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A Target Detection and Tracking Method
for Multiple Radar Systems
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Abstract— Multiple radar systems represent an attractive
option for target tracking because they can significantly enlarge
the area coverage and improve both the probability of trajectory
detection and the localization accuracy. The presence of multiple
extended targets or weak targets is a challenge for multiple
radar systems. Moreover, their performance may be severely
deteriorated by regions characterized by a high clutter density.
In this article, an algorithm for detection and tracking of
multiple targets, extended or weak, based on measurements
provided by multiple radars in an environment with heavily
cluttered regions, is proposed. The proposed method features
three stages. In the first stage, past measurements are exploited
to build a spatiotemporal clutter map in each radar; a weight
is then assigned to each measurement to assess its significance.
In the second stage, a track-before-detect algorithm, based on
a weighted 3-D Hough transform, is applied to obtain target
tracklets. In the third stage, a low-complexity tracklet association
method, exploiting a lion reproduction model, is applied to
associate tracklets of the same target. Three experiments are
presented to illustrate the effectiveness of the proposed approach.
The first experiment is based on synthetic data, the second
one is based on actual data from a radar network with two
homogeneous air surveillance radars, and the third one is based
on actual data from a radar network with four different marine
surveillance radars. The results reveal that the proposed method
can outperform competing approaches.

Index Terms— Maneuvering target, multiple radar system,
radar data, remote sensing, target tracking, track-before-detect
(TBD).

NOMENCLATURE

ξ t
k kth extended target state at time t .

ξTar Trajectories of MTar targets.
ξ Any potential solution of trajectories set ξTar.
ξT Optimal estimation of trajectories set ξTar.
xt

k Kinematic state.
Xk Size and shape of the target.
(x t

k, yt
k) Target position.

v t
k, α

t
k Velocity and course of the target.

wp, wv,wα Process noise.
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S Number of radars in the network.
Zt

k Set of measurements collected by all radars and
generated by target k at time t .

Zt,s
k Set of measurements generated by target k at

radar s at time t .
MTar Number of targets.
Zt,s
0 False alarm points originated by clutter.

Zt,s
F False alarm points originated from thermal noise

and background noise.
γ s
F Expectation of |Zt,s

F | in the Poisson distribution.
ps
F Average background clutter density.

vs i Measure of the area watched by radar s.
Zt,s
C Points generated by clutter regions in radar s.

Zt,s
C,j Clutter points due to clutter region j in radar s.

γ s
C, j Expectation of |Zt,s

C,j| in the Poisson distribution.
ps
C, j Clutter density of the j th clutter region.

ps
0(x, y) Clutter density in any point of coordinates (x, y)

in radar s.
vC, j Size of the j th clutter region.
IC, j (x, y) Indicator judge whether position (x, y) in the

j th clutter region.
Zt,s
0 Overall set of false alarm points for radar s at

time t .
Zt Set of points acquired by the whole radar

network at time t .
Zt1:t2 Set of points acquired by the whole radar net-

work during t1 to t2 (input of track-before-detect
TBD methods).

I. INTRODUCTION

MULTIPLE radar systems have recently gained increas-
ing importance in a number of civilian and military

applications. Radars can be densely deployed in large sur-
veillance areas to acquire sensing information to be jointly
processed. Scattered radar systems provide overlapping cov-
erage, which enhances robustness and improves sensing qual-
ity and accuracy. This article concerns target detection and
tracking over a large area using a multiple radar system,
a problem of interest in a number of applications including
security and surveillance, battlefield monitoring, and traffic
management [1]–[4].
In a multiple radar system, measurements can be effectively

fused and jointly processed, which yields several advantages
with respect to a single radar. Among these advantages, some
of them are given as follows: 1) the coverage area is typically
wider; 2) the probability of detection can be increased since,
compared with the fewer measurements acquired by a single
radar, the higher number of available points makes the target
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easier to detect; 3) due to spatial diversity and the higher
number of points, the localization error for a detected target
can be decreased; 4) the higher number of measurements
received in a period of time can improve the performance
of maneuvering target tracking; and 5) higher robustness to
failures can be achieved; a multiple radar system can still
work, even though with degraded performance, when some
of the radars in the network are broken. Three problems need,
however, to be addressed to gain full benefits from a radar
network in real applications, namely, target extension in the
presence of multiple radars, joint detection of weak targets
using a radar network, and clutter regions.
By “target extension,” we refer to a situation in which one

target may generate more than one point in each radar of the
network in a time step, typically because the radar resolution is
smaller than the target size. Several works have addressed the
problem of extended target tracking in a single radar system
(e.g., [5]–[7]), but few methods are suitable for extended
target tracking in a multiple radar system framework, e.g., [8].
Current approaches, for instance, the ones based on random
finite sets [9], tend to enumerate all possible point sets, each of
which may be an extended target. This approach can be very
time consuming if the number of combinations between point
sets and potential tracks becomes large, deteriorating tracking
performance when the number of enumerated combinations is
insufficient.
The expression “weak target” refers to a target generating

few measurements and, therefore, very hard to detect. Track-
before-detect (TBD) algorithms [10]–[14] were developed to
improve the detection rate of weak targets. In a multiple
radar system, however, the situation is more involved since
detections differ from radar to radar because of the different
bands, polarization modes, and beam angles.
Clutter regions are specific regions of the surveillance

area responsible for a large number of false alarm points.
These regions usually have two sources. The first source is
represented by the echoes from large objects of no interest,
such as viaducts, skycrapers, and sea waves. The second one is
represented by interference (e.g., from radio broadcasting sta-
tions, cellular base stations, and jamming opponents). Target
detection in dense clutter regions is generally a hard task. In
[15] and [16], exploitation of a priori information on the traffic
and the environment was shown to significantly improve the
overall performance of a radar system. However, in this work,
such an a priori information is assumed to be unavailable,
as its acquisition can be hard in practice. Clutter generated by
motionless objects is static and may be effectively canceled.
Moreover, in a multiple radar system, robustness to interfer-
ence may be achieved by exploiting frequency diversity for
the different radars [17]. In general, multiple radar systems
exhibit enhanced robustness with respect to single radar ones.
Examples of effective clutter suppression methods are the
techniques proposed in [18].
Some detection and tracking methods have been specifically

developed for multiple radar systems [19]–[29]. However,
track initiation [19] and tracking maintenance [20]–[22], [29]
are insufficient to detect and track extended targets or weak
targets in the presence of clutter regions for several reasons.

First, the methods [19]–[25] are designed for pointwise targets,
each target generating at most one point. As such, redundant
trajectories would be built in extended target scenarios. Sec-
ond, association methods [20], [21] using only the points of the
current frame are unfavorable to weak trajectories detection.
Third, clutter regions generating a very large number of false
alarm points are not considered. Several false trajectories
would arise in this situation. Fourth, methods in [23], [25], and
[26] are designed for radar networks with homogeneous sen-
sors. However, heterogeneous radar networks [24] consisting
of different types of radars with different working modes can
achieve better target localization and tracking performance.
Fifth, target extension is considered in methods [27], [28] and
TBD technology is applied in [28]. However, the methods [27],
[28] are designed for monostatic and bistatic sensor networks
whose measurement is waveform rather than points of each
radar.
In this article, we propose a method for tracking multiple

targets (whose number is not a priori known), based on the
measurements generated in each period by a multiple radar
system in a cluttered environment. The input of the system is
represented by the set of unlabeled points acquired by each
radar, the source of such points being unknown (in the sense
that each point may be originated by a target of interest or
may represent a false alarm point). The output is a set of
smoothed trajectories, each associated with a target of interest
in the surveillance area. We point out that the proposed method
can be classified as a nonparametric clustering method in
which the points originated from the same target are clustered
in one set using the points acquired during a longer time
period.
The proposed method features three steps. The first stage

is represented by clutter suppression in each radar using a
spatiotemporal clutter map. It consists of calculating a score
for each point, in such a way that points in the area having
a dense clutter will receive a small score, making them
insignificant for detection and tracking purposes. The second
stage is represented by detection of target tracklets. This
is accomplished via a TBD approach based on a weighted
3-D Hough transform (HT). The infinite space of all possible
tracklets is first reduced to a finite space by a discretization
of the parameter space; each point votes for all tracklets
to which it belongs in this latter space and the score of
its vote coincides with the score of the point obtained in
the first stage. Traditional measurement-to-track association
methods, such as the ones proposed in [30] and [31], are not
used here for two reasons: 1) their inferior performance with
respect to TBD-based approaches in the presence of weak
targets and 2) the need to avoid fast growth in the space
of possible multiple target trajectories due to the uncertainty
in the association of observed measurements with known
targets at each time step. The third stage consists of tracklet-
to-tracklet fusion after identification of tracklets associated
with the same target. Computing the similarity of each pair
of tracklets is usually a computationally hard task that we
tackle using an approach inspired by lion reproduction (LR).
As opposed to lion optimization algorithm [32], which mimics
cooperation among lions in hunting, we are inspired by the
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reproduction characteristics of lions, where only the strongest
ones can generate offspring. An approach based on an LR
model is developed to find the optimal tracklet associations
more efficiently: iteration by iteration, the tracklets are clus-
tered and fused to form whole trajectories that, after outliers
removal and processing by a smoothing algorithm, represent
the system output.
The main contributions of this article correspond to the

three stages of the proposed method: 1) construction of a
spatiotemporal clutter map in each radar effective in suppress-
ing clutter by assigning an appropriate score to each point;
2) development of a TBD approach, based on a weighted
3-D HT, capable of exploiting the score of each point to
detect tracklets originated by weak targets; 3) development of
a “voting” process, where points of the same target are gath-
ered without considering target measurement rate, to address
the extended target problem; and 4) development of a new
tracklet association method using an LR model, to improve
the tracking performance with low complexity.
This article is organized as follows. Section II addresses the

system model. In Section III, the three stages of the proposed
method are presented. Section IV shows the results obtained by
processing both synthetic data and real data gathered from two
multiple radar systems: the first featuring two homogeneous
air surveillance radars and the second four different marine
surveillance radars. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a network composed of multiple radars, aimed
at detecting and tracking moving targets in a given area.
We denote by k the index of a potential target, s the index
of a radar in the network, i the index of a measurement, and t
the time. Vectors and matrices are denoted by boldface letters.

A. Target Model

The kth extended target state at time t is denoted by
ξ t

k = (xt
k, Xk). Here, xt

k = (x t
k, yt

k, v
t
k , α

t
k) is the kinematic

state, where (x t
k, yt

k) represents the target position, while v t
k

and αt
k are the velocity and course of the target, respectively.

Moreover, Xk indicates the extension state and describes the
size and shape of the target. The extension state of an extended
target is assumed to be invariant over the time. The random
matrix model is chosen to describe the extended target shape
because it represents a good combination of an informative
shape model and low computational complexity [7]. For
example, the shape of the extended target here is as an ellipse
and the extension state Xk exactly records the parameter of
the ellipse. The state evolution of each target satisfies a linear
Markov model, and therefore, the state of the target k evolves
according to

x t2
k = x t1

k + (t2 − t1)v
t1
k cos

(
αt1

k

) + wp

yt2
k = yt1

k + (t2 − t1)v
t1
k sin

(
αt1

k

) + wp

v t2
k = v t1

k + wv

αt2
k = αt1

k + wα (1)

where wp, wv , and wα are the process noise components.
We assume that the target bears a constant velocity in the

time interval (t1, t2). Then, the trajectory of kth target can be
expressed by ξ k , ξ k = {ξ t1

k , ξ t2
k , . . .}, and we denote by ξTar,

ξTar = {ξ1, . . . , ξ MTar
}, the trajectories of the MTar targets. The

trajectories ξTar represent the output of the overall process.

B. Measurement Model

There are S radars in the network, each of which produces
“thresholded” measurements in every scan period, as a result
of a detection process. These radar systems may be hetero-
geneous and characterized by different operating modes. The
set of measurements, collected by all radars in the system and
generated by target k at time t , is denoted by Zt

k . We have

Zt
k = H

(
ξ t

k, ω
)

= {
H1(ξ

t
k, ω1), H2

(
ξ t

k, ω2
)
, . . . , HS

(
ξ t

k, ωS
)}

(2)

= Zt,1
k ∪ Zt,2

k ∪ · · · ∪ Zt,S
k (3)

where Hs(·) is a function modeling the measurement process
of radar s and ωs is the corresponding measurement noise.
Measurements generated, for the same target, by different
radars in the network are assumed to be independent. Letting
Zt,s

k be the set of measurements generated by target k at radar
s at time t . The set Zt,s

k in each of the S radars is the input
necessary to detect the target tracks.
We also denote by Zt,s the set of measurements collected

by radar s at time t; this includes both target points and false
alarm points. Formally, we can write

Zt,s = Zt,s
1 ∪ Zt,s

2 ∪ · · · ∪ Zt,s
MTar

∪ Zt,s
0 (4)

where the set Zt,s
0 includes the false alarm points originated

by clutter, which may be partitioned into two different classes.
The first one is the set of false alarm points originated from
thermal noise and background noise, Zt,s

F . The number of such
false alarms may be modeled as a Poisson random variable
[33] with probability mass function

P
(∣∣Zt,s

F

∣∣ = n
) = (γ s

F )n

n! exp
( − γ s

F

)
. (5)

The sources of these false alarm points can usually
be assumed as uniformly distributed over the surveillance
area. The expectation of the above Poisson distribution, γ s

F ,
is assumed as an unknown constant because the background
noise typically varies slowly compared with the scan period.
The average background clutter density at radar s can be
expressed as

ps
F = γ s

F

vs
(6)

where vs is the measure of the area watched by the radar.
The second class of false alarm points, Zt,s

C , includes the
ones that are generated by clutter regions. Some clutter regions
are originated by objects such as buildings, mountains, and
islands; in marine radar systems, sea areas are also responsible
of clutter regions. The extension of clutter regions is usually
much larger than the target size. Letting JC be the number
of clutter regions, we have Zt,s

C = Zt,s
C,1 ∪ · · · ∪ Zt,s

C,JC , where
Zt,s
C, j is the subset of points at radar s due to clutter region j .
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The cardinality of Zt,s
C, j is modeled as a Poisson distribution

whose expectation is denoted by γ s
C, j . Hence, we have

P
(∣∣Zt,s

C, j

∣∣ = n
) =

(
γ s
C, j

)n

n! exp
( − γ s

C, j

)
. (7)

These points are assumed independent and uniformly dis-
tributed over the j th clutter region, of size vs

C, j . The clutter
density of the j th clutter region can then be expressed as

ps
C, j = γ s

C, j

vs
C, j

. (8)

For radar s, we can express the clutter density in any point
of coordinates (x, y) as

ps
0(x, y) = ps

F +
JC∑

j=1

IC, j (x, y)ps
C, j (9)

where IC, j (x, y) is an indicator function defined as

IC, j (x, y) =
{
1, (x, y) belongs to clutter region j

0, otherwise.
(10)

As from (9), the clutter density for a single radar may
vary considerably across the surveillance area. Furthermore,
the clutter density of the same clutter region can be different
for different radars in the network. The overall set of false
alarm points for radar s at time t , Zt,s

0 , can be expressed as
the union of the two types of false alarm points, namely

Zt,s
0 = Zs

F ∪ Zt,s
C,1 ∪ · · · ∪ Zt,s

C,JC . (11)

In the proposed method, the clutter density ps
0(x, y) is

estimated by exploiting the measurement Zt,s
0 for suppression

of the clutter points.
In our model, each point z consists of a kinematic (position)

measurement component and a time stamp recording time
at which the measurement has been collected; moreover, all
points are unlabeled and their source is unknown. The set of
all |Zt,s| points acquired by radar s at time t , given by (4),
can then also be expressed as

Zt,s = {(x, y, t)}t,s (12)

while the set of points acquired by the whole radar network
at time t is

Zt = Zt,1 ∪ Zt,2 ∪ · · · ∪ Zt,S. (13)

In TBD methods, the trajectories of targets are detected by
the points of multiple time steps. We define

Zt1:t2 = ∪i :t1<ti <t2Z
ti . (14)

Typically, the input of TBD methods is represented by the
points in Zt1:t2 .
A pictorial representation of a radar network, featuring three

radars, is shown in Fig. 1. The target is illuminated by the
three beams, from different directions. Target image may differ
considerably from radar to radar due to the different radar
parameters and target orientation; the figure illustrates how the
spatial distribution of the points detected by the three radars
can be quite different. For instance, the beam of radar 3 is

Fig. 1. Pictorial representation of a radar network with three radars.

Fig. 2. Schematic of observed points and target trajectory.

thinner than that of radars 1 and 2, which enables a better
imaging capability and more centralized points. Although the
beams of radars 1 and 2 are the same, the corresponding
images are quite different due to the different directions of
illumination.
An example of points collected by the three radars, together

with the trajectory of a target, a straight line in the (x, y, t)
coordinate system, are presented in Fig. 2. The points of
radars 1–3 are represented by red, green, and blue markers,
respectively. Points originated by the target and by a clutter
region are represented by balls and tetrahedrons, respectively.
While the target points are rather concentrated around the
actual trajectory, the clutter region points are scattered in the
area. It is worth noting that the scan period of the three radars
is different, the one of radar 1 being the shortest one and that
of radar 3 the longest one.

C. Problem Statement

Extended target detection and tracking algorithms are
designed to estimate the extended target states at each scan
from the measurements Zt1:t2 . Maximum likelihood estimation
consists of performing

ξT = argmax
ξ

P(ξ |Zt1:t2) (15)

where ξ ranges over the set of all potential trajectory solutions
ξTar and ξT is the maximum likelihood estimate out of this
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set, given the measurements in Zt1:t2 . The fundamental step
toward solving the estimation problem (15) is measurement-
to-trajectory association. Due to the existence of false alarm
points and closely spaced trajectories, estimation is deterio-
rated by false alarm tracks, miss detection events, and incorrect
associations.
This article follows two general strategies to improve the

estimation process summarized in (15). The first strategy is
based on estimating the clutter density ps

0(x, y) in the generic
position (x, y) and of reducing the “score” of points falling
in high clutter density regions, reducing their likelihood to
be generated by a target and therefore hindering their use
in measurement-to-track association. The second strategy is
the application of the TBD paradigm [34], where points
belonging to multiple frames are jointly processed and tracks
are built before any decision about existence of target tracks is
made. In this way, most incorrect associations can be avoided,
including association of target points with clutter points or
association of target points originated by different targets.
Another problem required to be considered in this work

is the difference between the radars in the network. In most
radar networks, the radars are homogeneous (i.e., they have
the same characteristics and the same sampling interval) and,
at each time step, sensing is performed synchronously by
them. In such a situation, all points obtained at a given time
can undergo the same processing. In a probability hypothesis
density (PHD) filter-based approach [5], [7], for example,
measurement partition may be performed at first. The points
generated by all radars in one time step are clustered into sets
based on their position component and each subset is regarded
as the set of points originated from a specific target. Then,
all point subsets can be processed by a conventional PHD
filter. In contrast, the multiple radar systems considered in this
work can include different radars. Their sampling interval, for
example, can be different so that the target is not measured
at the same time. Therefore, the time dimension becomes an
essential component of processing.

III. MULTIPLE RADAR SYSTEM PROCESSING

A. Overview and Comparison With Previous Work

This work mainly elaborates on [10], [11], [13], and [35].
However, rather than featuring a two-stage detection process
as in [10], the proposed method is a three-stage one. The
differences between the proposed three-stage processing and
the previous works [10], [11], [13], [35] are highlighted in
Fig. 3. In stage 1, a new clutter suppression technique is
applied to deal with the clutter regions and the difference
between radars. A clutter map in each radar is built from
past measurements, and the scores of the recently obtained
measurement points are estimated. The points with a larger
score are more likely generated by targets.
In stage 2, tracklet detection is performed. It plays a role

similar to that of tracklet detection in [10] and [35]. The
3DHT-TBD method in [10] and [11] defines a 3-D accumulator
array and tracklets are detected by finding the cell receiving
the largest number of votes from measurements, where each
measurement can vote for one cell only. The 3DP detection

Fig. 3. Comparison between the proposed method and the former work.

algorithm detects tracklets [35] in multiple detection bins.
In each of them, measurements are projected onto a map and
a tracklet can be detected by CFAR in the projection map.
In this work, a weighted 3DHT-TBD method is developed,
in which the score of a point plays a key role in the voting
process. Although a huge number of clutter points may exist,
their score is very low, yielding very few false alarm tracklets.
Meanwhile, sampling-based CFAR [36] is applied, so clutter
is canceled out and leads to less a priori information required.
In stage 3, tracklets are associated with each other to obtain

integrated trajectories, which corresponds to stage 2 in [10]
and [35]. In [10], tracklets are associated in a time sequence,
which turns insufficient in tracklet association when a target
generates few points in successive time windows. The tracklet
association method in [10] is based on a multiple hypoth-
esis tracking (MHT) approach and tracks multiple possible
associations between trackets. Using an evolutionary strategy,
only the most likely candidates survive and are further fused
with the others to obtain trajectories of very high quality.
Therefore, occasional tracklet misdetection has little influence
on the overall tracking performance. However, the number of
hypotheses remains large and the iterative tracklet association
leads to computation times that may not always meet the
requirements of real-time processing. Hence, we propose an
efficient association method using an LR model that is inspired
by natural selection and the survival of the fittest elements
in the natural world. High efficiency in finding the best
combinations makes the proposed method computationally
efficient. In the process, since the extension state of a target
may change from sensor to sensor (as shown in Fig. 1), a new
score estimation function to evaluate the candidate trajectories
is defined, using the source of the points in a possible
trajectory. In this way, both the computational efficiency and
the association accuracy turn to be improved.

B. Proposed Method Outlook

As shown in Fig. 4, the proposed method consists of
three stages, corresponding to the red, blue, and green boxes.
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Fig. 4. Flowchart of the proposed method for a network with S = 2.

Detailed descriptions of the three stages are provided in
Sections III-C–III-E.
The first stage, clutter suppression, is addressed in

Section III-C and corresponds to the red box in Fig. 4; this
stage is fundamental to avoid that false alarm trajectories are
built from false alarm points in clutter region’s background.
Two steps, employing clutter density and Gaussian kernel
density [37], are used to suppress the clutter by evaluating
the probability that a point is originated from a target. This
probability is hereafter referred to as the “score” of the
point. As a first step, since in our model, the clutter due to
background noise and clutter regions varies slowly (i.e., the
clutter density in each position of the surveillance area remains
constant over several time steps), the past measurements are
used to estimate the clutter density in each position and a
low score is assigned to points whose position corresponds
to a high clutter density. As a second step, since the points
generated by a single extended target are usually close to
each other, we employ the Gaussian kernel density analysis to
estimate the point scores by capturing the spatial relationship
of current points. With reference to Fig. 4 (red box), both
clutter suppression steps are performed within each radar and
all weighted points obtained by each radar are sent to the
fusion center for tracklet detection.
The second stage corresponds to tracklet detection whose

detailed description is presented in Section III-D. The
weighted points received by the fusion center over WT time
steps are associated with a number of overlapping time win-
dows, each one consisting of several time steps. Each time step

includes the points of several scans. The points in each time
window are associated with tracklet, which regards a “shorter”
trajectory or a “fragment” of trajectory.
The third stage is tracklet association whose detailed

description is presented in Section III-E. Tracklets obtained
in each time window are associated with each other to obtain
integrated trajectories. As mentioned above, tracklet associa-
tion relies on an LR model. The tracklets are compared just
with the outstanding tracklets, which avoids the need to calcu-
late the distance between each pair of tracklets. As discussed
in the sequel, the trajectories with the largest score, i.e., the
ones that are more likely generated by a target, can be obtained
in a very efficient manner. The nontarget points are reserved
and send back to the first stage for clutter map renewal.
Fig. 5 presents the framework of the proposed method by

processing at time t and t + L1. The duration of each time
step is L1 scans, the measurement of past WC time steps is
exploited for clutter density estimation, and the measurement
of the latest WT time steps is performed by the Gaussian
kernel density. In Fig. 5, for example, WT contains eight
time steps and each time window includes four time steps.
Tracklet detection, exploiting the point scores, is performed
individually in each time window. The time window includes
the points of L2 time steps, namely, L2L1 scans. The set of
tracklets obtained in each time window is associated in the
third stage. In the example, there are four such time windows,
namely, T1, T2, T3, and T4.
The example system in Figs. 4 and 5 is characterized by

S = 2 radars and four time windows. Once the measurements
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Fig. 5. Framework of the proposed method.

of latest L1 seconds are collected (and even though no
point is received during this time period), the time windows
are slid forward one time step. After tracklet detection, the
measurements can be partitioned into target points and clutter
points; the clutter points of most recent Wc time steps are used
to estimate the current clutter density.

C. Clutter Suppression in Each Radar

Due to heterogeneity of radars, the distribution of clutter
may change considerably from radar to radar. For this reason,
we perform clutter suppression individually in each radar,
in two substeps. The first one consists of estimating the clutter
density using the points in WC, while the second one consists
of calculating the target point score of each point in WT.
Assume that, in the sth radar, Ns

C points are obtained in
WC. Our estimation of the clutter density in a position (x, y) is
based on the observation that a large clutter density is typically
associated with a large number of points in the neighborhood
of (x, y). The clutter density of (x, y) here can be estimated by
the Gaussian distance [37] between (x, y) and the Ns

C points,
namely

p̂s
0(x, y) = 1

ωc

N s
C∑

i=1

exp

(
− (x − xi )

2 + (y − yi)
2

2ωc

)
. (16)

The parameter ωc above is related to the background clutter
density or the average distance of clutter points. A larger ωc

can be set when few clutter points exist or the distance between
clutter points is large.
In a practical implementation, a clutter map in which the

surveillance area is partitioned into cells shall be built, as (16)
cannot be computed for each (x, y). The clutter density is
calculated in the center of each cell; the score of a point is
defined as the clutter density of the cell in which it falls.
As shown in Fig. 5, the clutter map is always renewed by
the latest points in WC. As such, both the time and point
position information are utilized in the spatiotemporal clutter
map, which is suitable for inhomogeneous and time-varying
clutter in background.

The second substep consists of calculating the target point
score of the Ns

T points in WT. As mentioned above, the points
generated by the same extended target at the same time, Zt,s

k ,
tend to be close to each other so that the distance between
these points is smaller than that of false alarm points. Thus,
the score of a point zi , zi = (xi , yi , ti), is compared only with
the points in the same time step, i.e.,

{z�}ti ,s = {z j = (x j , y j , t j ) | z j ∈ Zs; |ti − t j | < L1}. (17)

A Gaussian kernel density analysis [37] is performed to
score the gathered points. The score of zi can be estimated by
the distance between the zi and the points in {z�}ti ,s , i.e.,

qs
i (xi , yi ) = 1

ωT

|{z�t }t,s
k |∑

j=1

exp

(
− (xi − x j)

2 + (yi − y j)
2

2ωT

)
. (18)

The parameter ωT above is related to the standard deviation
of target positional error. A large value of qs

i (xi , yi) and a low
value of ps

0(xi , yi ) indicate that the point (xi , yi , ti ) is more
likely originated from a target. Thus, we define the point score,
pi , as

pi = qs
i (xi , yi)

p̂s
0(xi , yi)

. (19)

Then, the points obtained by radar s in time window WT

used to detect trajectories can be represented by

zs
T = {

(xi , yi , ti , pi)
∣∣ i = 1, . . . , Ns

T

}
. (20)

A potential trajectory that consists of points with a large
score is more likely been originated from a target.
A schematic of the first stage, for S = 3 radars, is presented

in Fig. 6; the figure has been generated with the measure-
ments shown in the example in Fig. 2. The current points
of the time window WT obtained by the three radars are
illustrated in the three subfigures appearing in the red box. The
past measurements, i.e., the points corresponding to the time
window WC, are instead shown in the subfigures appearing
in the blue box. The clutter maps of the three radars are
individually estimated by (16) using these latter points. Next,
the clutter maps and the weighted points of the three radars are
illustrated in the subfigures appearing in the green box. Here,
a dark area denotes a higher clutter density, while the score
of each point is represented by its size. As it can be seen, the
clutter densities for the three radars are different, especially in
the clutter region. For example, with reference to the clutter
region, the clutter density for radar 1 is substantially higher
than that of radar 3; correspondingly, the score of the clutter
points in radar 1 is lower than that radar 3 (because the clutter
region of radar 1 contains far more clutter points). Compared
with the points falling in the clutter regions, the other points
have a higher score and most of the points are generated by
the targets. The set of weighted points generated by the three
radars represents the output of the first stage.

D. Tracklet Detection in Each Time Window

The input of the second stage is represented by the weighted
points obtained in the first stage by the S radars. Each point
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Fig. 6. Schematic of the clutter suppression method.

has five parameters, namely, x coordinate, y coordinate, time,
score, and source radar label. The output of this stage is a set of
tracklets in each time window, each tracklet being represented
by a segment obtained from a subset of the weighted points.
A weighted 3-D HT-TBD algorithm is developed to detect the
tracklets independently in each time window.
As exemplified in Fig. 2, the points of a target tend to be

located around the tracklet. The distance between the point
and the tracklet is proportional to the positional error of the
radar from which the point has been collected. In Fig. 2, each
tracklet can be represented by a 3-D segment, whose direction
is related to the kinematic state of the target. Therefore,
a weighted 3-DHT-based TBD approach is exploited to obtain
segments from subsets of weighted points. The HT makes the
infinite space of all possible tracklets finite by a discretization
of the space parameter and lets each point “vote” for all lines
to which it belongs in this parameter space [38]. The resulting
accumulator array can thus be considered a transform of the
original point into the parameter space.
The parameter space discretization is the most fundamental

constituent of the HT. A 3-D accumulator array is built, with
each cell representing one set of three parameters from the
discretized parameter space having Nx × Ny × Nd grid cells.
The first parameter is the index of detection bin, where there
are Nd detection bins in total. Each detection bin corresponds
to a 3-D vector, according to mapping that may be found in
[10] and [11]. The 3-D vectors are generated by tessellation

of platonic solids (specifically, of an icosahedron) and by
discarding the ones that do not comply with upper and lower
bounds on the target speed. In this work, we limit to 140 the
number of vectors used to approximate the direction of the
tracklets. In each detection bin, a plane whose normal vector is
the 3-D vector is built. The plane can be divided into Nx × Ny

grid cells. In all experiments, we have Nx = Ny = 100, so we
have 140 × 100 × 100 grid cells in total. Each grid cell
represents a candidate tracklet and the generic grid cell or
tracklet can be identified by the three parameters.
Each measurement has a projection point on the so-built

plane and votes for the cell in which its projection point is
located, the score of the vote being equal to the score of
the measurement. In this way, measurement tends to vote
for a candidate tracklet when it is close to it or, typically,
the distance between the tracklet and the measurement is
smaller than the positional error standard deviation. The voting
process ends after all measurements have casted their vote. The
cell receiving the highest score is regarded as the candidate
tracklet; its score is then compared with a detection threshold
obtained by CFAR using the cells nearby the candidate cell.
If the score of the candidate cell is larger than the detection
threshold, a tracklet is detected and the points voting for this
cell are regarded as belonging to this tracklet. Then, both these
points and their votes are removed from the accumulator array
to avoid redundant detections. In contrast to [10], tracklets
are detected in an iterative way by constantly selecting the
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most voted candidate tracklet and removing the corresponding
measurements in each step until the score of the most voted
trackle is smaller than the CFAR threshold. The weighted
3-DHT-TBD algorithm is summarized hereafter.

Step 1: We discretize the parameter space for all 3-D-lines
crossing the measurements and we define Nd vectors and an
accumulator array having Nx × Ny × Nd voting cells. The
Nd vectors representing three directions are obtained by the
method in [11].

Step 2: The location of a mapped point (x p
i , y p

i ) in the nd th
plane whose normal vector is (ex, ey, et ) can be calculated as

x p
i = (

e2y + e2t
)
xi − ex

ey yi + et ti
e2x + e2y + e2t

y p
i = (

e2x + e2t
)

yi − ey
ex xi + et ti

e2x + e2y + e2t

t p
i = (

e2x + e2y
)
ti − et

ex xi + ey yi

e2x + e2y + e2t
. (21)

The vote of a point (xi , yi , ti , pi) voting in the nd th detec-
tion bin can be calculated by

nx =
⌊(

x p
i + dmax

2

)
Nx

dmax

⌋

ny =
⌊(

y p
i + dmax

2

)
Ny

dmax

⌋
(22)

where the parameter dmax indicates the maximum distance
between the original point and the measurements. Then,
the accumulator cell (nx , ny, nd) is voted by the point
(xi , yi , ti , pi). In ordinary HT, as well as in [10] and [35], the
score of votes is the same and equals 1. In this work, the score
of points are taken into consideration in the voting process to
suppress clutter. Specifically, the score of a point is added to
its vote w(nx , ny, nd), yielding the final vote ẇ(nx , ny, nd)
after the addition as

ẇ(nx , ny, nd) = w(nx , ny, nd) + pi . (23)

In this way, although a considerable number of false alarm
points are voting for a cell, the vote of this cell typically
remains insufficient to reach the detection threshold as the
clutter point score is very small. Moreover, the cell voted by
the clutter points is similar in score because the size of clutter
region is much larger than the cell; hence, far fewer false alarm
tracklets are built in the clutter region because their votes are
small and not outstanding. After the voting of all Nk points, the
accumulator array, which contains Nd × Nk votes, is obtained.

Step 3: The parameters of the 3-D-line corresponding to
the highest voted accumulator cell, assumed (nx , ny, nd), are
estimated. Then, a CFAR detection on the map of the nd th
detection bin is performed, i.e., {(ni , n j , nd)|1 ≤ i ≤ Nx ; 1 ≤
j ≤ Ny}, by employing the sampling CFAR in [36]. If the
vote of the cell (nx , ny, nd) is large enough compared to that
of its surrounding cells, the most voted cell may represent a
candidate tracklet. According to [10], each detection bin corre-
sponds to a 3-D vector (ex , ey, et ), which allows obtaining the
tracklet detection by nd . For a point on this tracklet (xi , yi , 0),

we have

xi = nx
dmax

Nx
− dmax

2

yi = ny
dmax

Ny
− dmax

2
(24)

and therefore, the candidate tracklet corresponding to
(nx , ny, nd) is expressed by

x − xi

ex
= y − yi

ey
= t

et
. (25)

Step 4: The points close to the candidate tracklet are selected
as the component of the tracklet using the distance between
the candidate tracklet (25) and the point, as proposed in [10].

Step 5: The optimal candidate tracklet in the current iter-
ation is obtained and its tracklet score is computed. A target
tracklet is confirmed if its score is larger than the detection
threshold. In this article, we employ the tracklet score and
the detection threshold proposed in [10]. If the tracklet is
confirmed, then proceed to step 6; otherwise, the candidate
tracklet contains too few votes or votes that are not outstanding
compared with the ones of the surrounding cells; therefore,
the current iteration is terminated. Only the clutter points are
reserved in the current measurement set. These points will be
sent to time window WC for clutter estimation in the next
round.

Step 6: The points of the confirmed tracklet are removed
from the measurement set and their votes are subtracted from
the accumulator array, i.e., the votes of tracklet points are
removed from accumulator array to avoid duplicated detection.
The vote before and after the subtraction are represented by
ẇ(nx , ny, nd ) and ẅ(nx , ny, nd), respectively; hence, we have

ẅ(nx , ny, nd) = ẇ(nx , ny, nd ) − pi (26)

where nd = 1, . . . , Nd . The result is represented by the
tracklets obtained in each time window in WT. The tracklet
set of the nth time window is denoted by Tn ; we write

Tn = {
T1

n, . . . , TNn
n

}
(27)

Ti
n = {

zi,a
n = (xa, ya, ta, pa)

∣∣ a = 1, . . . ,
∣∣Ti

n

∣∣} (28)

where the set Tn contains Nn tracklets and Ti
n is the i th tracklet

in Tn . The tracklet Ti
n is a set containing points that may be

generated by different sensors but which (in the absence of
tracklet detection errors) are originated from the same target.
An example is presented in Fig. 7. The weighted points

obtained in Fig. 6 are the red points in Fig. 7. The red points in
the clutter region are suppressed but not directly removed.
In the first iteration, the points vote in 140 detection bins.
In the first two detection bins, the 3-D vectors are b1 and b2;
the accumulator maps of the two detection bins are represented
by the cyan planes. The cells that are voted are represented
by the green points in the cyan plane. In the first detection
bin, the tracklet is parallel to the vector b1. Therefore, the
mapped points or the green points are closely distributed. The
votes of the detection bin 1 are also depicted in the figure.
The vote of a cell in detection bin 1 is the largest among all
Nd × Nx × Ny cells. Therefore, a tracklet whose points are
voting for the cell is obtained as the result of the first iteration.
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Fig. 7. Schematic of the weighted Hough transformation-based TBD.

In the depicted example, after removing the tracklet points,
only clutter points survive. In the second iteration, a cell in the
detection bin receives the highest number of votes. However,
no tracklet is confirmed because the cell score is similar to
that of its surrounding cells. In the clutter region, although
several points are voting for the cell, the score of each vote
is very small, and then, the score of the candidate tracklet in
the second iteration is insufficient to confirm a tracklet. The
iterations of the weighted 3DHT-TBD algorithm in the current
time window are thus completed.

In some dense target scenarios such as airports, target
tracks are close to each other so that extended targets can
be individually tracked only if they isolated enough. In PHD-
based methods [9], the points of the two extended targets
would be put in one measurement set and the two extended
targets may be regarded as a larger one. In tracklet detection,
if two tracks are parallel but not overlapped, as it is shown in
Fig. 8(a), two target regions can be still obtained in the same
detection bin and the two tracklets can be detected individually
from the two target regions. Fig. 8(b) presents a crossed track
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Fig. 8. Votes of close targets. (a) Paralleled tracklets. (b) Crossed tracklets.

scenario where two extended targets are overlapped in several
scans, but the two tracklets are in different directions. The
two target regions can be detected in different detection bins.
Compared with methods based on track-point association, such
as [5], [27], and [30], Fig. 8 shows the benefits potentially
offered by tracklet detection approaches for tracking close
extended target.

E. Tracklets Association Based on an LR Model

In the third stage, similar to the second stage in [10] and
[35], the tracklets originated from the same target should be
associated with each other to obtain the whole trajectory. The
input is the set containing the tracklets in each time window.
Assuming that we have � time windows, the input can be
represented by

T1:� = {T1, T2, . . . , T�}. (29)

As it is shown in Fig. 5, adjacent windows share part
of the measurements, so tracklets sharing the same points
are more likely to belong to the same target. The tracklet
association problem is represented in Fig. 9, in which the
tracklets obtained from four successive windows are presented
in Fig. 9(a)–(d). There are two actual trajectories in the area.
In the example, we assume that false alarm tracklets originated
from clutter are also built in Fig. 9(a)–(c), where each subfig-
ure shows one false alarm tracklet. Tracklets generated by the
targets through the four time windows should be associated in
such a way as to obtain two trajectories. The tracklets of the
four windows are presented in Fig. 9(e), where we see that
the optimal association should be

T1 = {
T1
1, T1

2, T1
3, T1

4

}
(30)

T2 = {
T2
1, T2

2, T2
3, T2

4

}
. (31)

Tracklets T1
1 and T1

2 can easily be associated because they
share points in the same period. On the other hand, isolated
tracklets, such as T3

1, T3
2, and T3

3, do not share any points with
the others. Moreover, as another important observation, if two
tracklets are generated by the same target, the “composition”
of the tracklets should be similar. For example, the points
of T1

2 and T1
3 are originated from all three radars, while the

points of T3
3 are only originated from radars 2 and 3. Hence,

T3
3 and T1

3 are more likely being generated by the same target.
The aim of this stage is finding the best tracklets association;
compared with [10] and [35], the proposed method has two
main advantages: 1) the composition information is exploited
in addition to spatial information and 2) the computational
complexity is decreased and controlled to satisfy real-time
processing.
Next, we propose an efficient tracklet association method

based on an LR model exhibiting a very good tradeoff between
performance and complexity. The LR algorithm mimics the
leadership hierarchy and reproduction mechanism of lions in
nature. Of particular interest is that pride is characterized by
a very strict social dominant hierarchy. In some large pride
of lions, there may be several males, but only several peak
leaders have the right to reproduce, in order to generate the
strongest possible offsprings in the next generation. Moreover,
along with the newborn of young lions, expiration of the
elder ones helps keeping their number under control. The
proposed tracklet association is inspired by this model. Each
candidate trajectory represents a lion, and the set of the most
promising trajectories represents pride of lions. The living
trajectories become more robust through the iterations of the
algorithm and, finally, the candidate trajectories whose score
becomes larger than a detection threshold are regarded as the
detected ones. Overall, the algorithm can improve performance
and efficiency simultaneously. The proposed method can be
decomposed into the six steps described hereafter.

Step 1: Each tracklet Ti
n represents a lion or a candidate

trajectory. The i th candidate trajectory is represented by �i .
The initial population can be represented by

� = {�1,�2, . . . ,�M} (32)

�i = {
zi,a = (xa, ya, ta, pa)

∣∣ a = 1, . . . ,
∣∣Ti

n

∣∣} (33)

where M is the initial population cardinality.
Step 2: The score of a candidate trajectory is computed as

F(�i) =
S∑

s=1

Fs(�i,s) (34)
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Fig. 9. Tracklets in each window and the corresponding association. (a) Tracklets detected in time window 1. (b) Tracklets detected in time window 2.
(c) Tracklets detected in time window 3. (d) Tracklets detected in time window 4. (e) Tracklets of the four time windows.

where �i,s represents the subset of points belonging to �i that
have been generated by the sth radar. As shown in Fig. 1,
the target extension state can differ from radar to radar, and
then, it should be estimated by the points of the same radar.
We have

Fs(�i,s) = Fx(�i,s)Fγ (�i,s)FX(�i,s) (35)

where the three functions Fx(·), Fγ (·), and FX(·) represent
the probability that the points in �i,s are originated from
the target using the information about position motion state,
measurement rate, and target extension, respectively. The
expressions of Fγ (·), Fx(·), and FX(·) can be found in [10].
In order to mathematically model the social hierarchy of lions,
we consider the fittest candidate tracklets as the leaders. More
specifically, �i is said to be a leader or a ruled lion according
to the criterion {

F(�i ) ≥ T�; Leader

F(�i ) < T�; Ruled lion
(36)

where the threshold T� is set in order to partition the set of
candidate tracklets such as the top 10% of them selected as
the leaders in our experiments. The set of leaders and ruled
lions is represented by L and R, respectively, and we write{

L = {
�L
1 ,�L

2 , . . . ,�L
M1

}
R = {

�R
1 ,�R

2 , . . . ,�R
M2

} (37)

where M1 + M2 = M .
Step 3: The similarity of each pair of leaders is estimated

in terms of the optimal subpattern assignment (OSPA) dis-
tance [39], [40]. More in detail, the similarity between �L

i
and �L

j is defined as

D
(
�L

i ,�L
j

) =
S∑

s=1

D
(
�L

i,s ,�
L
j,s

)
(38)

where

D
(
�L

i,s,�
L
j,s

) =
⎡
⎣ 1∣∣�L

i,s

∣∣
⎛
⎝min

κ∈	

|�L
i,s |∑

a=1

(
d
(
�a

i,s,�
κ(a)
j,s

))p

⎞
⎠

+ (∣∣�L
i,s

∣∣ − ∣∣�L
j,s

∣∣)c p

⎤
⎦

1/p

(39)

is the OSPA distance between �L
i,s and �L

j,s . The quantity
�a

i,s is an arbitrary element (a point) in �L
i,s and �κ

j,s(a) is
the nearest point in �L

j,s corresponding to �a
i,s . The symbol

	 above represents the set of permutations of length |�L
j,s|

with elements taken from �L
i,s , while the parameters c and p

represent the cutoff value and the distance order, respectively.
Two leaders �L

i and �L
j are regarded as close to each other

when they share a considerable number of points. This is
captured by the condition

D(�L
i ,�L

j ) < TF (40)

where TF is a fixed threshold discriminating whether the two
lions are similar. The threshold TF should be proportional to
the distance order of the OSPA distance p in (39) and is set
to p

2 in the experiments. If the OSPA distance of two leaders
is larger than TF , no action is taken; otherwise, if the OSPA
distance is smaller than TF , the stronger one would stay at
the leadership hierarchy and the other becomes a ruled lion.
Formally{

F
(
�L

i

)
> F

(
�L

j

) ⇒ R = R ∪ {
�L

j

}; L = L
∖{

�L
j

}
F

(
�L

i

)
< F

(
�L

j

) ⇒ R = R ∪ {
�L

i

}; L = L
∖{

�L
i

} (41)

where \ denotes set difference, i.e., A \ B = {x ∈ A :
x /∈ B}. In this step, the candidate trajectories are compared
M1(M1 − 1) times.

Step 4: If a leader lion and a ruled one share part of
their points, fulfilling the condition D(�L

i ,�R
j ) ≤ TF , then
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a newborn lion �N
i , containing the points of two, is created

and included in the pride. Formally

D
(
�L

i ,�R
j

) ≤ TF ⇒ �N
i = �L

i ∪ �R
j ; � = � ∪ {

�N
i

}
. (42)

Otherwise, no action is taken because the leader and the
ruled lion have no significant overlap. In this step, the can-
didate trajectories are compared M1M2 times. If no newborn
lion is created through these comparisons, jump to step 6;
otherwise, continue with step 5.

Step 5: The candidate tracklets not matching with others
or having a very low score are eliminated, mimicking the
expiration of the old lions, which allows keeping the elements
in the set � under control. Formally

F(�i) < Tmin ⇒ � = � \ {
�N

i

}
(43)

where the threshold Tmin is adaptively adjusted to match the
Mth highest score, which ensures that the cardinality of the
trajectory population does not exceed M .
In our experiments, the initial value of Tmin is set to 0.1.

Then, the surviving trajectories are sent back to step 1 for
further associations to obtain “stronger” trajectories.

Step 6: The score of each surviving trajectory is calculated
and the candidate whose score is larger than a fixed detection
threshold Tcon is confirmed as a target. We then have{

F(�i) ≥ Tcon; Confirmed trajectory

F(�i) < Tcon; False alarm trajectory.
(44)

The threshold Tcon sets to 0.5 in the experiments. After
confirmation of targets, an orthogonal least-squares fitting is
performed on each track to improve its localization accuracy.
An example is presented in Fig. 10. In the initial population

(first subfigure), the lions are partitioned into leaders and ruled
lions. The colored circles indicate the leaders that have a
high score, while the circles in gray are the ruled lions. The
dotted ellipses indicate that two candidates can be associated.
In the second iteration (second subfigure), it can be seen that
some new “stronger” lions emerge and some of them become
the leaders. At the same time, some isolated candidates are
eliminated from the set. Another round of association is
performed on the evolved pride. In the third subfigure, two
independent trajectories are obtained and no new candidates
emerge. Meanwhile, all isolated candidates whose scores are
lower than the detection threshold are eliminated, so we can
regard the two trajectories as the confirmed targets.
The third step is mainly designed to make the method

possible to cope with the maneuvering targets and meet the
requirement of real-time processing.

F. Theoretical Model

In this section, we provide an integrated theoretical model
for tracklet detection, which applies to the proposed technique.
When a track exists, the votes received by a cell are con-
tributed by three distinct components, namely, the target, the
background clutter, and the clutter regions. As discussed in
Section II, the distributions of all these three components are
modeled as Poisson ones. Considering the generic radar s of
the network, the clutter density (due to background clutter

and clutter regions) in a region is ps
0 given in (9). From (19)

and [37], the score of a clutter point at radar s is (ωT ps
0)

−1.
Next, let the size of a grid cell be wxy × wxy. Over the time

window [tT1 , tT2 ], a cell is tested (tT2 − tT1 )/T s
scan times in radar

s to check whether a target exists in it, where T s
scan denotes

the scan period of radar s. Then, the average vote of clutter
points in a cell, γC, can be expressed as

γC =
S∑

s=1

1

ωT ps
0

tT2 − tT1
T s
scan

w2
xy ps

0

=
S∑

s=1

tT2 − tT1
ωTT s

scan

w2
xy. (45)

Moreover, the distribution of the clutter vote nC in a cell is
given by

PC(nC) = (γC)nC

nC! exp(−γC) (46)

due to the sum of independent Poisson processes also follow-
ing a Poisson distribution. The clutter vote nC represents the
vote originated from clutter points in the cell. The parameter
γC incorporates the expectations of Poisson processes (5)
and (7), for each radar s.
The score of a target point at radar s can be expressed

as γ s
k (ωT ps

0)
−1 exp(−w2

p/ωT). Over the time window [tT1 , tT2 ],
(tT2 − tT1 )γ s

k /T s
scan targets points can be obtained on average.

Therefore, on average, the vote of target component in a cell
γT can be expressed by

γT =
S∑

s=1

(
tT2 − tT1

)
γ s

k F(wxy, wp)

ωTT s
scan ps

0

· (1 + (
γ s

k − 1
)
exp

( − w2
p/ωT

))
(47)

where F(wxy, wp) is the probability that target points are
located in the cell when the size of cell is wxy and positional
error is wp. A larger F(wxy, wp) can be obtained by setting
a larger wxy and a smaller wp. The distribution of target vote
nT is expressed by

PT(nT) = (γT)
nT

nT! exp(−γT). (48)

In each iteration of the algorithm, the tracklet receiving
the largest vote is detected; thus, the target tracklet is easily
detected if the score of the target cell is sufficiently larger than
that of the local clutter cells. According to (45) and (47), the
ratio of target component γT to clutter component γC is

γTC =
∑S

s=1 γ s
k F(wxy, wp)

(
1 + (γ s

k − 1) exp
(
−w2

p

ωT

))
∑S

s=1 ps
0w

2
xy

. (49)

The parameter γTC may be interpreted as a sort of “signal-
to-clutter ratio” in the grid cell. As from (49), a large target
measurement rate γ s

k , a small clutter density ps
0, and a small

positional error wp are beneficial to achieve a larger γTC.
We remark that the values of the parameters γ s

k , ps
0, and wp are

out of the system designer’s control and that, in most of the
cases, we have γ s

k � ps
0. Using more radars, i.e., increasing S

also has the effect of increasing the ratio γTC, at the price of
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a more expensive and complex network. A moderately small
cell size wxy can be selected to achieve a large γTC. However,
due to measurement positional errors wp, a number of target
points will fall out of the cell if the value of wxy is too small,
leading to a smaller F(wxy, wp). In practice, wxy is usually
set in the same order as wp.
Relationships (45), (47), and (49) address the average voting

component from a theoretical viewpoint. In real cases, using
a large [tT1 , tT2 ], a small T s

scan, and a large number of radars S
is beneficial to get more votes, and the actual ratio of target
component to clutter component is closer to the γTC in (49).
Then, the accidental false alarm tracklet or misdetection would
be decreased.

G. Complexity Analysis

Low computational complexity is a fundamental feature of
any tracking algorithm to make its real-time operation pos-
sible. The processing involved in the Weighted-3DHT-LRTA
method may be conceptually divided into three parts that
correspond to its three stages. The computational complexity
of the proposed method and the two methods proposed in [10]
and [35] is summarized in Table I. Note that both the method
in [10] and that in [35] comprise two stages, which are mapped
onto stages 2 and 3 in the table because they perform the same
tasks as stages 2 and 3 in the proposed method.
Stage 1 consists of two steps: clutter map generation and

point score estimation. In clutter map generation, (16) is
evaluated NC times, where NC is the number of points in the
time window WC; the corresponding complexity is approx-
imately 7w2

1NC.1 In point score estimation, (18) and (19)
are evaluated NT times and the corresponding complexities
are 7w2

1 NC and (7w2
1 + 1)NT, respectively. In the previous

expressions, w1 is the size of the effective window. For
example, in evaluating (16), we assume that if the distance
between the center of a grid cell and a clutter point is larger
than w1, then the clutter point does not contribute to the clutter
density of the cell.
Stage 2 also consists of two steps, voting and tracklet

detection. In the voting step, NT points in the current win-
dow WT vote in Nd detection bins using (21)–(23), which
leads to computational complexity in the order of 30Nd NT.
In the second step, tracklet detection, tracklets are detected
iteratively. Here, Nx Ny Nd cells are visited (|�| + 1) times in
a time window to check whether the cell score is larger than
the threshold, for an overall complexity of Nx Ny Nd (|�| + 1).
In the third stage, LR-based tracklet association, most of the

computational burden is due to the calculation of the similarity
of candidate trajectories through (38). Let M1 = |�|/n
(number of leaders) and M2 = ((n − 1)/n)|�| (number of
ruled lions). In each iteration of the algorithm, (38) is evaluated
M1(M1 − 1) + M1M2 times with a cost of m0 operations per
each candidate pair, for a total complexity of m0(|�|2−|�|)/n.
In contrast, in [35], the similarity of each pair is calculated
directly in the iteration, so (38) is evaluated |�|2 times.
As from the above considerations, we can conclude that

most of computational burden shall be attributed to the second

1The numerical factors involved in the complexity expressions are derived
from the number of fundamental operations involved in each evaluation.

Fig. 10. Schematic of the LR model-based tracklets association method.

and the third stages. With reference to the second stage, the
proposed method exhibits a computational cost that is higher
than that of the methods in [10] and [35] because of the
(|�| + 1) factor. In the corresponding column of Table I, the
parameter w0 appearing in the complexity of 3DP-TA denotes
the size of the employed CFAR window [35]. In contrast, with
reference to the third stage, the complexity of the proposed
method is lower than that of [35] because the OSPA distance
computation by (38) is performed n times less than [35].
Using the MHT strategy, to obtain a target track requires
|�| associations. Therefore, denoting by MTar the number of
targets, |�| MTar associations are required to obtain the tracks
of the MTar targets. In the proposed method, the number of
leaders, |�|/n, is similar to the target number MTar so that the
complexity of stage 3 in the proposed method is close to that
exhibited by the method of [10].
Overall, the increased complexity in stage 2 is balanced by

a lower complexity in stage 3, which still guarantees real-
time processing. Some additional results will be provided
in Section IV, where processing time of the three stages,
experimentally evaluated through simulations, will be pre-
sented. These experimental results are in agreement with the
complexity analysis presented in Table I.

IV. CASE STUDY 1

A. Synthetic Data With Two Different Radars

To fully assess the performance of the proposed algo-
rithm, extensive experiments have been conducted. In [10],
two state-of-the-art approaches were compared with the
3DHT-MHT-TBD. Concerning PHD-based approaches, the
distance partition method [5] and the ART partition
method [41] were combined with the PHD algorithm [5].
Moreover, in the area of TBD-based approaches, the 3DHT-
TBD [11] was employed. The OSPA distance was used for
evaluating the performance of the algorithms. Results revealed
that the 3DHT-MHT approach was able to outperform the
other methods in all scenarios, which has a higher detection
rate in detecting normal targets and less false trajectories
built in detecting weak targets. In [35], the 3DP-TA algorithm
was proposed and shown to perform better than 3DHT-MHT
due to tracklets in time windows being associated randomly
to get more candidate trajectories, rather than being simply
associated in a time sequence. Thus, in this article, we only
consider the 3DHT-MHT [10] and the 3DP-TA [35] algorithms
as benchmarks.
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TABLE I

COMPUTATIONAL COMPLEXITY OF DIFFERENT TRACKING ALGORITHMS

TABLE II

PARAMETER VALUES USED FOR SIMULATIONS IN TBD METHODS

TABLE III

RESULTS OF TBD METHODS

We consider two radars working together to detect
six maneuvering targets. Fig. 11(a) shows the scenario with six
turning tracks. They begin circular motion at the 11th frame
and move uniformly again from the 16th to the 20th frame.
In the simulation, the measurement rate of the targets in the
two radars is the same and equals 2. However, the clutter
densities of the two radars are different. The clutter densities
of radars 1 and 2 are 4 × 10−7 and 16 × 10−7, respectively.
It means that 4 × 10−7 clutter points can be received in radar 1
per square on average in a beam illumination. At the same
time, a clutter region exists in the surveillance area. The clutter
densities of the clutter region in radars 1 and 2 are 12 × 10−7

and 48 × 10−7, respectively. Fig. 11(b) and (c) shows the
synthetic data of the two radars before any processing, through
all scan periods, where the radars are in position (0, 0) and
(−2000, 0). The red points are originated from targets and
the others are clutter points. Comparing Fig. 11(b) and (c),
we can see that, as expected, the number of clutter points
(black points) affecting radar 2 is larger than that affecting
radar 1. We can also see that the clutter region, highlighted by
a blue box in Fig. 11(b) and (c), contains more clutter points
in both figures and that the clutter density of the region is

different for the two radars. The measurements of the two
radars are unlabeled. The parameter values of the three TBD
methods are reported in Table II.
The average OSPA distances of the three methods in each

scan are presented in Fig. 11(d). The average OSPA distance,
average detection rate, average processing time, number of
false trajectories per frame, and number of false trajectories per
frame in the clutter region are presented in Table III. As we can
see in Fig. 11(d), the OSPA distance of the proposed method is
always lower than that of the others. We observe that the OSPA
distance in scans 10–15 is larger than that in scans 1–10 for
the 3DHT-MHT algorithm, which highlights how the tracking
performance of this algorithm is deteriorated when the targets
are maneuvering because of imperfect tracklet association.
Incorrect associations, in fact, tend to occur more when targets
are maneuvering. However, we observe that the impact of
target maneuvering on the tracking performance of the 3DP-
TA method and the proposed one is not high since more
potential association cases are taken into consideration and
the correct association can be selected as the final trajectory.
Without efficient clutter suppression among the different

radars (stage 1 of the proposed method), the substantially
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Fig. 11. (a) Target trajectories and clutter regions. (b) Points in radar 1.
(c) Points in radar 2. (d) OSPA distance of methods.

larger number of false alarm tracklets results in a higher
OSPA distance in 3DHT-MHT and 3DP-TA. In Table III,

Fig. 12. Real data of two homogeneous air surveillance radar. (a) Radar 1
data. (b) Radar 2 data.

we see that the average number of false trajectories per scan
of the proposed method is approximately a fraction 1/20 of
that characterizing 3DP-TA and 3DHT-MHT. In 3DP-TA and
3DHT-MHT, about 50% of false trajectories are generated by
the clutter region, while that of the proposed method is less
than 3%, which confirms the validity of the first two stages in
clutter suppression.
The detection rate of the proposed method is higher than that

of the two considered competitors, as shown in Table III. This
higher detection rate may be attributed to three main reasons.
First, target points hold a higher score, which is beneficial
to target tracklet detection. Second, the tracklets are detected
iteratively; the best tracklet is detected in each iteration, which
turns effective to detect close trajectories. Third, in tracklet
association, composition information is applied in estimating
OSPA distance of two tracklets. As a consequence, correct
associations are often found, which allows building up inte-
grated trajectories. Therefore, higher detection rate and lower
false trajectories contribute to a lower OSPA distance in using
the proposed method.
The running times of the compared methods, divided into

stages, is also presented in Table III. Stage 2 of the pro-
posed method exhibits a larger running time than the other
two because only one tracklet is detected per each iteration.
However, as it is analyzed in Section III-G, the computational
complexity of stage 3 in the proposed method is estimated
to be approximately 20% of that of, for example, 3DP-TA.
Overall, the more efficient association strategy makes the
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Fig. 13. (a) Original points generated by radar 1. (b) Original points generated by radar 2. (c) Trajectories (final results) obtained by radar network.
(d) Trajectories (final results) obtained by radar 1 alone. (e) Trajectories (final results) obtained by radar 2 alone.

Fig. 14. Measurements of the four radars in a time window of duration 80 s. (a) Radar 1 data. (b) Radar 2 data. (c) Radar 3 data. (d) Radar 4 data.

overall running time of the proposed method slightly lower
than that of its competitors.

B. Real Data With Two Homogeneous Radars
In this and in the following, experiments with real-world

data are presented to verify the feasibility of the proposed
approach in multiple radar systems. The data acquired by
two air surveillance radars are first exploited. The two radars
have the same characteristics, only differing in polarization
(horizontal for the first one and vertical for the second one);
the antennas of the two radars are back-to-back placed in the
same turntable, so the difference in line of sight (LOS) angle
is a constant π . The scanning cycle of the radar system is
10 s. The original measurement of two radars, input of stage 1
of the proposed approach, is presented in Fig. 12(a) and (b).
The point color indicates the measurement time; the red color

identifies the earliest points and the blue color identifies the
latest ones. The radar is placed nearby the Beijing airport,
so plenty of target trajectories exist in the surveillance area,
with aircraft usually flying in some fixed air corridors. There
are a considerable number of clutter points in specific regions
of the surveilled area, obscuring the actual trajectories. Fig. 12
also shows that the different polarization modes lead to some
differences in measurements. In particular, more fixed clutter
regions emerge with vertical polarization in Fig. 12(b). The
proposed method aims at extracting the actual trajectories.
In Fig. 13, the original measurements before process-

ing and the final obtained trajectories in a region of size
140 km × 200 km are presented. This area corresponds to
the dotted rectangular box in Fig. 12. The points (inputs of
stage 1) obtained by the first and the second radar in 20 min
(1200 s) are presented in Fig. 13(a) and (b), respectively.
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Fig. 15. Clutter maps of the four radars. (a) Clutter map of radar 1. (b) Clutter map of radar 2. (c) Clutter map of radar 3. (d) Clutter map of radar 4.

Fig. 16. Weighted points of the four radars. (a) Weighted points of radar 1. (b) Weighted points of radar 2. (c) Weighted points of radar 3. (d) Weighted
points of radar 4.

Fig. 17. Points of a region in the second and third quadrants and the obtained
trajectories. (a) Points of the four radars in the second and third quadrants.
(b) Obtained trajectories in the second and third quadrants.

Most targets can be detected by both radars, which turns to be
very beneficial in decreasing the positional error, especially if
a target is maneuvering. Some targets, however, are detected
by one radar and missed by the other one.
The 19 obtained trajectories are presented with different

colors in Fig. 13(c). Although we can observe the presence of
a significant number of clutter points and although the clutter
density of the area is nonuniform, no false trajectories are built
in clutter regions due to the effective clutter suppression. The
trajectories obtained by radar 1 alone and radar 2 alone are
presented in Fig. 13(d) and (e), respectively. As we can see,
compared with the situation in which any of the two radars
is used alone, the detection rate of the multiple radar system

Fig. 18. Obtained trajectories in the first quadrant by the four radars. (a) Two
targets moving along parallel trajectories. (b) Two targets, one chasing the
other.

is substantially improved. For example, several trajectories in
Fig. 13 and (e) are broken into several shorter trajectories.
Since in this experiment, the ground truths of targets are
unknown, we focus on the detection rates. As mentioned
above, 19 tracks are detected by the two-radar system; the
length of these tracks ranges between 30 and 115. The sum
of all detections through all scans is equal to 1352, where
one detection here means a target detected in any scan period.
Using radar 1 alone with the same data, 41 shorter tracks are
built, for a total of 1129 detections. Therefore, the detection
rate of radar 1 alone is 83.14% of the detection rate of the
two-radar system. Similarly, using radar 2 alone, 46 shorter
tracks are built, for a total of 930 detections. In this case,
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Fig. 19. (a) Two smoothed trajectories obtained in Fig. 18(a). (b) Positional error of trajectory 1 in Fig. 18(a). (c) Positional error of trajectory 2 in Fig. 18(a).
(d) Two smoothed trajectories obtained in Fig. 18(b). (e) Positional error of trajectory 1 in Fig. 18(b). (f) Positional error of trajectory 2 in Fig. 18(b).

the detection rate is 68.79% the one of the two-radar system.
The detection rate of radar 2 is lower than radar 1 because
more false alarm points affect radar 2. Therefore, in this
scenario, compared with using single radar alone, the detection
rate is increased from 16% to 31% by using a two-radar
system. Notably, the trajectory consistency is improved despite
the detection performance difference between two radars.
This highlights the effectiveness of the proposed technique
to exploit radar diversity.

C. Real Data With Four Heterogeneous Radars

In the third presented experiment, four radars with dif-
ferent characteristics are employed to survey a sea area.
All measurements collected by the four radars in 1.33 min
(80 s) are presented in Fig. 14. The positions of radars
1–4 are (0, 0) km, (−5.5, 0.5) km, (−14.2, 7.2) km, and
(−12.1, 12.4) km, respectively. The first two radars, whose
unprocessed measurements are shown in Fig. 14(a) and (b),
are two sector scanning radars, capable of monitoring only
the area corresponding to the first quadrant. The third and the
fourth radars, whose unprocessed measurements are shown in
Fig. 14(c) and (d), are two circular sweep radars capable of
monitoring all directions. The time at which measurements
are collected is distinguished again by means of colors. Clutter
densities and the clutter regions are quite different in the four
radars. For example, the clutter density of radar 4 is much
larger than that of the others. The clutter region of radar 3 is
quite different compared with the normal regions. The clutter
distributions of radars 1 and 2 are similar, but they are not the
same.
Four clutter maps, one per each radar, are built in the first

stage of the proposed method; colors from red to blue in
Fig. 15 indicate a decrease in clutter density. The regions of

Fig. 14 where massive clutter exist are clearly highlighted by
the clutter maps in Fig. 15. Points in the clutter region receive
far less score, which makes their votes insignificant. Therefore,
despite the very large number of clutter points generated by
the clutter region, no false trajectories are likely to be built.
The weighted points obtained in stage 1 are presented in

Fig. 16, in which the score of each point is represented by its
size. In Fig. 16(a) and (b), points in the clutter region turn to
be relatively smaller than the others. In Fig. 16(c) and (d), the
points in the region having a dramatically high clutter density
receive a very small score so that the other points dominate
the formation of trajectories.
The points of a region in the second and the third quadrants

are presented in Fig. 17(a). As it can be seen, a very large
number of clutter points obscure the actual trajectories in this
region. Fig. 17(b) presents the result of stages 1 and 3, i.e.,
weighted points and trajectories. As above, the color and size
of points indicate their acquired time and score. In this region,
nine trajectories are detected, among which eight correspond
to civilian aircraft whose presence was known. The trajectories
of the eight civilian aircraft, emphasized with black ellipses,
match well with the ADS-B messages sent by each of them.
The trajectory marked with a red ellipse corresponds to an
unconfirmed target, which is detected by all four radars but
whose identity and ground truth are unknown. Moreover,
no other unconfirmed targets are obtained even if several
clutter regions exist.
Fig. 18 presents the four trajectories obtained in the first

quadrant; for the sake of clarity, each subfigure showcases two
trajectories. Two targets moving along parallel trajectories are
shown in Fig. 18(a), while Fig. 18(b) shows two targets, one
chasing the other. Since in this case, the targets are detected
by all four radars, the points of each trajectory are obtained
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by all of them. Therefore, in the second stage of the proposed
method, all the points vote for the same trajectory, whose score
becomes higher than that of the false ones. Remarkably, the
trajectory score is larger than the one it would be in case a
single radar was employed. As another important observation,
since the targets are always detected by all four radars, the
trajectory of the same target is similar in composition. This
ensures that the tracklets corresponding to a target are unlikely
to be associated with false alarm tracklets whose points are
originated by just one or two radars. Therefore, the false
tracklets are also effectively suppressed in the third stage.
Trajectory smoothing is then performed. The smoothed

trajectories and the ground truth are presented in
Fig. 19(a) and (d), where Fig. 18(a) corresponds to Fig. 19(a)
and Fig. 18(b) corresponds to Fig. 19(d). The positional error
of the smoothed trajectories in Fig. 19(a) is presented in
Fig. 19(b) and (c). Some target points whose positional error
is much larger than the others are regarded as outliers and
are removed in the smoothing phase. Fig. 19 infers that the
measurement error of different radar is various. The positional
error of radar 1 is lower than the other three. The smooth
trajectory is consecutive on the time and space rather than the
discrete target points in Fig. 18. The average positional error
of the four trajectories in Fig. 19(a) and (d) is about 200 m
and the distance between the targets and the four radars is
more than 160 km. Using the proposed method, the four
radar network shows its superiority in high detection rate,
low false alarm trajectory rate, and low positional error.
The validity of the proposed method is proven by the two

real experiments. It infers that our method can detect and track
multiple extended targets in multiradar systems, regardless of
whether the radars are the same or not. The problems of clutter
regions and weak targets are solved by weighting the points
and two stages of the TBD algorithm.
The 3DHT-MHT and the 3DP-TA are unsuitable to be used

here because of countless clutter points in the clutter region of
radars 3 and 4. In the 3DHT-MHT and the 3DP-TA, numerous
false alarm trajectories will be built by processing these clutter
points equally.

V. CONCLUSION

In this work, a new technique for extended target detec-
tion by multiple radar systems has been proposed. Extended
targets, weak targets, and dense clutter are considered in
designing the algorithm. The proposed approach consists of
three stages. The first stage is clutter suppression on each
radar. A spatiotemporal clutter map is built to calculate the
score of each measurement. The clutter points are suppressed
by given a very small score, which means that the points are
insignificant in target detection. The second stage is designed
to address the issue of weak extended targets. A weighted
3-DHT-TBD is applied to detect the tracklets. In the third
stage, the LR model-based association method is exploited
to address the issue of target maneuvering. Both efficiency
and performance are improved compared with traditional
tracklet fusion methods. To explore the performance of the
proposed method, both the synthetic data and real data have
been performed. The obtained results reveal that, by taking

full detection merit in multiple scans and multiple radars,
the proposed approach can offer remarkable performance in
extended target detection and tracking.
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