allowed to leave their homes.

We consider a non-fatal contagious disease for which per-

manent immunity is gained after contagion or immuniza-

tion. The Susceptible, Exposed, Infected, Recovered (SEIR)

model [27] is a compartmental model where individuals are

partitioned into four categories:

• Susceptible: individuals that may contract the disease.

This is the initial state for all the individuals except for

a single infected individual, the ”patient zero”.

• Exposed: individuals that contracted the disease but are

not yet experiencing symptoms.

• Infected: individuals that contracted the disease and are

experiencing symptoms.

• Recovered: individuals that developed immunity.

The dynamics of the SEIR model is governed by the

following set of differential equations:























































dS

dt
= −βIS,

dE

dt
= βIS − σE,

dI

dt
= σE − γI,

dR

dt
= γI

(1)

where S, E, I and R are the number of Susceptible, Exposed,

Infected and Recovered individuals, respectively, β is the

infection rate, γ is the recovery rate and σ is related to the

probability of transmission of the disease.

We entrust LUNES to model the mobility of agents, where

each agent has a position in space and an epidemiological

status; it should be noted that, for more realistic results, more

information such as age, known health problems, mobility

habits or vaccination status can be attached to agents. We

assume that the model consists of several cities; the population

density is higher inside a city, and agents also tend to move

within their own city. Model parameters are the number

of cities and their population, the mobility rates describing

how often people move between cities, and the lockdown

policies employed in each city. For each city, we create a

software entity called the ”local coordinator”, which is a

special simulated entity that has the task of aggregating the

state of all individuals in the city and executing the continuous

model.

The simulation starts with the launch of LUNES, which

deals with the initialization of the virtual environment. In

https://github.com/luca-Serena/Multilevel-use-cases
https://github.com/luca-Serena/Multilevel-use-cases


3 Locations 6 Locations

1000 SEs 50.1 sec 75.7 sec
10000 SEs 49.9 sec 76.3 sec

TABLE I: Execution time depending on the number of sim-

ulated entities and locations. Tests performed on a PC with

an 11th gen. Intel Core i5 processor with 16 GBs of RAM

running GNU/Linux Ubuntu 20.04.4

the setup phase, all the simulated entities are labelled as

susceptible, with a single random individual chosen as the

”patient zero”. Each agent has a home location (the city where

the associated individual resides), and an occupation that

reflects the frequency of movement and whether the individual

can be classified as an ”essential worker”.

After the setup phase, the following tasks are performed:

• The agents send their epidemiological status to the local

coordinator associated with their location (city).

• The coordinators aggregate the data and compute the

number of individuals in each epidemiological state (sus-

ceptible, infected, ...).

• The coordinators check if the number of infected individ-

uals is above the threshold for triggering lockdown poli-

cies, possibly restricting the mobility; thereafter, the SEIR

model is executed using the aggregate values computed

above. The various continuous models are executed in

parallel.

• The coordinators, based on the results of the SEIR model,

give instructions to the simulated entities on how to

update their epidemiological status.

• Finally, some individuals are moved to a different city

with a certain probability p.

Mobility restrictions have two effects in our model: con-

straining the flow of people moving between different areas,

and reducing the contagion rate inside the cities. The model

can be made adaptive, for example changing the parameters of

the continuous model such as the accuracy of the ODE solver

by reducing the integration time-steps. Indeed, we may want to

increase the accuracy during the critical phases of the outbreak

when the number of infected individuals rapidly grows. Also

the infection rate could change over time, e.g., because once

the infection is detected, mobility restrictions could lead to a

lower pathogen diffusion rate.

Figure 4a shows that the disease propagates rapidly outside

the city of origin. In fact, even assuming that infected people

are not allowed to move outside their home city, exposed

individuals still have no constraints in mobility, and therefore

they will unknowingly diffuse the disease. Figure 4b shows

that limiting the mobility introduces a delay in the propagation

of the epidemic, but the global impact of the epidemic does

not change. Finally, Figure 4c displays the progress of the

epidemic inside a single location.

From a performance point of view, as shown in Table I,

the population size has a small impact in terms of execution

time, since it depends mostly on the solution of the differential

equations. On the other hand, the number of locations has a

direct influence on the performance, since despite the greater

parallelization level (under the assumption of using a logical

process for each location) more SEIR models need to be

executed, leading to higher time and memory consumption.

B. Green Mobility to Reduce Pollution

The second use case is a model that aims at estimating

the amount of pollutants released into the atmosphere under

different vehicular mobility policies. Vehicles are classified

depending on the type of fuel: gasoline (the most pollu-

tant), electricity (the less pollutant, although not completely

pollution-free since part of the electricity is still produced

using fossil fuels), and LPG (i.e., Liquefied Petroleum Gas)

that lies somewhere in between.

We use NetLogo to represent the vehicles. When a vehicle

(NetLogo turtle) moves on a patch (a cell of the discrete

simulation space), the amount of pollution associated with

that patch increases by a quantity that depends on the type

of fuel used by the vehicle. Also, every patch propagates

parts of its pollution to the neighboring patches, to simulate

the diffusion of pollutants in the atmosphere. Periodically, a

continuous model is executed to update the type of vehicles.

The continuous model describes the effect of (dis-)incentives

that might be put in place in order to favor some types of fuel

over the others. We defined an ad-hoc compartmental model

based on the following set of differential equations:



































dP

dt
= −βP − σP,

dL

dt
= βP − γL,

dE

dt
= σP + γL

(2)

where P , L and E are the number of petrol, LGP and electric

vehicles, respectively, and β, σ and γ are the transition rates

from petrol to LGP, from petrol to electric and from LGP

to electric. For the sake of simplicity, we do not allow other

types of transitions, although they could easily be included by

extending the equations appropriately.

We assume that electric vehicles do not emit pollutants

locally but do contribute slightly to global pollution, since

production of energy may have environmental costs. To model

this phenomenon, we periodically increase the pollution of

all patches (even those without any vehicle) by some small

quantity that depends on the number of electric vehicles in

the model.

Other important model parameters are (i) the pollution

produced locally by the vehicles (higher for petrol, lower

for LGP; electric vehicles produce no local pollution but do

contribute to global pollution), (ii) the ”evaporation rate”,

which is the amount of pollutants that vanish at each time-

step, e.g., because it decays to inert stuff or is somewhat

captured, and (iii) the initial number of vehicles of each

type. Figure 5 shows a screenshot of the NetLogo model,



(a) Number of infected people vs
time in different cities.

(b) Diffusion of the epidemic in a
location depending on restrictions.

(c) Number of individuals in each state
as a function of time.

Fig. 4

Fig. 5: Four snapshots of the NetLogo model at different times.

Green turtles = electric vehicles. Blue turtles = LGP-based

vehicles. Black turtles = gasoline vehicles. White patches =

no pollution. Red patch = medium pollution. Black patches =

maximum pollution (best viewed in color).

where colors represent the type of vehicles and the amount

of pollution in each patch.

To manage the execution of the simulation, we use a wrap-

per file that launches NetLogo through the pyNetLogo library

and then runs both NetLogo and the continuous model with

the correct parameters. After the setup phase, the execution

proceeds as follows:

• each vehicle moves in a random direction, spreading

pollutants over the visited cells;

• pollutants diffuse in the atmosphere according to the

model parameters;

• every n steps, where n is a model parameter, the contin-

uous model is called to update the types of vehicles that

are moving in the simulation.

According to the chosen parameters, where we assume that

vehicles running petrol emit as twice pollutants with respect

to LPG-based vehicles and where electricity is produced using

zero-emission technologies, then the model converges towards

a zero pollution situation, meaning that the pollution produced

at each time-step is lower than the evaporation-rate. In fact, in

our scenarios, the pollution level initially grows, but the curve

is gradually reverted with the switch towards ”greener” means

of transport. If we assume that the production of electricity

is not exactly zero-emission, the model converges towards

zero pollution more slowly, as long as NumOfVehicles ×

electricityProductionPollution < EvaporationRate.

Fig. 6: NetLogo real-time plots showing the evolution of the

level of pollution and the types of vehicles through time.

The time required to converge towards a low pollution state

is dependent on the incentives to purchase less polluting vehi-

cles, as shown in Figure 6. Under the reasonable assumption



that the vast majority of vehicles are initially petrol-based,

pollution grows rapidly at the beginning of the simulation,

but then starts decreasing as more vehicles are replaced with

better ones. Figure 5 shows how the model progresses over

simulated time. Initially (upper left) petrol-based vehicles start

to release pollutants. At simulation step 1000 (upper right)

pollution peak is reached, and all patches are at their maximum

contamination level. At simulation step 2000 (lower left) most

of the vehicles have been replaced with electric ones, and the

environment is getting cleaner. Finally, at simulation step 3000
(lower right) all the patches reached their minimum pollution

level as the green transition is completed.

V. CONCLUSIONS

In this paper we provided some preliminary evidence that

multilevel modelling can be proficiently employed in different

simulation scenarios, in particular those involving human

mobility. Despite some issues regarding the consistency across

different models and the need to coordinate the execution

of the various sub-components, there are indications that the

benefits of a multilevel approach outweigh the cons. First

of all, multilevel modeling simplifies the development phase

(i.e., different developers implementing separately a different

component of the model) and allows faster execution (i.e., cer-

tain sub-models might be launched in parallel). Second, it

enables the integration of existing tools, exploiting already-

tested and task-specific code allowing for faster and more

accurate software development. Finally, describing a complex

system at different levels of detail might bring advantages both

computationally (representing a whole system at a micro level

could lead to undue computational effort) and semantically

(having different descriptions of a system).

To support the above points, we provided two simple proto-

type models describing the diffusion of a contagious disease,

and the diffusion of pollutants caused by vehicular traffic. In

both instances, agent-based simulators and continuous models

have been combined, exchanging information through JSON

files. Our prototyping efforts show that a multilevel method-

ology has a great potential for allowing faster development of

complex models that can be easily extended to carry out more

thorough and complex investigations.
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