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Abstract: Background: Kawasaki Disease (KD) and Multisystem Inflammatory Syndrome in Children
(MIS-C) are pediatric diseases characterized by systemic inflammation and vascular injury, potentially
leading to coronary artery lesions (CALs). Data on vascular injury occurring during acute COVID-19
(AC19) in children are still lacking. The aim of our study was to investigate endothelial injury in KD-,
MIS-C- and AC19-dosing circulating endothelial cells (CECs). Methods: We conducted a multicenter
prospective study. CECs were enumerated by CellSearch technology through the immunomagnetic
capture of CD146-positive cells from whole blood. Results: We enrolled 9 KD, 20 MIS-C and 10 AC19.
During the acute stage, the AC19 and KD patients had higher CECs levels than the MIS-C patients.
From the acute to subacute phase, a significant CEC increase was observed in the KD patients, while
a mild decrease was detected in the MIS-C patients. Cellular clusters/syncytia were more common
in the KD patients. No correlation between CECs and CALs were found in the MIS-C patients. The
incidence of CALs in the KD group was too low to investigate this correlation. Conclusions: Our
study suggests a possible role of CECs as biomarkers of systemic inflammation and endothelial
dysfunction in KD and MIS-C and different mechanisms of vascular injury in these diseases. Further
larger studies are needed.

Keywords: kawasaki disease; multisystem inflammatory syndrome in children; CellSearch;
circulating endothelial cells; COVID-19; children; endothelial injury; coronary artery lesions

1. Introduction

Kawasaki Disease (KD) is a pediatric acute self-limiting vasculitis affecting medium-
sized vessels, with the possible involvement of coronary arteries (CA). The occurrence
of coronary artery lesions (CALs) can heavily affect the outcome of this disease. In fact,
in high-income countries, KD is the leading cause of pediatric-acquired heart disease [1].
KD should be suspected in children younger than five years old with persistent fever and
distinctive clinical manifestations, including bilateral bulbar conjunctival injection, rash,
cervical lymphadenopathy, extremity erythema and edema and oral mucosal changes in
the acute phase [1]. A number of studies have previously shown a systemic inflammation
characterized by increased inflammatory mediators that could lead to endothelial cell
damage and dysfunction (ECD) after a still unknown environmental trigger [2,3]. Therefore,
the optimal management requires an early diagnosis to vigorously reduce the inflammation
in order to limit the ECD and potentially the development of CALs. In children with CALs,
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severe complications may occur such as ischemic heart disease and sudden death during
either the acute or chronic phases of the disease [4]. In addition, since ECD is a recognized
risk factor for atherosclerosis in adults, limiting ECD could modify the link between KD
and atherosclerosis in later ages [5]. Treatment with intravenous immunoglobulin (IVIG)
within the 10th day from fever onset significantly decreases the incidence of CALs [1] and
adjunctive therapies could further improve the coronary outcome [6-8].

The COVID-19 pandemic has revealed a new pathological condition characterized by
an abnormal inflammatory systemic response, the Multisystem Inflammatory Syndrome in
Children (MIS-C), sharing clinical and laboratory features with KD and Kawasaki disease
shock syndrome (KDSS). MIS-C usually develops 3-6 weeks following a SARS-CoV-2
infection with an incidence of 1 per approximately 3000 to 4000 infected children and ado-
lescents [9-11]. Severe multisystem organ dysfunction, particularly cardiac injury, systemic
shock and respiratory distress can affect the outcome of MIS-C, requiring Intensive Care
Unit (ICU) admissions and massive support treatments. As KD, the prompt recognition
of MIS-C is crucial in the attempt to halt the inflammation and thus the progression of
organ damage, including the occurrence of CALs, myocardial systolic depression and
hypotension or shock [12-14]. A cytokine storm triggered by a SARS-CoV-2 infection has
been advocated as a potential basis of the disease leading to systemic vasculitis. Extremely
high levels of matrix metalloproteinase 7 (MMP7), a protein involved in the degradation of
endothelial junctions, potentially leading to vascular leak/edema and leukocyte migration
into tissues, has been found in an adolescent girl with MIS-C [15]. Increased MMP?7 has
been previously also found in KD patients, too [15,16].

Acute COVID-19 (AC19) in adults is known to be associated with endothelial injury
in different organs, such as the lungs, kidneys and small bowel [17,18]. The damage
is probably mediated by the ACE-2-receptor, leading to cell swelling, the disruption of
intercellular junctions and cell death [19,20]. Thrombotic complications have been reported
in severe COVID-19 cases [21]. On the opposite, the acute infection is generally mild in
children, including infants, with few recorded fatalities attributed to AC19 [22,23].

Therefore, these three diseases may share pathogenic mechanisms including systemic
inflammation, vascular injury and endothelial dysfunction, leading to potentially life-
threatening complications.

Since the structural and functional integrity of the endothelium is essential for the
maintenance of vascular homeostasis, the detection of high levels of circulating endothe-
lial cells (CECs) detached from blood vessels in the peripheral blood has been linked to
endothelial derangement [24,25].

Adult healthy subjects carry low CECs counts, whereas high levels of CECs have
been found in several adults’ conditions characterized by ECD, including infectious and
cardiovascular diseases, inflammatory and connective tissue diseases, transplantation and
cancer [26-32].

To date, there are very few studies investigating the role of CECs in children. In
addition, the methods to study CECs are heterogeneous. Most of these studies focused on
the close relationship between CECs and cardiovascular health in older children and adoles-
cents with obesity, hypertension and other features of metabolic syndrome [33-35] where
CECs have been correlated with adiposity and cardiometabolic risk factors, potentially
reflecting an accelerated atherosclerosis. Moreover, CECs are higher in patients with sepsis
and complicated sepsis than healthy controls [36], while the role of CECs is controversial in
children with sarcomas [37,38].

Among the available methodologies for quantifying and isolating CECs, the CellSearch
system represents the only procedure/methodology that guarantees a high level of stan-
dardization and specificity [32,39].

Our primary aim was to study CEC values as possible biomarkers of ECD in children
diagnosed with KD, MIS-C and acute COVID-19.
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The secondary aim was to investigate CECs as possible markers of disease severity
in the same groups of patients, in order to identify children at higher risk early on, to
modulate therapy and to prevent life-threatening complications.

2. Results
2.1. Patients

We enrolled a total of 39 patients, including 9 KD, 20 MIS-C and 10 AC19.
Demographic and clinical data are shown in Table 1.

Table 1. Demographic and clinical data of the three groups of patients: KD, MIS-C and AC19.

KD (n=9) MIS-C (n = 20) AC19 (n =10) p

Caucasian 8 (88.9%) 18 (90%) 8 (80%) 1n.s.

Ethnicity, n (%) Asian 1(11.1%) 0 (0%) 2 (20%) n.s.

Black 0 (0%) 2 (10%) 0 (0%) n.s.

Sex, (%) Male 3 (33.3%) 11 (55%) 5 (50%) n.s.

Female 6 (66.7%) 9 (45%) 5 (50%) n.s.
Age in months, median (IQR) ROV BE0SIBHT 0452_6i557. N <0.001

Respiratory symptoms, n (%) 1(11.1%) 6 (30%) 5 (50%) n.s.
Conjunctivitis, n (%) 9 (100%) *+ 12 (60%) *t 1(10%) tt <0.001

Extremity changes, n (%) 5 (55.6%) 6 (30%) 1 (10%) n.s.
Rash, n (%) 9 (100%) *+ 11 (55%) *t 1(10%) +t <0.001

Oral changes, n (%) 6 (66.7%) 12 (60%) 3 (30%) n.s.
Cervical lymphadenopathy, n (%) 7 (77.8%) *t 3 (15%) * 2 (20%) t 0.002
Abdominal involvement, n (%) 6 (66.7%) 17 (85.0%) t 2 (20%) 0.002
Hypotension, n (%) 0* 11 (55%) *t 0*t 0.001

Total days of fever, median (IQR) 9.0 (5.5-13.0) 6.0 (4.0-9.0) - n.s.

Length of stay, median (IQR) 8.0 (6.5-15.0) 10.0 (8.0-13.0) - n.s.
Day Oint:;iirgSE?tmem' 85(539.0)*  50(40-60)* - 0.006

Non-responders, n (%) 3(33.3%) 5 (25%) - n.s.
Inotropic therapy, n (%) 1(11.1%) * 11 (55%) * - 0.017

Respiratory support, n (%) 0 5 (25%) 0 n.s.

KD stands for Kawasaki Disease; MIS-C stands for Multisystem Inflammatory Syndrome in Children; AC19
stands for acute COVID-19; * stands for statistically significant difference between KD and MIS-C; t stands for
statistically significant difference between KD and AC19; } stands for statistically significant difference between
MIS-C and AC19. n.s. stands for not significant.

During the acute phase, CALs were detected in only 1/9 (11.1%) of the KD patients
and 8/20 (40%) of the MIS-C patients, half of which were aneurysms. CALs in the MIS-C
patients showed a tendency to regress compared with the KD patients (see Table 2).

Table 2. Coronary involvement in KD and MIS-C groups during acute and subacute phases.

KD (n=9) MIS-C (n = 20) 14
Acute phase
CALs, n (%) 1(11.1%) 8 (40%) n.s.
Aneurysms, n (%) 1(100%) 4 (50%) n.s.
Non-coronary cardiac o o
events, 1 (%) 2 (22.2%) 15 (75%) 0.030
Subacute phase
CALs, n (%) 2 (22.2%) 1 (5%) n.s.
Aneurysms, n (%) 2 (100%) 1 (100%) 1.s.
Non-coronary cardiac 0.(0%) 3 (15%) s,

events, n (%)

KD stands for Kawasaki Disease; MIS-C stands for Multisystem Inflammatory Syndrome in Children; CALs
stands for coronary artery lesions; n.s. stands for not significant.
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All the KD patients were treated with IVIG, while the MIS-C patients received steroids
in addition to IVIG. Additionally, two KD patients, who were non-responders, received
additional steroid therapy. Two KD patients and one MIS-C patient were administered
Anakinra (an interleukin (IL)-1 antagonist) and one MIS-C patient was administered Inflix-
imab (an anti-Tumor necrosis factor drug) when these patients did not respond to standard
treatments. The AC19 patients did not receive any immunomodulatory/anti-inflammatory
parenteral medication.

Laboratory values during the acute and subacute phases are shown in Table 3.

Table 3. Laboratory values during the acute and subacute phases of children diagnosed with KD,
MIS-C and AC19.

Acute Phase

KD (n=9) MIS-C (n = 20) AC19 (n = 10) %
Hb g/dl, median (IQR) 11.8 (10.8-12.0) 10.8 (10.0-12.0) 12.3(11.2-12.5) n.s.
RBC x10'2/1, median (IQR) 4.2 (4.0-4.8) 4.0 (3.7-4.5) 45 (3.9-4.8) n.s.
PLT x10°/L, median (IQR) 338 (325-397) * 151 (124-263) * 312 (244-334) 0.003
WBC x10°/L, median (IQR) ~ 14.4 (11.3-16.7) + 9.0 (6.3-13.1) 8.1(5.5-11.3) + 0.026
N%, median (IQR) 71.4 (68.9-79.6)  78.2(73.7-86.5) 1  44.1 (24.5-59.2) f <0.001
L%, median (IQR) 18.9 (11.5-22.9)  13.1(9.6-20.5)f  41.1(30.1-63.8) 1 <0.001
NLR, median (IQR) 4.1 (3.1-7.0) 6.0 (3.6-8.9) t 1.1 (0.4-2.3) § <0.001
E%, median (IQR) 0.7 (0.4-2.6) 0.2 (0.1-1.6) 2.1 (0.6-2.5) n.s.
CRP mg/dL, median (IQR) 10.7 (5.1-17.1) 17.6 (11.6-22.0) £ 0.5(0.1-3.7) £ <0.001
PCT, ng/mL, median (IQR) 0.8 (0.3-3.5) * 13.9 (3.3-39.5) * 0.8 (0.8-0.8) 0.047
Albumin g/dL, median (IQR) 3.4 (3.0-3.8) * 3.2 (3.0-3.8) *t 4.6(4.1-4.8) t 0.002
Na mmol/L, median (IQR) 135 (133-138) 134 (131-136) § 138 (136-143) § 0.005
ALT IU/L, median (IQR) 23 (14-177) 27 (18-85) 16 (14-29) n.s.
BNP pg/mL, median (IQR) 139 (91-202) 450 (57-1090) - n.s.
IL-10 pg/mL, median (IQR) 5.5 (2.3-9.0) 8.0 (2.8-34.5) = n.s.
Subacute stage
KD (n=9) MIS-C (n = 20) 4
Hb g/dL, median (IQR) 10.7 (9.5-12.2) 11.1 (10.1-11.8) n.s.
RBC x10'2/1, median (IQR) 3.9 (3.6-4.5) 4.1 (3.6-4.3) n.s.
PLT x10°/L, median (IQR) 695 (459-823) 391 (268-571) 0.018
WBC x10°/L, median (IQR) 13.3 (9.6-15.5) 12.7 (9.7-16.0) n.s.
N%, median (IQR) 46.0 (28.4-55.6) 71.5 (53.3-76.3) 0.012
L%, median (IQR) 46.3 (32.6-60.5) 24.4 (19.1-35.9) 0.001
NLR, median (IQR) 1.0 (0.5-1.9) 2.9 (1.5-4.1) 0.004
E%, median (IQR) 1.9 (0.7-5.5) 0.2 (0.1-0.9) 0.021
CRP mg/dl, median (IQR) 1.0 (0.5-6.9) 1.4 (0.8-1.9) n.s.
PCT, ng/mL, median (IQR) 4.1(0.24.1) 0.8 (0.3-3.8) n.s.
Albumin g/dL, median (IQR) 3.6 (3.2-3.8) 3.7 (3.3-4.2) n.s.
Na mmol/L, median (IQR) 138 (137-141) 139 (136-140) n.s.
ALT TU/L, median (IQR) 25 (16-44) 37 (22-60) n.s.
BNP pg/mL, median (IQR) 24 (14-39) 81 (38-140) 0.042

KD stands for Kawasaki Disease; MIS-C stands for Multisystem Inflammatory Syndrome in Children; AC19
stands for acute COVID-19; * stands for statistically significant difference between KD and MIS-C; t stands for
statistically significant difference between KD and AC19; } stands for statistically significant difference between
MIS-C and AC19; Hb stands for hemoglobin; RBC stands for red blood cells; PLT stands for platelets; WBC
stands for white blood cells; NLR stands for neutrophils-lymphocytes ratio; N% stands for neutrophil percentage
values; L% stands for lymphocyte percentage values; E% stands for eosinophil percentage values; CRP stands
for C-reactive protein; Na stands for sodium; ALT stands for alanine aminotransferase; BNP stands for brain
natriuretic peptide; IL stands for interleukin; n.s. stands for not significant.



Int. J. Mol. Sci. 2022, 23, 10106

50f13

2.2. CECs Count at Acute and Subacute Stages

The median CECs/mL count at acute stage in the KD patients was 16.3 (13.6-48.8 IQR)
in comparison to 5 (4-15.5 IQR) and 27.1 (9.3-101.7 IQR) in the MIS-C and AC19 patients,
respectively (Table 4, Figure 1). In three KD patients and one MIS-C patient, we were not
able to collect CECs during the acute phase.

Table 4. CEC values during acute and subacute stages, in the three groups of patients.

KD (n=9) MIS-C (n = 20) AC19 (n =10) P
Acute Phase
CECs num/mL, . .
median (IQR) 16.3 (13.6-48.8) 5 (4-15.5) 27.1 (9.3-101.7) 0.042
CECs > nv, n (%) 6/6 (100%) * 5/19 (26.3%) *1 7/10 (70%) t 0.003
Syncytia, n (%) 3/6 (50%) 3/19 (15.8%) 3/10 (30%) n.s.
Subacute phase
CECs num/mL
, = * _ * - 0.01
median (I0R) 45.8 (18.5-131.0) 3.6 (1.8-21.6)
CECs > nv, n (%) 7/9 (77.8%) * 6/18 (30%) * - 0.046
Syncytia, n (%) 4/9 (44.4%) 3/18 (16.7%) - n.s.

KD stands for Kawasaki Disease; MIS-C stands for Multisystem Inflammatory Syndrome in Children; AC19
stands for acute COVID-19; CECs stands for circulating endothelial cells; * stands for statistically significant
difference between KD and MIS-C; 1 stands for statistically significant difference between MIS-C and AC19; nv
stands for normal values; n.s. stands for not significant.

1000.0
o
100.0
&} o
=
2 1
o0
) |
10.0
1.0
0.0 T T T
KD AC19 MIS-C
Diagnosis

Figure 1. Boxplot of CEC levels in KD, AC19 and MIS-C patients during the acute stage of diseases.
KD stands for Kawasaki Disease; MIS-C stands for Multisystem Inflammatory Syndrome in Children;

AC19 stands for acute COVID-19.

The AC19 patients showed a higher CEC count compared to the MIS-C and KD
patients, without reaching a statistically significant difference because of high CEC count
variability in the AC19 patients (ranging from 1 to 660 CECs/mL).

During the acute stage, the CEC median values were higher in the KD patients than
in the MIS-C patients (p = 0.042). The median values of CECs in the MIS-C patients were
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within the normal range (1-14) reported in literature for healthy adult with the CellSearch
system [31,40,41], whereas it was higher in the KD and AC19 patients.

During the subacute phase, a significant increase in the CEC values of the KD patients
was observed, despite the difference between the two stages not being statistically signifi-
cant (p = 0.11). On the contrary, a mild decrease in CECs was detected in the MIS-C patients
from the acute to subacute stage. This different trend of the CEC values between the two
stages of illnesses is shown in Figure 2. In the subacute phase, the CEC levels of KD were
significantly higher than those of the MIS-C patients (p = 0.01).

60
45

30
KD

MIS-C

CECs values (num/ml)

Acute stage Subacute stage

Stages of disease

Figure 2. CECs trend from acute to subacute stage, in KD and MIS-C patients. KD stands for
Kawasaki Disease; MIS-C stands for Multisystem Inflammatory Syndrome in Children; CECs stands
for circulating endothelial cells.

Age was inversely related to CEC values considering the whole sample of patients
(p =0.011). This finding was confirmed in the KD patients (p = 0.042) and a trend was
found in the AC19 patients (p = 0.052).

We observed, in several samples, a CEC cell with a continuous cytoplasmic staining
associated with two or more nuclei. This kind of cell aberration was previously described
with the CellSearch procedure in acute myocardial infarction [32]. Since cell-cell boundaries
are not clearly distinguishable in the fluorescence images, it is not possible to determine
rigorously whether these are cellular clusters, or alternatively, multinuclear individual
cells (syncytia).

However, these cellular clusters/syncytia were detected in 3/6 (50%) of the KD
patients, 3/10 (30%) of the AC19 patients and 3/18 (16.7%) of the MIS-C patients during
the acute stage. As expected, a positive correlation was found between CECs and the
number of syncytia in the whole sample during the acute and subacute stage (p = 0.006 and
p = 0.001, respectively) and in the KD + MIS-C cohort (p < 0.001).

2.3. CECs Count and Laboratory Values/Treatment

Considering the group KD+MIS-C, a significant positive correlation was found be-
tween CECs and fibrinogen in the acute stage (p = 0.032), steroid and heparin treat-
ment (p = 0.003 and p = 0.007, respectively) and respiratory and cutaneous manifestations
(p = 0.030 and 0.027, respectively). CECs were positively correlated with platelets [PLT]
during the subacute stage (p = 0.018).

Considering the group MIS-C, a positive correlation between CECs and neutrophil
percentage value [N%] (p = 0.043) and IL-10 (p = 0.014) was found.

No correlation was found between CECs values and IVIG responsiveness (p = 0.460).

2.4. CECs Count and Disease Severity

We did not find any correlation between CECs and the presence of CALs, including
dilations and aneurysms, during acute and subacute stages, in the MIS-C patients. The
incidence of coronary events in the KD group was too low to be investigated.
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Cardiac non-coronary events were positively correlated with C-reactive protein [CRP]
(p = 0.014), troponin (p = 0.023), brain natriuretic peptide [BNP] (p = 0.019) and N% (p = 0.04).
Even though we could not find a direct correlation between CECs and cardiac events, the
latter were positively related to N%, which was in turn correlated with CECs during the
acute phase in MIS-C.

The persistence of CALs in the subacute phase was more likely to occur in IVIG non-
responders (p = 0.012), in patients who needed biologics (p = 0.02) and who had a longer
duration of fever (p = 0.014).

We did not find any correlation between CECs and clinical manifestations or a need
for respiratory support in AC19, probably because the severity of AC19 was mild in all
patients. In addition, the potential relation between CECs and respiratory or inotropic
support was not explored in the KD patients because very few patients needed these
additional therapies. Nonetheless, for the MIS-C patients, no significant correlation was
found between CEC values and respiratory or inotropic support (p = 0.257 and p = 0.628,
respectively).

3. Discussion

This is the first study measuring CECs in children with KD, MIS-C and acute COVID-19,
and analyzing and comparing their trend over the duration of the diseases with the stan-
dardized procedure of the CellSearch system.

Our findings show a significant difference in CECs during the acute stage of the
diseases; in particular, the MIS-C patients show the lower values. The difference becomes
more significant during the subacute stage of the diseases, after the medical treatment,
when a remarkable increase in CEC levels was observed only in the KD patients.

These findings may reveal a deep difference in the pathogenesis of KD and MIS-C,
even though the possible vascular complications that may occur in the two diseases are
similar (coronary artery dilations and aneurysms).

It is already known that necrotizing arteritis is the pathogenetic process responsible
for the development of CALs during the acute stage of KD. The infiltration of CA by
inflammatory cells leads to the disruption of collagen and elastin fibers and the loss of
structural integrity, resulting in CA aneurysms and dilations [1]. In addition, ECD seems to
persist years after the acute disease: Shah et al. found that CECs identified with CD146-
immunomagnetic bead extraction were significantly higher in children with KD with and
without CALs than healthy controls [42].

One of the steps of this process is the disruption of the endothelial layer, which may be
responsible for the detachment of endothelial cells and subsequent high levels of CECs in
peripheral blood, as found in our cohort [43]. This process is likely to explain the correlation
found between CECs and CALs in KD by Nakatani et al., that we were not able to confirm
probably due to the paucity of the CALs during the acute phase in our KD cohort [44].

Similarly, the low number of CECs found in the MIS-C patients during the acute stage
may be an additional step toward a deeper understanding of the pathogenetic process
involved in the development of CALs in these patients.

Although SARS-CoV-2 particles have been detected inside the endothelial cells and
endothelial derangement has been found in children with MIS-C, the process responsi-
ble for CAL development may not include the loss of the integrity of the endothelial
layer [13,45,46].

It has already been proved that in children diagnosed with juvenile idiopathic arthritis
or non-KD febrile illnesses, CA dimensions may be larger than those in healthy afebrile
subjects but smaller than the dimensions in KD patients [47]. Hence, a similar event
may occur in MIS-C patients: CALs might be present due to high levels of circulating
cytokines with subsequent endothelial cell dysfunction or edema leading to dilations of
coronaries [46,48], rather than to a structural injury as it happens in KD.
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This different pathogenesis of CALs might also explain the higher tendency of CALs to
regress in the MIS-C patients than the KD patients, as already reported in previous studies
and confirmed in ours [14].

The persistence of endothelial integrity in the MIS-C patients might contribute to
explain the absence of an increase in the CECs levels in these patients during the acute
stage, even in those with CALs.

The different trend of the CEC values between KD and MIS-C from the acute to suba-
cute stage seems to support the hypothesis of different pathogenetic processes, highlighting
the possible persistence of generalized long-term abnormalities of the systemic vascular
structure and endothelial function even after the IVIG treatment in the KD patients. This
trend was also in agreement with findings reported in a paper by Nakatani et al. [44],
despite the CECs count being obtained with a different methodology.

It has already been proved that KD patients with either persisting or regressing CALs
show an impaired long-term vascular function [49,50]. The persistence of high CEC levels
during the subacute stage in patients without CALs, as documented in our cohort, may
reveal a persistent endothelial dysfunction even in patients without coronary involvement
in this stage.

On the other hand, the mild decrease in CEC levels in the MIS-C patients from the acute
to subacute stage suggests a gradual resolution of the inflammatory process responsible
for clinical symptoms and complications during the acute stage of the disease, with a
complete healing of the vascular wall due to the absence of endothelial disruption. The
treatment with steroids in addition to IVIG in these patients could accelerate the reduction
in inflammation, with a rapid restoration of normal endothelial functions.

According to our findings, CEC levels may be used as an additional tool to dis-
tinguish KD from MIS-C at the onset of the disease, since these two conditions have a
mostly clinical definition without pathognomonic features. Thus, they could also help
to provide the proper treatment to patients and to define the time of the evaluation of
possible complications.

The detection of clusters/syncytia in half of the KD patients, as opposed to the lower
occurrence in the AC19 and MIS-C patients, may contribute to underlining the deep
endothelial damage that distinguishes KD from AC19 and MIS-C. A syncytium is a multi-
nucleate mass of cytoplasm resulting from the fusion of cells. Under normal conditions,
fusion events are uncommon, but they increase in pathological conditions such as after
tissue injury and during inflammation [51].

In addition, the detection of different levels of CECs with a persistent increase in
KD, and MIS-C during the subacute stage, contributes to fill in some of the blanks on the
influence of IVIG therapy on CECs [44]. Even though the KD and MIS-C patients both
received IVIG infusion during the acute stage, the CEC levels were significantly different
during the subacute stage, suggesting that the CEC number is not affected by IVIG therapy.
On the other hand, further research is needed to clarify whether or not corticosteroid
therapy affects CECs levels.

Moreover, a correlation with younger age and higher CEC levels was found in the
whole sample and it was confirmed in the KD and AC19 cohorts. This finding could
be related to the physiological deeper vascular remodeling potentially occurring in this
age group.

In our cohort, CEC values in patients diagnosed with AC19 spanned a wide range
of values, with high median levels. No correlation was found between CECs and clinical
presentation in children diagnosed with AC19. CEC count and/or kinetics has never been
investigated with the CellSearch system in adult COVID-19 patients. Studies performed
with a validated flow cytometry procedure to enumerate CECs reported different, but not in
contrast, results, depending on whether the absolute mature CECs count, viable /apoptotic
mature CECs count or CEC progenitors, were evaluated. Mancuso et al. [52] found that
the absolute count of mature CD146+ CECs was similar in healthy controls with respect to
COVID-19 patients, but the viable/apoptotic CD146+ CEC ratio was significantly different.
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Nizzoli et al. reported that in 76.7% of COVID-19 patients, the mature CECs number
was higher than a threshold of 30 CEC/mL; this percentage dropped to 16.7% in healthy
controls [53].

There were some limitations in our study. First, the sample size was small, particularly
for the KD cohort, due to the low incidence of KD in our country. In addition, in this
particular group, the occurrence of coronary events was very low, so that it could partially
explain the lack of correlation between CECs and CALs. On the contrary, a relatively high
number of MIS-C patients were enrolled during a quite short time interval, due to the fact
that our hospital is a tertiary referral center and due to the high incidence of COVID-19
cases during all the outbreaks in our region.

Second, CellSearch cannot distinguish CECs and endothelial progenitor cells (EPCs),
which are thought to originate from the bone marrow and to circulate through the blood-
stream in order to reach the sites of endothelial injury and repair the damage [54]. Addi-
tionally, consensus on the definition of EPCs has not been achieved yet and the phenotypic
differentiation of EPC and CEC is still lacking [24,54].

Third, a bias in the trend of CECs through the subacute phases may have occurred, due
to the more aggressive immunomodulatory therapy received by the MIS-C patients com-
pared to the KD patients, which could more effectively limit inflammation and subsequent
endothelial damage.

4. Materials and Methods
4.1. Patients

We conducted a multicenter prospective study including all children diagnosed with
KD and MIS-C between October 2020 and June 2021 in 2 Pediatric Units (IRCCS-St. Or-
sola University Hospital and Ramazzini Hospital) in Emilia-Romagna (Italy) and all chil-
dren diagnosed with AC19 admitted at the IRCCS-St. Orsola Hospital Pediatric Emer-
gency Department (PED) in the same time interval. The study was conducted according
to the guidelines of the Declaration of Helsinki and was approved by the local Ethics
Committee (Comitato Etico Area Vasta Emilia Centro—AVEC, Bologna, Italy; protocol
codes: No. 95/2021/Sper/ AOUBo; No. EM44-2021_340/2017/0/0Oss/AOUBo). Written
informed consent was obtained from the parents.

All KD diagnoses and treatments were made in accordance with the 2017 American
Heart Association (AHA) Guidelines [1].

MIS-C diagnoses were made according to WHO criteria, including clinical, laboratory
and microbiological features, in patients with evidence of a SARS-CoV-2 infection or who
were a likely contact with confirmed cases [55].

For both KD and MIS-C, the onset of illness was defined as the first day of fever. The
time interval between the disease onset and the 10th day of fever was defined as the “acute
phase”, while the one between the 11th and the 20th day after the fever onset was defined
as the “subacute phase”.

Considering the responsiveness to IVIG treatment, patients were divided into respon-
ders and non-responders. IVIG non-responsiveness was defined as the persistence or
recrudescence of fever at least 36 h and less than 7 days after completion of the first IVIG
infusion. Late treatment was defined for KD when IVIG was given after the 10th day
of fever.

Echocardiography was performed in all children diagnosed with KD and MIS-C at
each participating center at diagnosis and between the 11th and 20th day after diagnosis.
CALs were classified as ectasia and aneurysms according to their z-score criteria, as rec-
ommended by AHA KD guidelines [1]. The evolution of CALs from the acute to subacute
stage was recorded as a binary variable, including 2 possibilities: persistence or regression.

AC19 was diagnosed in patients that tested positive for SARS-CoV-2 RT-PCR in
nasopharyngeal swab samples and that reported symptoms compatible with COVID-19.
The onset of illness was defined as the day when the first symptom or sign occurred.
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A database was prospectively created and subsequently retrospectively reviewed. It
included demographic features and clinical manifestations (respiratory symptoms, con-
junctival hyperemia, extremity changes, skin rash, oral changes, cervical lymphadenopathy,
abdominal involvement, systemic hypotension/shock), date of diagnosis, length of hospital
stay, time and response to treatment (IVIG responders, IVIG non-responders, late treated)
and laboratory values (white blood cells [WBC]; N%, lymphocyte [L%] and eosinophil [E%]
percentage values; neutrophils-lymphocytes ratio [NLR]; red blood cells [RBC]; hemoglobin
[Hb]; PLT; CRP; serum albumin; alanine aminotransferase [ALT]; sodium [Na], albumin,
troponin, BNP; IL-10) recorded within the 10th day of illness. Laboratory data of the KD
and MIS-C patients were also collected during the subacute phase.

Abdominal involvement was defined as the presence of vomit and /or diarrhea and/or
abdominal pain.

Severe disease was defined as development of CALs or the occurrence of cardiac
non-coronary events or the requirement of respiratory support/inotropic therapy.

4.2. CellSearch System

CEC counts were performed by means of the Circulating Endothelial Cell Kit in
combination with the CellSearch system (Menarini Silicon Biosystems, Castel Maggiore,
Bologna, Italy), which allows one to standardize the whole procedure of the cellular
selection, monoclonal antibodies labelling, analysis and enumeration of CECs as described
previously [39].

Briefly, a blood sample of 4 mL is mixed with a ferrofluid-based capture reagent
and immunofluorescent reagents. The ferrofluid reagent consists of nanoparticles with a
magnetic core surrounded by a polymeric layer coated with antibodies targeting the CD146
antigen to capture CECs. After immunomagnetic capture and enrichment, fluorescent
reagents, which include anti-CD105-PE, anti-CD45-APC and DAPI, are added. To be
scored as CECs, a CD146+ cell must have a nucleus (DAPI), express CD105, have the
morphology of an intact cell and be negative for CD45. Therefore, a CEC is defined as a
CD146+/CD105+/DAPI+/CD45- cell. The results are expressed as the number of CECs per
milliliter of peripheral blood. Occasionally, we observed a continuous CD105 cytoplasmic
staining associated with two or more nuclei. The CECs were enumerated during the acute
(before standard treatment) and subacute stages in children with KD and MIS-C.

4.3. Statistical Analysis

The normality of the continuous variables was assessed by the Kolmogorov-Smirnov
normality test. The continuous variables are presented as the mean + standard deviation
(SD) or median and interquartile range (IQR), as appropriate. The continuous normally
distributed variables were compared using the f test or ANOVA; non-parametric data
were compared using the Mann-Whitney U test or Kruskal-Wallis test. For the categorical
variables, the percentage of patients in each category was calculated and compared with
chi-square or Fisher’s exact test, when appropriate. The matched-pairs Wilcoxon signed
rank test and Friedman test were used to test statistical significance for the within-subject
analysis. The level of statistical significance was set at p < 0.05. The analysis for this study
was performed with SPSS Statistics software (version 25; SPSS Inc., Chicago, IL, USA).

5. Conclusions

In conclusion, our findings suggest a possible role of CECs as biomarkers of sys-
temic acute inflammation and endothelial dysfunction in KD and MIS-C patients. These
findings contribute to the differential diagnosis of KD and MIS-C and suggest a different
etiopathogenesis of these diseases.

Additionally, CECs could be considered as a potential new tool for the identification of
different physiopathological mechanisms of endothelial injury, thus guiding the therapeutic
management of these pediatric systemic inflammatory conditions. In addition, CECs could
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represent a marker to monitor endothelial status also after the acute stage. Further larger
studies are needed to confirm our findings.
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