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Abstract: This study investigates the backflow of a Newtonian fluid in a two-dimensional flat-walled
fracture with Navier slip boundary conditions. The fracture has a uniform aperture and two rigid
pre-strained plates as walls; their elastic deformations are described by the Winkler model. Under
the lubrication assumption, the governing nonlinear ordinary differential equation and the time-
dependent velocity profile are derived; in turn, this yields the time and space evolution of the pressure
distribution inside the fracture, numerically. In addition, the condition when the external pressure
becomes zero, is discussed, and a parametric study is performed to highlight the influence of the
slip length.
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1. Introduction

Backflow technology, known and in use for almost a century, has been revived and
applied in recent decades to increase the production of gas and oil from shales, with further
applications in the carbon sequestration and geothermal plants, see [1] for a review. The
objective is to increase permeability by generating a network of fractures [2], which are
then stabilised with proppant, usually sand particles, although in some applications an
increased roughness of the fractures is sufficient to prevent closure after the backflow. The
transport of the proppant requires adequate fluid characteristics; the fluid must be able to
keep the particles in suspension while maintaining a reasonably low viscosity. Following
the completion of the fracturing and proppant injection phases, it is necessary to recover
the carrier fluid that is pumped out by both the elastic reaction of the fracture walls and the
hydrocarbon advancement, see [3].

The dynamics are controlled by the elastic reaction of the fractured mass and the fluid
rheology, as well as the geometry of single fractures and network. The fluid is almost
always non-Newtonian, with a behaviour that can be described by different models with
temperature-dependent characteristics. Fracking and proppant carrier fluids are, in fact,
the subject of careful studies to ensure that their in situ behaviour satisfies the following
requirements: (i) injectability without excessive resistance; (ii) ability to transport proppant
particles; (iii) easy evacuation and backflow; (iv) protection of plants and environment.

The complexity of the process limits the effectiveness of the global models and has
traditionally favoured the development of simple models capable of reproducing the basic
processes, starting with the backflow, in a conceptual frame and in the laboratory [4–6], in
plane or radial geometry, with Newtonian or non-Newtonian fluids.

In addition to the early contributions by Garagash [7], followed by several others
(see the review by Osiptov [3]), we also mention other contributions [8–11], in which the
fluids modelled with power-law or Ellis rheology, flow in fractures with a plane or radial
symmetry.
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It is a fact of evidence that many fluids do not meet the wall adhesion condition and
are subject to slip; see Neto et al. [12] for a review of the experimental studies, and Lauda
et al. [13] for a review of the theoretical approaches. The presence of a slip at the wall
modifies the flow rate for a given pressure gradient and introduces further complexities
to the scenario, even though the random geometry of the fracture has been left apart. For
example, for a fracture surface wetted with creosote in a fracture half a millimeter wide,
the increase in the flow rate was 10.0% compared to a surface wetted with water [14].
The change in the flow rate, however, seems to insignificantly influence the longitudinal
dispersion rate [15].

The aim of the present paper is to analyse the backflow of a Newtonian fluid with a slip
in an elastic fracture. The paper is organised as follows. Section 2 formulates the theoretical
model and illustrates the approximations made. Section 3 describes the numerical model
used for the integration of the resulting differential problem. Finally, the main results are
summarised in the conclusions.

2. Theory

We consider a two-dimensional fracture with the finite length L, time-dependent
aperture h(t), with an initial thickness of h0, filled with an incompressible fluid with a
dynamic viscosity µ, as shown schematically in Figure 1. The fracture is characterised by
two rigid plates having a flexural stiffness D � ρL4/h0 [5,16] yielding a constant aperture
throughout the fracture length. At the initial time instant (t = 0), the fracture walls are
subjected to a no-flow condition at the fracture inlet (x = L) and the constant initial pressure
(pe) at its outlet (x = 0). When time evolves (t > 0) and the pre-strained upper plate is
released, the fluid is squeezed out of the outlet; as a result, the direction of the pressure
gradient inside the fracture is in the x-direction, resulting in a parabolic velocity profile
towards the outlet. We denote u(x, z, t) and p(x, t) as the velocity field and pressure inside
the fracture, respectively.
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Figure 1. The schematics of a two-dimensional fracture with a finite length L and an initial aperture
h(t = 0) = h0

. Half of the fracture is shown due to the symmetry.
The incompressible flow is governed by the continuity equation

∇·u = 0 (1)

and the momentum equation in a coordinate free form reads

∂(ρu)
∂t

+ ρ∇·uu = −∇p +∇·τ (2)
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where ρ is the fluid density, p the pressure including the gravity effects, u the velocity vector,
and τ the deviatoric stress tensor. Considering an incompressible, steady, and laminar flow
propagating in the x-direction (no movement in the z-direction), the momentum equation
in the Cartesian system of Figure 1 becomes

d
dz

(
µ

du
dz

)
=

dp
dx

(3)

Integrating the momentum Equation (3) for a constant viscosity fluid, one can obtain
the relevant shear stress component as

τzx = pxz + c, (4)

where px = dp/dx and c is a constant. The velocity of the fluid is obtained by integrating
the momentum Equation (3) twice yielding

u(z) =
px

2µ
z2 + c1z + c2, (5)

where c1 = c/µ and c2 are two unknown real constants that can be obtained by imposing
the boundary condition at the wall u(z = −h/2) = u(z = +h/2) and the symmetry of the
velocity profile for a pure Poiseuille flow (du/dz = 0 for z = 0) as

c1 = c = 0; c2 = u
(

h
2

)
− px

8µ
h2. (6)

Substituting Equation (6) into Equation (5), the velocity profile for the half-fracture
takes the form

u(z) =
px

2µ

(
z2 − h2

4

)
+ u

(
h
2

)
. (7)

2.1. Linear Navier Slip Law

We consider slip walls at the top and bottom plates constituted by the linear Navier
slip law [5] where the relationship between the slip velocity us and shear stress is linear:

us(z) = sign
(

du
dx

)
k
µ

τzx. (8)

In Equation (8), k is the slip length with the dimension [L]. Substituting Equation (4)
into (8), the slip velocity for the walls (z = ±h/2) reads

u
(

h
2

)
= (−px)

kh
2µ

. (9)

We impose a flow rate Q = u·h for the inverse problem, where u is the mean velocity
across the channel calculated as

u =
1
h

h/2∫
−h/2

(
px

2µ
z2 + c2

)
dz. (10)

By integrating Equation (10) and substituting Equation (9) into Equation (6), the
averaged velocity is obtained as

u = −
(

h2

12µ
+

kh
2µ

)
px. (11)
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2.2. Governing Equations

We assume that the fracture aperture is much smaller than its length (h0 � L) and
the lubrication assumption holds for the fluid confined between the plates. The one-
dimensional continuity equation is obtained from the generalised Equation (1) as

dh(t)
dt

+ h(t)
∂u
∂x

= 0. (12)

Substituting Equation (11) into (12), we obtain a nonlinear equation for the fracture
aperture h(t) in the form of

dh(t)
dt

=

(
h(t)3

12µ
+

kh(t)2

2µ

)
∂2 p(x, t)

∂x2 . (13)

We exploit the Winkler model [17] to account for the elastic squeezing force exerted by
the plates, where the plates are assumed to be stiff, and their deformations are independent
of x. The Winkler support is envisioned as a cascade of elastic springs with a total effective
elastic modulus of Ê = E/l0, where E is the modulus of the elasticity of the beam and l0
the initial thickness of the elastic springs; for an array of parallel fractures, l0 equals the
fracture spacing [10], see Figure 2.
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fluid flow.

When the pre-strained plates are released (t = 0), the reaction forces exerted from the
springs to the plates are counterbalanced by the pressure developed in the fluid; hence, the
force balance can be derived as

L∫
0

p(x, t) dx = Ê L h(t). (14)

The initial and boundary conditions (BCs) of the problem are

h(t = 0) = h0, (15)

∂p
∂x

(L, t) = 0, p(0, t) = pe. (16)

2.2.1. Dimensionless Governing Equations

We define a set of dimensionless parameters as

X =
x
L

, H =
h
h0

, P =
p− pe

Êh0
, T =

Êh3
0

12µL2 t. (17)
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The governing nonlinear Equation (13) and dynamic boundary condition in Equation
(15) become

1
H(T)3

dH(T)
dT

=

(
1 +

6 Ns

H(T)

)
∂2P(X, T)

∂X2 . (18)

1∫
0

P(X, T) dX = H(T)− Pe, (19)

where Ns = k/h0 is the dimensionless slip coefficient (or slip number) and Pe = pe/
(
Êh0

)
the dimensionless external pressure. Subsequently, the initial condition and BCs of Equa-
tions (15) and (16) become

H(0) = 1, (20)

∂P
∂X

(1, T) = 0, P(0, T) = 1. (21)

2.2.2. Nonlinear Ordinary Differential Equation (ODE)

We solve the dimensionless nonlinear Equation (18) subject to the initial and boundary
conditions of Equations (20) and (21). From Equation (18), one can conclude that

f (T) =
1

H(T)2(H(T) + 6 Ns)

dH(T)
dT

, (22)

where f (T) is an auxiliary function. Thus, Equation (18) can be rewritten as

f (T) =
∂2P(X, T)

∂X2 . (23)

We solve Equation (18) by applying the BCs of Equation (21),

P(X, T) =
(

X2

2
− X

)
f (T). (24)

The governing nonlinear ODE is obtained by substituting Equations (22) and (24) into
Equation (19) as

1
3H(T)2(H(T) + 6 Ns)

dH(T)
dT

= Pe − H(T). (25)

We note that for the case of the no-slip condition, by assuming Ns = 0, we exactly
recover the results of Dana et al. [5].

3. Numerical Results

We seek the numerical solution of Equation (25) by exploiting MATLAB subroutine
‘ODE45’ to solve the nonlinear first-order ODE, subjected to the initial condition of Equation
(20). Figure 3 shows the numerical solutions obtained for five values of dimensionless
pressure Pe = {0.0, 0.1, 0.5, 0.9, 1.0}, and a slip number of Ns = 0.017 obtained from
the data included in the experimental study of Zheng et al. [15]. While the numerical
result of the singular limit scenario Pe = 0 tends to zero with a slope of m = −1/2.53 in
log-log scale, the late-time solutions (T � 1) of Pe 6= 0 asymptotically approach a constant
value H(T � 1) ≈ Pe. We derive the analytical solution for the specific case Pe = 0 (see
Appendix A) to validate our numerical findings. The implicit Equation (A3) is solved by
MATLAB subroutine ‘fsolve’ and super-imposed to Figure 3, where a good agreement
between the semi-analytical (red circles) and numerical results (black line) are obtained.
We note that the value Pe = 1 is a limit for the borehole pressure.
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The dimensionless time evolution and space of the pressure inside the fracture with
no external pressure, is obtained from Equation (24) and shown in Figure 4. The pressure
profiles are calculated for T = {0, 10, 100, 500}, respectively. It is evident that when time
evolves, the pressure profiles flatten, and the pressure at the crack tip (X = 1) decreases.
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Finally, we perform a parametric study on the effect of the slip length variation, con-
sidering just the case where the external pressure is zero (Pe = 0). We consider three
values of Ns = {0, 0.01, 0.1} in the order of 0.01÷ 0.1 based on the values obtained experi-
mentally [10]. Figure 5 depicts the numerical solution of the nonlinear ODE for different
slip numbers. The variation of the slip length does not substantially modify the overall
behaviour of H(T) while the no-slip condition (Ns = 0) is approaching zero with the largest
slope, since no friction exists between the fluid and the fracture walls in this scenario.
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4. Conclusions

Hydraulic fracturing has been widely investigated in recent years concerning the
environmental effects caused by the release of by-products and fluid wastewater during
the process of the hydrocarbons production from the fractured wells. The wastewater, also
known as backflow, is generated from the relaxation of fracture elastic boundaries from a
pre-strained state, counterbalanced by the internal pressure of the viscous fluid.

In this study, we investigated the backflow of a Newtonian fluid confined in a two-
dimensional flat-walled fracture of length L and a time-dependent aperture h(t) with an
initial gap opening h0. The fracture is filled with an incompressible and viscous fluid;
initially (t = 0), the fracture walls are subject to a no-flow condition at the far end of
the fracture (x = L) and to the constant initial pressure (pe) at its outlet (x = 0). When
the pre-strained upper plate is released, the fluid is squeezed out of the outlet, and the
fluid moves inside the fracture towards the outlet. The lubrication approximation applies
to the confined fluid since the fracture aperture is assumed to be much smaller than its
characteristic length. The linear Navier slip law, where the slip velocity varies linearly
to the tangential stress, is applied as a boundary condition at the bottom and top plates.
In addition, the Winkler model is exploited to determine the elastic deformation of the
loaded plates.

Under these assumptions, the time evolution of the fracture aperture is obtained
numerically by solving the governing dimensionless ODE for different external pressure
values. The numerical result for the case Pe = 0 is validated against a semi-analytical solu-
tion, and the effect of the slip length variation is investigated through a parametric analysis.
For Pe 6= 0, the numerical solution tends to a constant value equal to the external pressure.
Overall, this work provides new insights for the backflow analysis of fracturing liquids, and
it can find numerous applications in civil, petrochemical, and environmental engineering.
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Appendix A

We look for the solution of the nonlinear first-order ODE of Equation (25) when the
external pressure is null (Pe = 0). Following some rearrangements, Equation (25) becomes
a separable differential equation and can be integrated as∫ (

1
H(T)3[H(T) + 6 Ns]

)
dH(T) =

∫
−3 dT, (A1)

which has a general solution

ln(|H(T) + 6 Ns|)− ln(|H(T)|)− 6Ns
H(T) +

18Ns
2

H(T)2

216 Ns3 = 3T − c3. (A2)

The unknown constant is c3 = −
(
ln(|1 + 6 Ns|)− 6 Ns + 18 Ns

2)/216 Ns
3, which

satisfies the initial condition of Equation (20). Hence the solution for the ODE in the case of
Pe = 0 yields an implicit equation for H(T) in the form of

T =

(
ln(|H(T) + 6 Ns|)− ln(|H(T)|)− 6 Ns

H(T) +
18Ns

2

H(T)2 − ln(|1 + 6 Ns|) + 6Ns − 18Ns
2
)

648Ns3 . (A3)
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