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Abstract
Weather forecasts are a rare example of public information which is, at the same time,
relevant for agents’ decisions and entirely exogenous for both sides of the (tourism)
market. We develop a model where signals of good weather have a positive impact
on accommodation prices, the effect being stronger the higher the accuracy of the
forecast and the ex-ante uncertainty in weather conditions. Using data from a sea and
sun destination, we estimate an augmented hedonic price model and find that results
robustly support the theory.We also find that the response of prices toweather forecasts
is larger for upper-scale hotels than for low- and mid-scale hotels, a result we link to
the superior pricing capability of the former.

Keywords Information uncertainty · Bayesian model · Pricing strategy · Hotels ·
Weather forecast · Hedonic price

JEL Classification D83 · L11 · L83

1 Introduction

Understanding prices and their dynamics is a key issue in economic analysis, as in
market economies, the price has the paramount role of allocating resources and con-
veying information (Hayek 1945). When information is private, the price system uses
dispersed knowledge, leading to different degrees of efficiency (Grossman and Stiglitz
1980; Vives 2014). Prices also reflect public information related to external factors
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affecting demand or supply conditions (Bernhardt and Taub 2015). At the business
level, strategies of price discrimination anddynamic pricing are nowadays very popular
to capture idiosyncratic variations in demand and to provide supplierswith complex but
effective tools for revenuemanagement optimization (Alderighi et al. 2022;Bigne et al.
2021; Nocke and Peitz 2007; Moller and Watanabe 2010; Gershkov and Moldovanu
2012; Moller and Watanabe 2016; Neubert 2022; Talón-Ballestero et al. 2022; Vives
and Jacob 2021).

Within this general framework, this article aims to assess the impact of public
information on prices and identify factors that affect the magnitude of the effect. We
do this in an environment where information is highly relevant for the exchange and
completely exogenous: the one of weather forecasts and hotel prices. The quality of
the stay at the destination (particularly when considering leisure activities linked to
summer holidays) is expected to depend on weather conditions (Scott and Lemieux
2011; Gomez-Martin 2005; Zirulia, 2016), and so is demand. Weather forecasts thus
play an informative role for economic agents in markets characterized by information
uncertainty and when purchasing decisions need to be anticipated through advance
booking, like in hospitality and travel. Weather forecasts are continuously produced
by private and public providers to predict real weather conditions. A peculiarity of
weather forecasts is that they are known (or at least easily accessible) to both sides of
themarket, which rules out, or significantly weakens issues of information asymmetry.

In this setting, two theoretical arguments can predict the impact of weather forecasts
on hotel prices. On the one hand, predictions hinging upon the “traditional view” of
consumers’ and suppliers’ rationality are straightforward, in that forecast of good (bad)
weather should be associated with relatively high (low) prices because of the impact
that information has on demand, and consequently on supply (pricing) behavior.

On the other hand, such a conclusion is less uncontroversial if one looks at the
expanding literature on the behavioral industrial organization (for a review, see Hei-
dhues and Kőszegi 2018), specifically, the one focusing on “behavioral firms”, i.e.,
firms deviating from the typical benchmark of profit maximization. While, in prin-
ciple, prices should reflect all relevant and available information regarding a specific
good or service, there may be behavioral mechanisms that prevent firms from imple-
menting optimal pricing policies. This is the case, for instance, of managerial inertia,
advocated by DellaVigna and Gentzkow (2019) as the primary explanation for uni-
form prices across most US food drugstores and mass-merchandise chains.1 In this
context, managers seem to be rationally bounded and change prices according to rules
of thumb based on a subset of state variables rather than setting the optimal price given
the information available at each moment. Huang (2021) finds a considerable degree
of pricing frictions among Airbnb sellers, as for most of them, prices are sticky over
time and uniform across nights of stay. It turns out that both sellers’ price-adjustment
costs and their cognitive constraints drive the frictions, the latter being relatively more

1 Uniform prices have also been documented by Gopinath et al. (2011) and Nakamura and Steinsson
(2008) for grocery chains, and by Orbach and Einav (2007) in the movie-theatre industry. Along these
lines, Adams and Williams (2019) report limited zone pricing in the home-improvement industry, whereas
Melis and Piga (2017) find limited adjustments in hotels’ online pricing behaviour. Ellison et al. (2018)
also document pricing inertia and managerial frictions by studying pricing decisions of a set of rival firms
selling computer components in an online marketplace.
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important. In that respect, the managerial literature argues that pricing should be seen
as a capability. To develop the ability to set the right prices, a firm must invest in
resources and routines (Dutta et al. 2003).

Within this framework, our contribution is both theoretical and empirical. On the
theoretical side, we formalize the “traditional view” and develop a model of flexi-
ble prices adopting a Bayesian rational choice approach, where the value of actions
stemming from individual decisions depends on realized weather conditions (Katz
and Murphy 1997; Tena and Gómez 2011; Zirulia 2016; Raymond and Taylor 2021).
The results when prices are flexible are then compared to those obtained assuming
inflexible prices. From the theoretical analysis, we derive four hypotheses. First, we
expect that bad weather forecasts have a negative effect on prices via the impact they
exert on demand. Second, we expect that such an impact is larger the higher the fore-
cast’s level of accuracy since information is more valuable for consumers in this case.
Third, for the same reason, we expect the impact to be stronger the higher the ex-ante
level of uncertainty in weather. Finally, we expect the impact of weather forecasts
to be stronger the higher the level of consumers’ willingness to pay, given the larger
incentive to invest in pricing capability in this case.

We test such theoretical predictions in our empirical contribution. We estimate
a hedonic price model augmented with characteristics related to dynamic pricing
strategies and weather forecasts to assess the impact of weather forecasts on hotel
prices. This approach allows us to tackle the complexity of markets in which price
adjustments can be, in principle, almost instantaneous. We use a Big Data approach
by collecting data through a web scraper and analyzing daily prices for every hotel
offering rooms on Booking.com in our selected destination. Data are thenmerged with
weather forecasts available when prices were posted.

We investigate Rimini (Italy), a typical sea & sun summer destination thereby
highly dependent on weather conditions. Given its importance as a mass tourism
destination,2 it is undoubtedly a valuable case study at the international level for
empirically validating our hypotheses. The dataset includes the universe of rooms
offered by hotels in Rimini on Booking.com, an important search and reservation
engine, from June to September 2015. These rooms accrue from a total of 880 hotels.
The hotel sector relies heavily on dynamic pricing strategies, hence providing a more
meaningful detection of how service providers instantaneously adjust to changes in
demand than other segments of the accommodation industry, such as Airbnb (Gibbs
et al. 2018; Huang 2021).

1.1 Related Literature

Our analysis concerns the impact of public information on prices and, more generally,
on economic outcomes and behavior. For this reason, it contributes to several related
streams of literature.

2 In the pre-pandemic age, Rimini and its province used to host about 2.5 million arrivals and 15 mil-
lion overnight stays every year, 24% of which were foreign tourists in the period June–September 2015
(Unioncamere Emilia-Romagna, 2015).
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First, there is vast empirical literature investigating the role of public information
and media in various economic settings. In particular, a few studies have analyzed
the impact of public information on the stock market (Cutler et al. 1989; Mitchell
and Mulherin 1994; Engelberg and Parsons 2011) and in future markets such as those
related to crops and livestock (Dorfman and Karali 2015). Information by media
companies has been shown to affect corporate governance (Dyck et al. 2008) and
political behavior (DellaVigna and Kaplan 2007). Our novel setting presents a few
advantages compared to most of the existing literature: (1) the channel through which
the information impacts the economy is easy to identify; (2) the accuracy of the
information can be measured precisely; (3) the cost to access information, for both
firms and consumers, is low so that rational inattention (Sims 2003) does not seem a
relevant issue; (4) information is less biased than in situations where political ideology
(Gentzkow and Shapiro 2010) or conflicts of interest (Gurun and Butler 2012) are
relevant, as suggested by Gentzkow and Shapiro (2006) (although Silver (2012) and
Raymond and Taylor (2021) do find some degree of media bias for weather forecasts
as well).

On the theory side, our model is related to the literature analyzing the use of infor-
mation in contexts where strategically interacting agents have access to public and
private information (Morris and Shin 2002; Angeletos and Pavan 2007; Myatt and
Wallace 2015; Arato et al. 2021).

Our work also contributes to the growing literature on the impact of weather on the
economy (a comprehensive survey is provided by Dell et al. 2014). Weather can affect
the economy in several ways. It can be an exogenous trigger of economic shocks,
leading to a shortage of goods and price increases (Heinen et al. 2018). It can affect
the psychological dimension of decision-making in choices ranging from financial
investment (Saunders 1993; Hirshleifer and Shumway 2003) to college enrollment
(Simonsohn, 2009). It can affect demand indirectly, as is the case for energy (Mu
2007).3 Finally, it can directly influence the quality of the good or service and, there-
fore, demand, as is the case for tourism (Shih et al. 2009; Day et al. 2013; Ridderstaat
et al. 2014) or wine production (Ashenfelter 2008). More closely related to our article,
there is also a (primarily interdisciplinary) literature on the role of weather forecasts
in the economy. On the theory side, the seminal work of Nelson and Winter (1964) is
the first to study the weather forecasting system through the lenses of Bayesian updat-
ing. However, these authors do not consider the interaction between the supply and
the demand side of the market, nor the subsequent literature does. Since then, several
developments and applications have been proposed, looking at the overall impact of
weather forecasts (Katz and Murphy 1997) or in specific sectors, such as agriculture
(Mjelde and Penson 2000), energy (Considine et al. 2004) and fishery (Costello et al.
1998). To the best of our knowledge, this study is the first one looking at the impact
of weather forecasts on hotel prices.

The remainder of the article is organized as follows. Section 2 presents the model
and derives its main predictions. Section 3 introduces the methodology and the data
used in the empirical analysis. Section 4 presents the econometric results, whereas

3 An impact of weather conditions on demand is also found by Cellini and Cuccia (2019) for museum
attendance. In this case, weather effects are nonlinear and differ across seasons.
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Sect. 5 concludes and discusses the general implications of our work, together with
its limitations.

2 TheModel

In this section, we first formalize the traditional view recalled above in the Introduc-
tion by developing a model where prices are flexible to the information provided by
weather forecasts. We then compare the results with those obtained assuming inflexi-
ble prices, as Zirulia (2016) analyzed. Theoretical findings will be highlighted in four
propositions, on which the hypotheses tested in the empirical sections are built.

2.1 AModel of Flexible Prices

The model is inspired by the literature analyzing Bayesian decision-making under
weather uncertainty and the availability of weather forecasts (Tena and Gómez 2011;
Katz and Murphy 1997; Zirulia 2016).

There are two sets of agents: (1) consumers and (2) a firm acting as a monopolist
in the market. The monopoly structure assumes market power, which characterizes
firms offering sufficiently differentiated services such as accommodation, abstracting
at the same time from the complication that emerges when competitive environments
are considered. Assuming market power is crucial in our analysis, as it allows the firm
to react to information through price adjustments. At the same time, we ignore the
effect of competition because the nature of shocks affects competing firms likewise.4

Consumers have a heterogeneouswillingness to pay for the product sold by the firm,
and willingness to pay also depends on external factors, such as weather conditions
(Candela and Cellini 1998). Both firms and consumers observe weather forecasts;
hence, the price set by the firm is contingent on the weather forecast. Consumers
make their choices by observing the posted price and the weather forecast. The details
of the demand and the supply sides of the model are described in the following two
subsections.

2.2 Demand

θi denotes the willingness to pay of consumer i when the weather state is “good”. θ
is uniformly distributed across consumers over the support [θ ;θ], with 1 < θ < 2,
θ − θ � 1, and mass normalized to 1. A good weather state may correspond to sunny
days for a weekend in a seaside destination, a clear sky and warm temperature for an
open-air concert, or a sunny day with natural snow in a ski resort. When the weather
state is “bad”, the willingness to pay is reduced to αθ with 0 < α ≤ 1. The individual
demand function is discrete: the consumer either buys the product or not. Defining p
as the market price, the consumer net utility function is u � θ − p, when the weather
state is good, whereas it is u � αθ − p, when the weather state is bad. Her reservation
utility is normalized to 0 so that the consumer does not buywhen her utility is negative.

4 See footnote 8 below for a further elaboration of this point.
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The purchasing decision is taken before the weather state is realized, based on the
probability distribution of weather conditions. Consumers have access to two pieces
of information. First, they know the ex-ante probability of a good state, which is
1
2 ≤ r < 1 (the state is bad with complementary probability).5 Such a probability
is common knowledge among consumers and the firm: it can be interpreted as the
historical frequency of “good” and “bad” weather in a specific season. In addition,
consumers access the weather forecast, a public signal of the real weather conditions;
the signal is correctwith a probability 1

2 ≤ q < 1,6 and it conveys valuable information
to consumers, except in the extreme case of random information, q � ½. As a matter
of notation, we will use g and b to denote the realized good and bad states, “g” and
“b” to denote the corresponding signals, and p“g” and p“b” the prices conditional to,
respectively, good and bad signals.

By straightforward application of the Bayes theorem, we obtain:

Pr(b|“b”) � (1 − r)q

(1 − r)q + r(1 − q)
(1)

Pr(g|“b”) � r(1 − q)

(1 − r)q + r(1 − q)
(2)

Pr(g|“g”) � rq

rq + (1 − r)(1 − q)
(3)

Pr(b|“g”) � (1 − r)(1 − q)

rq + (1 − r)(1 − q)
(4)

Given such ex-post probabilities on weather states, we can write the consumer’s
expected utility when buying the product, conditional on the signals received:

E(u|“g”) � rq

rq + (1 − r)(1 − q)
θ +

(1 − r)(1 − q)

rq + (1 − r)(1 − q)
αθ − p“g” (5)

E(u|“b”) � (1 − r)q

(1 − r)q + r(1 − q)
αθ +

r(1 − q)

(1 − r)q + r(1 − q)
θ − p“b” (6)

Conditional on “g”, the consumer buys the product when the expected utility is
larger than or equal to 0. This is the case if:

rq

rq + (1 − r)q
θ +

(1 − r)(1 − q)

rq + (1 − r)(1 − q)
αθ − p“g” ≥ 0 (7)

Condition (7) determines a threshold θ̂“g” ≡ p“g”[rq+(1−r)(1−q)]
rq+α(1−r)(1−q)

� p“g”β“g” such
that the consumer buys the product if and only if her willingness to pay is larger than,

5 Assuming that the good state is ex-ante more likely than the bad state is theoretically inconsequential,
but it simplifies the proof, and it is consistent with the empirical application. In particular, the assumption
is used only when we bring to the data the model implication on the role of ex-ante uncertainty.
6 We assume that also q is common knowledge, ruling out disagreement over signal precision (Au 2016).
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or equal to, θ̂“g”. Similarly, conditional on "b", the consumer buys the product when
the expected utility is larger than, or equal to, 0. This is the case if:

(1 − r)q

(1 − r)q + r(1 − q)
αθ +

r(1 − q)

(1 − r)q + r(1 − q)
θ − p“b” ≥ 0 (8)

Condition (8) determines a threshold θ̂“b” ≡ p“b”[(1−r)q+r(1−q)]
r(1−q)+α(1−r)q ≡ p“b”β“b” such

that the consumer buys the product if and only if her willingness to pay is larger than,
or equal to, θ̂“b”.

It can be shown that θ̂“g” ≤ θ̂“b”, i.e., β“g” ≤ β“b”, where the inequality is strict if
α < 1. In fact,

rq + (1 − r)(1 − q)

rq + α(1 − r)(1 − q)
≤ (1 − r)q + r(1 − q)

r(1 − q) + α(1 − r)q
(9)

simplifies to r(1 − r)(1 − α)(1 − 2q) ≤ 0, which is always satisfied. Intuitively, a
good signal induces the purchase even for those consumers with a relatively low
willingness to pay; or equivalently, demand is less responsive to price when the ex-
post likelihood of good weather increases.

Given θ distribution, the demand functions, conditional on the signals, are derived

by noting that Pr
(
θ ≥ θ̂“g”

)
� θ − θ̂“g” and Pr

(
θ ≥ θ̂“b”

)
� θ − θ̂“b”:

D“g”
(

p“g”
) � θ − θ̂“g” � θ − p[rq + (1 − r)(1 − q)]

rq + α(1 − r)(1 − q)
� θ − β“g” p“g” (10)

D“b”(p“b”) � θ − θ̂“b” � θ − p[(1 − r)q + r(1 − q)]

r(1 − q) + α(1 − r)q
� θ − β“b” p“b” (11)

where β“g”, β“b” ∈ [1,+∞) are the slopes of the linear demand functions.

2.3 Supply andMarket Equilibrium

The firm operates at zero marginal and fixed costs and chooses its prices to max-
imize profits (or, equivalently, revenues) after observing the signal. Conditional on
good and bad signals, profits are respectively �“g” � p“g”D“g”

(
p“g”

)
and �“b” �

p“b”D“b”(p“b”). The first-order conditions for profit maximization are:7

θ − 2β“g” p“g” � 0 (12)

θ − 2β“b” p“b” � 0 (13)

7 Second-order conditions are obviously satisfied.

123



P. Figini et al.

from which we derive the pair of equilibrium prices, p∗
“g” � θ

2β“g”
p∗
“b” � θ

2β“b”
, and

profits, �∗
“g” � θ

2

4β“g”
and �∗

“b” � θ
2

4β“b”
. In equilibrium, demand is equal to θ /2, irre-

spectively of the signal. Computing expected profit yields E�∗ � θ
2

4 [r + (1 − r)α],
so that expected profits are independent of the level of accuracy. This result comes
from the symmetric information between the two parties with respect to the signal,
together with perfectly flexible prices on the firm’s side.8

2.4 Discussion and testable implications

This section aims to derive the model implications on the impact of public information
on equilibrium prices, which will then be tested in Sect. 4. Specifically, we look at
the impact of information provided by weather forecasters (good vs bad signal) both
in absolute and percentage terms. By defining �p∗ ≡ p“g” − p“b” and %�p∗ ≡(

p“g” − p“b”
)
/p“b”, straightforward computations yield:

�p∗ � θ

2

(
1

β“g”
− 1

β“b”

)
� θr(1 − r)(2q − 1)(1 − α)

2[rq + (1 − r)(1 − q)][(1 − r)q + r(1 − q)]
(14)

%�p∗ � β“b”

β“g”
− 1 � [rq + (1 − r)(1 − q)]

rq + α(1 − r)(1 − q)

[α(1 − r)q + r(1 − q)]

r(1 − q) + (1 − r)q
− 1 (15)

From inspection of (14), it is immediate to see that�p ≥ 0 (as q ≥ 1
2 ), from which

%�p∗ ≥ 0 follows. In other words:

Proposition 1 A forecast of good weather has a positive impact on price, both in
absolute and percentage terms.

The result can be interpreted in terms of the elasticity rule, which is typical of
monopoly pricing.Demand elasticities are defined asβ“g”

p“g”

D“g”(p“g”)
andβ“b”

p“b”
D“b”(p“b”)

.

In equilibrium, their value is 1 (being marginal cost nil). As demand is constant at
equilibrium, prices are inversely related to the value taken byβ“g” andβ“b”: signals that
increase the ex-post likelihood of a good state reduce the sensitiveness of consumers
to prices, and the firm reacts by increasing the price.

The second set of predictions derived from the model concerns those factors that
can affect the magnitude of �p∗ and %�p∗ ≥ 0. In particular, we look at how the
precision of the information, i.e., the weather forecasts’ accuracy and the ex-ante

8 While a full-fledged analysis of competition would require a different formulation of consumers’ utility
function, a simple way to account for it would be to consider a firm demand function (contingent to weather
forecasts) as D(p) � θ − βp − γ (p − p). In this formulation, p stands for the average price of the
competitors, which acts as a reference price (Viglia et al., 2016). In a monopolistic competitive equilibrium
with symmetric prices, the average price would be equal to equilibrium price for each firm. It can be shown
that the impact of β on price would not be affected, and as easily expected, a higher value of γ would have
a negative impact on the price. This claim is supported by the extension of the model to a duopoly regime
with vertical differentiation, which yields predictions in line with those reported in this article. Details are
available upon request.
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level of uncertainty, mediates the extent of price variation. In the model, precision is
measured by q, whereas uncertainty is inversely related to r (if r ≥ 1

2 as we assumed).

Proposition 2 The more accurate the weather forecasts (i.e., the larger q), the larger
the impact of a good weather forecast on price, both in absolute and percentage terms.

Proposition 3 The higher the ex-ante level of weather uncertainty (i.e., the lower
r), the larger the impact of a good weather forecast on price, both in absolute and
percentage terms.

Proofs of Propositions 2 and 3 are in Appendix 1. The interpretation of Proposition
2 is straightforward: the more accurate the signals, the higher the value of conveyed
information. Once again, the effect unfolds on-demand elasticity since more reliable
forecasts make demand less elastic when the signal is good (thus leading to a price
increase) and more elastic when the signal is bad (thus reducing price).

As for Proposition 3, the intuition is that when ex-ante uncertainty is high, infor-
mative signals embodied by weather forecasts have a stronger impact on the ex-post
assessment of the probability of good and bad weather. Consequently, a forecast of
good weather significantly reduces demand elasticity, and the opposite occurs for a
forecast of bad weather.

2.5 Flexible vs. Inflexible Prices

Zirulia (2016) analyzes a model where the demand side is the same as the previous
section, but the firm is constrained to fix a single price.9 Therefore, the firm chooses
its price to maximize its expected profits before the signal is observed:

E
∏

� [rq + (1 − r)(1 − q)]pD“g”(p) + [(1 − r)q + r(1 − q)]pD“b”(p) � pE D(p)

(16)

from which the equilibrium price is obtained:

p∗ � θ

2
{
β“g”[rq + (1 − r)(1 − q)] + β“b”[r(1 − q) + (1 − r)q]

} (17)

and, consequently, the equilibrium level of expected profit:

E�∗ � θ
2

4

⎧
⎨
⎩

1
[rq+(1−r)(1−q)]2

[rq+α(1−r)(1−q)]

+
1

[r(1−q)+(1−r)q]2

[r(1−q)+α(1−r)q)]

⎫
⎬
⎭. (18)

9 As a matter of fact, Zirulia (2016) considers the case θ � 1, but extending to θ 	� 1 is trivial. The reader
is referred to that paper for further details.
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The difference in expected profit between the flexible and inflexible case is thus
given by:

�E�∗ � θ
2

4

⎧⎨
⎩[r + (1 − r)α] − 1

[rq+(1−r)(1−q)]2

[rq+α(1−r)(1−q)]

+
1

[r(1−q)+(1−r)q]2

[r(1−q)+α(1−r)q)]

⎫⎬
⎭ (19)

Zirulia (2016) shows that E�∗ is decreasing in q in when prices are inflexible:
the more accurate the weather forecasts, the larger the advantage for consumers when
choosing after observing the weather signal. This analysis shows that E�∗ is indepen-
dent of q when prices are flexible. It is immediate to show that �E�∗ � 0 at q � 1

2 ,
which implies �E�∗ ≥ 0 for q ≥ 1

2 . Price flexibility yields additional profit to the
firm because it posits a symmetric situation between the firm and the consumers. In
contrast, with inflexible prices, consumers decide knowing more than the firm about
the weather state. Inspection of (19) also reveals that �E�∗ is increasing in θ , from
which the fourth and last proposition is derived.

Proposition 4 The higher the level of consumers’ willingness to pay (i.e., the higher
θ ), the larger the impact of flexible prices (vs. inflexible prices) on expected profit.

3 Data, methodology, and hypotheses formulation

3.1 Data

Data have been collected through a scraper in the summer (June–September 2015)
for Rimini, an important Italian sea and sun destination. Rimini and its province
hosted more than 2.5 million arrivals and 15 million overnight stays per year in the
pre-pandemic years. This city has been chosen because of its relevance in the tourism
sector and because, in the summer season, the town hosts leisure tourists who generally
spend the day on the beach. Arguably, they are susceptible to weather conditions (De
Freitas 2015).10 Data come from the 880 Rimini hotels (or similar accommodations)
offering rooms online in our sample period. Most hotels have a 3-star classification
(493), followed by 2-star hotels (126), 4-star hotels (79), 1-star hotels (20), and 5-star
hotels (2).11 The hotels with a star classification in our sample represent about 73% of
the entire universe of Rimini hotels. The clientele in Rimini consists of a vast majority
of domestic (Italian) tourists, accounting for 76% of total arrivals in summer 2015.

Each day the scraper collected information on (1) hotel prices and other charac-
teristics, posted daily on Booking.com, an important hotel reservation website; (2)
weather forecasts from the most popular—commercial—weather website/app; (3)
actual weather conditions from a public archive. Accordingly, we use a Big Data

10 In 2015, the period July–September accounted for 78% of overall arrivals in Rimini. Coherently with
this summertime specialization, most hotels are located close to the sea along the 16 km Rimini coast.
11 The remaining hotels are not classified, typically being establishments that are not officially classified
as hotels (e.g., hostels or residential structures).
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approach, as our dataset comprises two out of the three categories of big data applied
to the tourism sector (Li et al. 2018): UGC data (data generated by users, such as
ratings, in our case), and transaction data (online web searches and booking data).12

i. Hotel prices and other characteristics The first part of the database contains the
hotel prices posted daily on Booking.com for the whole population of hotels in
Rimini that offered rooms on this website. The scraper searched prices for one-
week stays (from Saturday to Saturday) and short weekend breaks (a two-night
stay, from Friday to Sunday) in the period 29May (Friday) to 26 September (Sat-
urday) as check-in dates.A 15-day lead booking periodwas considered (that is, for
each search, prices posted up to 15 days before the check-in date were collected)
to match prices and weather forecasts. The whole set of available rooms and price
conditions on offer were scraped. Names, labels, and descriptive statistics of the
variables are reported in Table 4 in Appendix 2.

ii. Weather forecasts The scraper collected weather forecasts published by the most
popular commercial website/app in Italy: ilmeteo.it, an application with more
than 10 million downloads on Google Play Store alone. Despite the availability
of several other websites and apps, the popularity of this service makes it the most
important influencer for weather forecasts in Italy, and its bulletins are regularly
reposted and published by national newspapers and popular media. Table 5 in
Appendix 2 compares weather forecasting apps in Italy and their rating figures,
showing the typical J-shaped distribution of rating websites (Hu et al. 2009).
Each day, from 13 May to 27 September, the scraper collected information on
forecasts for Rimini for the following 15 days. Forecasts included the minimum
and maximum temperature and the literal translation of the icon summarizing the
overall weather for the forecast day (sunny/ rainy/ cloudy/ etc.). Net of themissing
forecasts due to unavailability of the scraper or the website, 1,942 observations
were collected, with the main summary statistics reported in Tables 6 and 7 in
Appendix 2.

iii. Actual weather conditions Data on actual weather conditions, as recorded by
the official public archive (Arpa-ER, the Regional Agency for Environmental
Protection), were also collected to assess the accuracy of forecasts. Archived
data included the millimeters of rain, air pressure, maximum, minimum, and
daily average temperature,maximum,minimumand daily average humidity,wind
speed and direction. The summary statistics for these variables in the period under
investigation are reported in Table 8 in Appendix 2.

After a complex cross-check, some inconsistent observations were deleted, leav-
ing about 730,000 observations for the statistical and econometric analysis. Further
information about the construction of the dataset is reported in Appendix 2.

3.2 Methodology and Hypotheses Formulation

A hedonic price model was estimated. Differently from standard hedonic models, in
which only the physical quality characteristics of the product are considered, the price

12 The remaining category consists of device data (GPS, Bluetooth), but this information is not relevant
for our study.
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was also regressed over a set of “dynamic characteristics”, i.e., characteristics that vary
over time (number of available rooms, booking lead time, weather forecasts, etc.). This
is in line with the recent empirical literature on hotel dynamic pricing (Abrate et al.
2012;Melis and Piga 2017; Falk and Vieru 2019).We run both a linear and a log-linear
version of the model to test hypotheses in terms of both absolute and percentage price
variations.

The general specification of the linear model is the following:

Pi,t,t−τ � a + bW Ft,t−τ + cDi,t + d BTi,t,t−τ + eFCi,t,t−τ + f LTt,t−τ + gSOi,t,t−τ

+ h ARi,t,t−τ + i K I DSi,t,t−τ + j L O Si,t,t−τ + k Ri Hj + εi,t,t−τ

(20)

where:

• Pi,t,t−τ is the daily price (computed by dividing the posted price over the length of
stay) of room i for check-in date t posted at time t − τ , where 0 ≤ τ≤ 15. Hence, τ
represents the time distance between the check-in day and the day when the price
and the information about the weather goes public. In log-linear specifications of the
model, lnP, the natural logarithm of price, was alternatively used as the dependent
variable.

• W Ft,t−τ is themain variable of interest and is a set of dummies built over the variable
Weather Forecast code reported in Table 7, controlling for the weather forecast for
time t posted at time t − τ . In some of the alternative specifications of the model,
W Ft,t−τ is proxied by No_rain, or Sun, binary variables built by aggregation of the
different values of Weather Forecast code. More specifically, No_rain (Sun) takes
the value of 1 if the Weather Forecast code takes 1, 2, or 3 (1 or 2) as indicated in
Table 7, and 0 otherwise.13

• Di,t is a set of dummies built over the variable Check-in reported in Table 4, con-
trolling for the different check-in dates.

• BTi,t,t−τ is a set of dummies built over the variable Board Type reported in Table 4,
controlling for the type of service included (bed only, bed and breakfast, half-board,
half-board with lunch, full-board).

• FCi,t,t−τ is a dummy variable controlling for the possibility of canceling the book-
ing without penalties (Free Cancellation).

• LTt,t−τ is a numeric variable measuring the Lead Time, i.e., the distance between
the search date and the check-in date; it is then equal to t − τ for each observation
and controls for the use of dynamic pricing strategies.

• SOi,t,t−τ is a dummy indicating if the price is advertised as a special offer/discount
(variable Special Offer in Table 4).

• ARi,t,t−τ is a set of dummies built over the variable Available Rooms, reported
in Table 4, controlling for the supply constraint, the number of rooms shown as
available on the platform at the posted price (from 1 to 5). When the number of
available rooms was more than 5, the variable was coded as 0.

13 In the sensitivity analysis, alternative proxies for WFt,t-τ such as the maximum daily temperature
(T_max) and the average daily temperature (T_mean) were also tested, providing robust results.
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• K I DSi,t,t−τ is a dummy variable that indicates that the price refers to a room that
can accommodate two kids, in addition to two adults.

• L O Si,t,t−τ is a variable indicating the Length of Stay, to control for different price
offers for weekends, long weekends, and one-week holidays.

• Ri is a set of dummies built over the variable Room type reported in Table 4,
controlling for the different characteristics of the rooms, such as size, floor, and sea
view.

• Hj is a set of dummies built over the variable Hotel reported in Table 4, controlling
for the hotels’ fixed effects.

The theoretical propositions derived in Sect. 2 lead us to formulate the following
four hypotheses.

Hypothesis 1. Coherently with Proposition 1, ceteris paribus, good weather forecasts
are associated with higher prices.

As regards the proxy forweather, followingScott et al. (2008),we chose the sun/rain
indicator (the variable W Ft,t−τ in our dataset), as it is likely to be the most relevant
factor associated with beach activities in a sea & sun destination. Using as reference
category the most positive forecast (W Ft,t−τ � 1), we expect negative coefficients
for the other W Ft,t−τ categories, with the coefficients being larger in absolute value
for more negative forecasts. In the alternative specifications, in which No_rain or
Sun dummy variables are used, we expect a positive coefficient associated with these
variables.

Hypotheses 2 to 4 are tested by running a series of separate regressions.

Hypothesis 2. Coherentlywith Proposition 2, the impact ofweather forecasts on prices
is stronger the more accurate the forecasts.

In that respect, scientific evidence (Bauer et al. 2015; Alley et al. 2019) shows that
forecast accuracy varies with the temporal distance between the day when the forecast
is produced, and the day it refers to, i.e., forecast accuracy increases the shorter the
time lag of the forecast. Our data corroborate this evidence: a rain forecast fifteen
days in advance corresponds to actual rain 73.64% of the time, while the percentage
rises to 84.91% when the forecast is produced three days in advance. It follows that
the impact of weather forecasts on prices is expected to be stronger the closer the
forecasts are to the day of the check-in. In Sect. 4, we compare regressions where only
the last three days of the booking period are considered with regressions referring to
the complementary period, i.e., 4 up to 15 days in advance.14 We predict the impact
of weather forecasts to be stronger in the former case.

Running separate regressions posits some issues we need to discuss further. First, it
is important to stress thatwe control for time-dependent variables in all our regressions,
such as check-in date, lead time, and the number of rooms available on the platform,
whose omission would confound the interpretation of weather forecast coefficients.
Second, the two sub-samples may differ in terms of demand composition. This would

14 This split is justified by the choice of the public provider (the Aeronautica Militare in the Italian case),
which produces forecasts only over the previous 72 h, to guarantee their reliability.
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be problematic if customers booking in the last three days were characterized by a
higherwillingness to pay (higher θ ), as thiswould induce a stronger reaction toweather
forecasts in terms of absolute price variation (but with no effect in percentage terms).
Business travelers are typically last-minute bookers with a high willingness to pay,
but they do not constitute a relevant share of tourists for Rimini in the period under
consideration (June–September).15

As for systematic differences in the fraction of utility associated with bad weather
(i.e., α), there are no compelling reasons to think this parameter should differ across
booking periods. In addition, variations in α have different impacts on absolute and
relative variations, since d�p∗

dα
< 0 and d%�p∗

dα
> 0.

Hypothesis 3. Coherentlywith Proposition 3, the impact ofweather forecasts on prices
is larger, the higher the weather uncertainty.

In our case, a good proxy for weather uncertainty is the period of the year. Accord-
ing to historical data for Rimini, the average rainfall is lower in the central part of
the summer season (July and August) than in the early and late summer months (June
and September). For instance, the average monthly rainfall for July and August in the
2011–2015 period was 49.4 mm, while it was 74.4 mm for June and September of the
same years.16 Section 4 compares regressions where only the peak period (July–Au-
gust) is considered, with regressions for the off-peak period only (June–September).
We expect the impact of weather forecasts to be stronger in the former case.

As done for Hypothesis 2, a discussion concerning the composition of the two sub-
samples is in order. Clearly, the level of demand also varies between July–August (the
peak period) and June–September (the off-peak period). However, our theoretical anal-
ysis predicts that a higher value of θ (as in the peak compared to the off-peak period)
should entail a stronger impact of the weather forecast on absolute price variation
(with no effect in percentage terms), which would go against Hypothesis 3. Therefore,
finding support for our hypothesis would entail that the “weather uncertainty” effect is
particularly strong. In addition, there is no reason to think that α should systematically
differ across seasons.

Hypothesis 4. Coherently with Proposition 4, the larger the impact of weather fore-
casts on prices, the higher the consumers’ willingness to pay.

In the business reality, a sophisticated pricing approach enabling firms to adjust
to varying market conditions requires a set of investments and skills (including IT
infrastructures, an appropriate organizational architecture (Aubke et al. 2014), and
a dedicated and competent workforce, Selmi and Dornier 2011) that not all firms
may possess. In fact, the cognitive cost of determining the correct timing and size
of a price change can be notable (Ellison et al. 2018). Hotel managers also face an

15 According to Istat (2016) and our subsequent elaboration on Istat data, business trips constitute 14.2%
of all travels in Rimini province for 2015, but only 8.1% for the June–September period.
16 Own elaboration, based on official statistics provided by Arpa-ER – Regional Agency for Environmental
Protection Emilia Romagna (simc.arpae.it/dext3r). This evidence is robust to the use of the average monthly
number of rainy days, according to which there were 4.9 rainy days in July–August and 7.6 in June and
September, for the same years.
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opportunity cost of price adjustments since they must devote their attention to several
other business decisions (Bergen et al. 2003; Levy et al. 2010). Proposition 4 shows
that the additional profit from flexible prices is increasing in consumers’ willingness
to pay (i.e., increasing in θ). Since we can expect 4- and 5-star (upscale) hotels to face
customers with a higher willingness to pay, such hotels should have a higher return
from investment in pricing capability and so more likely to adopt sophisticated pricing
techniques.17 Consistently with this view,Melis and Piga (2017) find that 4- and 5-star
(upscale) hotels are more likely to use dynamic pricing.

Based on these premises, Sect. 4 estimates the hedonic pricing model separately for
upper-scale hotels (4- and 5-star hotels) and low- andmid-scale hotels (1-, 2- and 3-star
hotels), and we predict the impact of weather forecasts to be stronger in the former
case. We also remind that, under the assumption of flexible prices, our theoretical
analysis predicts that higher values of θ should be associated with a stronger impact
of weather forecasts when measured in absolute terms but independent of scale when
the effect is measured in percentage terms. The data, then, can help in discriminating
between the two mechanisms.18

A final observation concerns the fit of our empirical case study with the theoretical
framework.Market structure in the Rimini hotel sector is best represented, in our view,
by a monopolistically competitive market form, with many firms competing (so that
strategic interaction is not an issue), each of them having somemarket power. In Sect. 2
(footnote 8 in particular), we arguewhy our results developed in amonopolistic setting
can be extended to competitive settings like Rimini. As for the existence of market
power, there is evidence that Rimini hotels are not only differentiated by location, as
is commonly observed in the accommodation sector (Lee 2015), but also in terms of
services that are offered (Presutti et al. 2020).

4 Results

4.1 Testing Hypothesis 1: the impact of weather forecasts on hotel prices

The results of testing thefirst hypothesis are reported inTable 1.As recalled inSect. 3.2,
we regressed the daily price for room i of hotel j for the check-in date t posted at t − τ

on the weather forecast for t posted in t—τ (after controlling for all the other variables
included in Eq. (16)).

Model (1.1) ofTable 1 reports the results for themost consistent subset of the dataset,
where the daily price of one double room for party groups of two adults for a weekend
break was regressed. This subsample includes about 92,000 observations. Estimations
suggest that ceteris paribus, badweatherwas significantly associatedwith lower prices
compared to the case of the base category, which is “hot and sunny”, the most positive

17 In our sample, chain hotels play a very limited role, since only 30 establishments were affiliated to chains
in Rimini in 2015 (Horwath HTL, 2016). It follows that the mechanism identified in Leisten (2021), for
which marginal royalty rates can affect the cost of acquiring information, should not apply to our case.
18 A priori, the impact of hotel category on α is instead ambiguous, as higher quality hotels offer services
that both counter-balance possible negativeweather conditions (such as spa services) or stress the importance
of good weather conditions (swimming pools, open-air bars, etc.).
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forecast available on ilmeteo.it codification (W Ft,t−τ � 1). These findings are hence
consistent with Hypothesis 1. As regression (1.1) is linear, the coefficients can be
directly interpreted as the price variation between the actual weather forecast and
the base “hot and sunny” weather forecast. This “discount” for sub-optimal forecasts
ranges between e 4.08 (overcast, code WF 2) to e 7.20 (downpour, code WF 4) and
to e 7.73 (cloudy, code WF 5).

All the other variables included in (1.1) are significant at the 1% level and with the
expected sign: the free cancellation option was associated with a higher price (of about
e 3.38 per day), which could be interpreted as the premium paid for buying the option
of disattending the contract.19 Any day closer to the check-in date was associated
with a higher price (of about e 1.11, see specifically the coefficient of Lead time),
coherently with a strategy of increasing prices when the occupancy rates are high and
the check-in dates approach. Special offers have a heavy impact on price: the average
discount is estimated to bee 19.32, more than 20% of the basic price in the regression,
represented by the constant (e 73.83). Finally, the indication that there is only a limited
number of available rooms on offer is relevant: the coefficients of ARi,t,t−τ (Available
Rooms) are positive, suggesting that a constraint from the supply side is associated
with a price higher than the base category, in which no signal of limitation in the supply
was posted.20 Coherently with the standard law of demand and supply, the coefficient
is the lowest when the available rooms are many (Available rooms (5), e 2.20) and
increasing when available rooms decrease, reaching the maximum when the signaled
number is 1 (Available rooms (1), e 7.57). This is exactly what is expected when the
hotel approaches full occupancy.

As regards the other variables included in the regression but omitted fromTable 1 for
space limitation, the coefficients of theCheck-in dates (dummies) are all significant and
with the expected sign: prices are higher approaching the peak period of late July–mid-
August, signaling an active policy of seasonal pricing. Moreover, the coefficients of
the interaction dummies between room type and hotel (R*H) are also statistically
significant, showing that the overall quality of the hotel and the characteristics of
the posted room are also relevant in determining the price, as expected. Overall, the
dynamic characteristics of the pricing strategy are essential in explaining the posted
price, improving the overall explanatory power of the regression (adjusted R-squared
is around 54%) compared to standard hedonic models.

Errors in regression (1.1) are robust but assumed to be uncorrelated across groups.
As price dynamics heavily depend on revenue management strategies run by hotels,
likely, errors in different periods and for different rooms in a given hotel may be
correlated: failure to control for within-cluster error correlation can generate larger
t-statistics and more “optimistic” results. Model (1.2) in Table 1 tackles this issue
and encompasses clustered errors at the hotel level. As expected, confidence intervals
increase, and some of the variables included in the model are no longer significant
(e.g.,Available rooms and Free cancellation), highlighting that hotels apply a common
rule regarding these variables. In particular, the cost of breakfast, which is negligible
for most of the structures, is likely to allow hotels to manipulate the inclusion of

19 A similar result was obtained by Escobari and Jindapon (2014) for airlines.
20 See Courty and Ozel (2019) on the value of online scarcity cues.
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the breakfast in the posted price as a kind of promotional strategy. However, more
important is that the estimated coefficients for weather forecasts (WF 2 – WF 8) in
Model (1.2) remain significant.

Table 1 also reports the results of the log-linear model. Specifically, regressions
(1.3) and (1.4) include the logarithm of price as the dependent variable, respectively,
with robust standard errors (1.3) and robust standard errors clustered by hotel (1.4).
Overall, the results are in line with Model (1.1) in terms of sign and significance of the
coefficients: weather forecasts worse than the baseline “hot and sunny” are associated
with lower prices, from 3.9% of rain (WF 7) to 10.9% of downpour (WF 4) forecasts.
Given that the results of the log-linear model are very similar to the linear model ones,
the remaining of this section alternatively considers absolute or logarithmic prices
according to the immediacy of the coefficients’ interpretation.21

Interpretation of individual weather forecasts, when the summary proxy is one of
the eight icons described in Table 7, can be problematic. As explained above, we
then simplified the analysis by clustering the eight codes into simple binary variables,
No_rain and Sun. In Model (1.5) of Table 1, in which No_rain was included, the
main result is confirmed: prices are on average 3.5% higher when forecasts exclude
rain. The coefficient is very similar also in Model (1.6), in which Sun was inserted,
suggesting that the forecast of a sunny day increased the price by 3.6%.

A similar robustness test was undertaken in Models (1.7) and (1.8), where, respec-
tively, the forecast maximum and average daily temperature were included in the
model as proxies for WF. All the estimated coefficients for the variables included in
the regression and their significance are very similar to the log-linear model in (1.5):
every Celsius degree more in the forecast of maximum temperature is associated with
an increase of 1.76% in the average daily price, ceteris paribus (see Model 1.7). Simi-
larly, every extra Celsius degree in the forecast mean temperature was associated with
an increase of 1.60% in the average daily price (see Model 1.8).

Finally, Models (1.9) and (1.10) in Table 1 are run on an extended dataset, where
all the possible rooms (double, triple, quadruple, etc.), party groups (two adults with
and without two children), and length of stay (weekends and one-week holidays)
are considered, with robust errors clustered by hotel. To simplify the reading, weather
forecasts are proxied by the binary variableNo_rain (results are robust to the alternative
inclusion of WF or Sun in the regression). In Model (1.9), we only consider weekends
of party groups with or without children and, consequently, a wider range of rooms,
including double, triple, and quadruple rooms, together with entire apartments and
villas (about 230,000 observations). The estimated coefficient of No_rain is very
similar to the one of Model (1.5), hence reinforcing Hypothesis 1. In Model (1.10),
we include double rooms and parties of two adults only (as in Models 1.1 to 1.8),
but both weekends and one-week holidays are considered. Although the coefficient of
No_rain in (1.10) is still positive and significant, its value is lower (0.0123), suggesting
a weakening of the impact. This is somehow expected, especially if we consider that
in a sea & sun destination in Southern Europe, bad weather usually lasts for one or,
in the worst-case scenario, two or three days. Hence, it is unlikely that a bad weather

21 All findings are available upon request and results that are not robust with the main findings are always
reported in the paper.
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forecast for the check-in day would affect the decision to travel to the destination for
a whole week.22

4.2 Testing Hypotheses 2 and 3: the Role of Signal Accuracy and Ex-ante
Uncertainty

In Table 2, we report the results for testing Hypothesis 2 about the role of signal
accuracy, proxied by the time distance between the check-in day and the posting day.
Models (2.1) and (2.2) can be compared to Model (1.5), where the logarithmic daily
price of one room for two adults for a weekend stay is regressed over No_rain and the
standard set of control variables outlined in Eq. (20). InModel (2.1), only the last three
days of the booking period were considered, whereas, in Model (2.2), we included the
complementary period, i.e., from 4 up to 15 days in advance. The same comparison
was carried out in (2.3) and (2.4), with the price in levels as the dependent variable.

Results are consistent with Hypothesis 2: the effect of weather forecasts is stronger
the shorter the time lag, as the accuracy of the information embodied in the forecasts
improves; accordingly, the coefficient of No_rain estimated in (2.1) is larger than the
one estimated in (2.2), and the coefficient of No_rain estimated in (2.3) is larger than
the one estimated in (2.4), which becomes statistically not significant. Such results
were confirmed in regressions (2.5) to (2.8), run on the extended dataset with different
party groups (adults with or without children) and different room sizes (double, triple,
quadruple, etc.): the coefficient of No_rain estimated in the log-linear regression (2.5)
is larger than the one estimated in (2.6), whereas the coefficient estimated in the linear
regression (2.7) is larger than the one estimated in (2.8), which becomes not significant.

Finally, in Models (2.9) and (2.10), we run models (2.7) and (2.8) but replace
the binary variable No_rain with the weather forecast codes described in Table 3.
Although not all the forecast coefficients are significant, it is worthwhile to highlight
that the strongest impact of weather forecasts in the last three days before check-in
(Model (2.9)) comes from forecasts associated with consistent bad weather (cloudy,
overcast), which are likely to continue for the whole weekend. On the contrary, fore-
casts of unstable bad weather (thunderstorms), likely to last 2–3 h, only partially ruin
a hypothetical weekend.23

Regarding testing Hypothesis 3, about the role of ex-ante uncertainty proxied by the
historical weather conditions in different summer season months, we run the hedonic

22 In our sample, most of the hotels indeed used some form of dynamic pricing, somehow different from
what found by Melis and Piga (2017). However, there were 194,956 observations (18% of the observations
with a valid price) where the price of a given room in a given hotel for the same check-in date never changed
in the advance booking period. When this group of observations were excluded from the regression, the
coefficient of No_rain became larger (0.04496, significant at the 1% level) than the coefficient in the
equivalent model (1.5), where the estimate was 0.0349, reinforcing the support of the rationale behind the
model. Unsurprisingly, the coefficient of No_rain was instead insignificant (and equal to -0.0009) when the
regression was run on the subsample of observations where price discrimination was not used.
23 We also observe that some of the controls’ coefficients differ between “even” and “odd” numbered
Models of Table 2: in the regressions run on prices posted in the last three days before the check-in date
(odd Models), the set of Available rooms dummies is seldom significant; moreover, the positive sign of
the coefficient of Lead time suggests the implementation of a sort of last minute pricing; finally, the most
important factor affecting the posted price is always Special offer, i.e., the price posted as a special offer.
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model separately for peak and off-peak months, as reported in Table 3 (Models 3.1 to
3.4). June and September (Models (3.1) and (3.3)) are the summer months with the
highest level of weather uncertainty according to historical data for Rimini. In contrast,
July and August are characterized by the lowest weather uncertainty (Models (3.2)
and (3.4)). Results are reported in Table 3, with the daily price expressed in logarithms
(Models (3.1) and (3.2)) and in levels (Models (3.3) and (3.4)). For simplicity, in the
models in Table 3, the weather forecast is measured by including the binary variable
No_rain.

In line with Hypothesis 3, we find that the estimated coefficients of No_rain are
higher (and significant) in the period of high weather uncertainty in both the linear
and log-linear regressions (one should compare the estimated coefficient of No_rain
in 3.1 and 3.3, which are higher than the one estimated respectively in 3.2 and 3.4).24

However, the coefficients of No_rain in the season with low weather uncertainty (July
and August) are not significant. This result arguably stems from the fact that in the
period of low weather uncertainty, the frequency of No_rain is particularly low. When
the extended dataset is used, including all the rooms and party groups (rather than only
parties of two adults searching for one double room as in Models 3.1 to 3.4), results
are indeed supportive of Hypothesis 3: in the log-linear regression, the coefficient of
No_rain is larger in June and September (0.055, significant at the 1%) than in July
and August (0.009, this time significant at the 1%).25

4.3 Testing Hypothesis 4: Price Reactions by Hotel Category and the Role
of Managerial Sophistication

We finally test Hypothesis 4, exploring the possibility that firms may respond dif-
ferently to weather forecasts according to their degree of managerial sophistication.
For this purpose, in Table 3 (Models 3.5 to 3.8), we estimate the hedonic pricing
model separately for upper-scale hotels (4- and 5-star hotels, Models 3.6 and 3.8) and
low- and mid-scale hotels (1-, 2- and 3-star hotels, Models 3.5 and 3.7). Our results
show that the response of prices to weather forecasts is larger for upper-scale than for
low/mid-scale hotels, both when the price is in levels (the coefficient of No_rain is
larger in Model 3.8 than in 3.7) and in logarithms (the coefficient of No_rain is larger
in Model 3.6 than in 3.5). These results are robust to using the extended dataset, where
all the rooms and party groups are considered. Hypothesis 4 is thus confirmed.

24 Additional support to Hypothesis 3 stems from the fact that when the baseline Model in (1.5) is run
only on prices posted with the option of Free cancellation, for which the value of information about future
weather is arguably less important, the coefficient of No_rain is 0.0166 and significant at the 5% level
only. Alternatively, if the model is run only on prices posted without the option of Free cancellation, for
which information about future weather is instead more important, the coefficient of No_rain is 0.0418 and
significant at the 1% level.
25 Full results are available upon request.
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5 Conclusions

The key role played by public information in market economies is self-evident. Alas,
empirical investigation on how prices are affected is hindered by the coexistence
with private information, ambiguity on how information might impact the economic
variables of interest, and endogeneity issues. This article contributes to the ongoing
debate on the role of information in price setting by analyzing the impact of weather
forecasts (as an example of public and symmetric information) on prices in the hotel
sector of a leisure destination. In this market, weather conditions (which are clearly
exogenous) directly affect demand.

To do so, we first develop a theoretical model where forecasts are common knowl-
edge and can be observed by both accommodation service providers and consumers.
The former are sophisticated enough to make their prices contingent on weather fore-
casts.As the quality of the leisure experience is affected byweather conditions,weather
forecasts (as a signal for expected quality) affect the willingness to pay of customers
and hence equilibrium prices: a forecast of good weather increases the expected qual-
ity of the experience and drives the supply to instantaneously adjust the price, the
effect being stronger the higher the level of accuracy of the forecast and the larger the
degree of ex-ante uncertainty in weather conditions. By comparing the results under
the assumption of flexible prices with the case in which firms are constrained to fix a
single price, we show that the additional profit from price flexibility, and so the return
to the investment in pricing capability, is increasing in consumers’ willingness to pay.

Predictions of the theoretical analysis are then estimated through an augmented
hedonicmodel where dynamic characteristics (typical of advanced booking strategies)
are included with information about weather forecasts and other control variables.
The model is tested on big data collected in the summer season of a typical sea & sun
destination (Rimini, Italy), wheremost of the leisure activities are carried out open-air,
hence being heavily dependent on weather conditions. Results robustly support the
theory and show that pricing does react to available weather information, an essential
and independent determinant of the price: ceteris paribus, the worse the weather
forecast, the lower the price, in line with Hypothesis 1. As predicted by the flexible
price model, the impact is larger the higher the forecast’s level of accuracy, i.e., when
the forecast day is closer to the arrival date, and in those months in which weather
is much uncertain, i.e., the higher the ex-ante level of uncertainty in weather, thus
supporting Hypotheses 2 and 3, respectively. In an additional exercise, we estimate
the hedonic pricing model separately for upper-scale hotels (4- and 5-star hotels) and
low- and mid-scale hotels (1-, 2- and 3-star hotels). We find that the response of prices
to weather forecasts is larger for upper-scale hotels than for low- and mid-scale hotels,
a result we link to the higher incentives to invest in managerial pricing competencies
that characterize the former compared to the latter, which confirms Hypothesis 4.
Overall, our results support the traditional view of pricing reacting significantly to
public (weather) information and, on the contrary, they are not consistent with the
literature on “behavioral firms”.

Despite the richness of our data set, which allows us to provide some additional
understanding of tourism-relevant behavior (Xu et al. 2020), our work has a few
limitations, which constitute the main avenues for future research on the topic. For
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instance, the theoretical approach could be extended to a more general scenario in
which good and bad weather signals have different degrees of accuracy and are biased
(Silver, 2012; Raymond and Taylor, 2020). Also, including a behavioral dimension on
the consumer side seems a promising direction, as there is evidence that individuals
have problems interpreting weather forecast probability correctly (Gigerenzer et al.
2005; Juanchich and Sirota, 2016).

On the empirical side, the first issue concerns replicability, as our results are based
on one single destination and one single summer. More in general, different destina-
tions might respond to weather conditions differently. We expect that the relevance
of weather would differ according to the tourism type: cultural tourism is probably
less sensitive to weather than leisure tourism (in terms of model set-up, α would be
higher for cultural tourists). Therefore, the price elasticity to weather forecasts would
be lower in cultural destinations. Moreover, the computation of the sector’s net loss
in terms of profits and welfare due to bad weather and bad forecasts needs access to
microdata of hotels, something that is worthy of being investigated given the policy
implications at the destination level. Finally, in an era of climate alterations, weather
conditions change, thus implying more variability within the season and a higher fre-
quency of extreme events (Dell et al. 2014). These changes are likely to affect both
the accuracy of weather forecasts and the willingness to pay of customers for more
risky holiday breaks. Hence, a future extension of the empirical analysis will have to
monitor changes in consumer behavior and innovation in hotels’ implementation of
pricing strategies.

The extension of the current study to more recent years, especially post-pandemic,
characterized by a rise of the sharing economy also in the tourism sector (Vila-Lopez
and Küster-Boluda 2021) is finally important. Platforms such as Airbnb are now fre-
quently visited when choosing accommodation, representing a relevant source of
competition to the hotel sector. For instance, there is ample evidence showing that
during the pandemic, to avoid as much as possible physical contact and the sharing of
shared spaces, entire flats on Airbnb were much preferred over shared flats or hotel
rooms (Bresciani et al. 2021). Future research would clarify if our findings can be
extended to these other segments of the accommodation sector.
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Appendix 1: Proofs

A.1 Proof of Proposition 2

The impact of q on prices is inversely related to the impact of q on β“g” and β“b”.
Straightforward derivations yield:

dβ“g”

dq
� (2r − 1)[rq + α(1 − r)(1 − q)] − [r − α(1 − r)][rq + (1 − r)(1 − q)]

[rq + α(1 − r)(1 − q)]2

(21)

The denominator in (21) is positive. The numerator is 0 for α � 1, and is increasing
in α. Therefore dβ“g”

dq ≤ 0, i.e., p∗
“g” is increasing in q.

Similarly,

dβ“b”

dq
� −(2r − 1)[r(1 − q) + α(1 − r)q] + [r − α(1 − r)][r(1 − q) + (1 − r)q]

[r(1 − q) + α(1 − r)q]2

(22)

The denominator in (22) is positive. The numerator is 0 for α � 1, and is decreasing
in α. Therefore dβ“g”

dq ≥ 0, i.e., p∗
“g” is decreasing in q. It follows that �p∗ and %�p∗

are both increasing in q.

A.2 Proof of Proposition 3

By deriving �p∗ with respect to r , after some manipulations one obtains:

d�p∗

dr
� θ(2q − 1)(1 − α)

2

(1 − 2r)[rq + α(1 − r)(1 − q)][r(1 − q) + α(1 − r)q] − r(1 − r)(2r − 1)(2q − 1)

[rq + α(1 − r)(1 − q)]2[r(1 − q) + α(1 − r)q]2
< 0

(23)

which is negative as r ≥ 1
2 and q ≥ 1

2 .
Similarly, deriving %�p∗ with respect to r , yields, after lengthy manipulations:

d%�p∗

dr
� − (2q − 1)2(1 − α)q(1 − q)

[
r2 − α(1 − r)2)

]

[rq + (1 − r)(1 − q)]2[r(1 − q) + α(1 − r)q]2
< 0 (24)

which is negative as r ≥ 1
2 .
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Appendix 2: Technical issues related to the construction of the data
set and descriptive statistics

Party GroupsAsRimini is a popular destination for both couples and families, searches
for party groups of two adults only and two adults with two children were collected
each day for each type of stay (weekend and one-week holiday).

Coding of Rooms The scraper searched for all the types of rooms on offer. This was
necessary to avoid bias in the estimation due to the alternative availability or unavail-
ability of certain rooms along the lead booking period and the season. Consequently,
to track the correct price changes over time, we had to control each hotel’s different
room types. Hence, each room was manually recoded according to two dimensions:
size and category. In the final dataset, the room code was composed of two digits. The
first digit indicates the size of the room: 1* indicates a single room, 2* a double room,
3* a triple room, 4* a quadruple room, 5* a twin double room; 6* an apartment; 7*
a suite, 8* a beach package, 9* a bed in a dormitory. The second digit indicates the
category: *0 means that no further information about the type of room was provided,
*1 indicates that the room was economy / basic / budget, *2 that the room was stan-
dard / classic / business / comfort, *3 that the room was standard / classic / business /
comfort but with view / balcony / access spa / access beach, *4 indicates that the room
was superior / deluxe / executive / premium / king, *5 that the room was superior /
deluxe / executive / premium / king but with view / balcony / access spa / access beach.
For example, a superior double room with a balcony was coded as 25, and the same
code defined a deluxe double room with a sea view. This coding allowed us to exploit
as much information as possible by normalizing the room type and comparing prices
offered by different hotels, which often name rooms differently.

Data cleaning After data cleaning and checking (some observations were deleted
because of errors in the scraping ormissing relevant information), the dataset of almost
1.1 million observations and 23 variables related to 879 hotels was reduced to about
833,000 observations and 17 relevant variables. In fact, some data were lost because
of the frequent changes in the structure of the booking platform, which implied the
re-programming of the scraper, an action that in some cases took more than one day
(Tables 4, 5, 6, 7, 8).
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Table 4 Price and booking variables

Variable
name

Description Nr.
observations

Mean Std. Dev Min Max

Price Total price of
booking

833,543 486.56 512.49 0 14,000

P Daily price of
booking

833,543 103.96 87.04 0 2800

Hotel Hotel code 996,919 460.87 243.29 1 879

Special offer Dummy: is it a
special offer?

996,920 .256 .436 0 1

Score* Hotel’s rating 890,217 7.79 .923 3.5 9.8

Stars Category of the
hotel

870,935 2.97 .680 1 5

Available
rooms

Nr. of available
rooms on the
platform

784,451 1.76 1.07 1 5

Adults Nr. of adults to
accommodate

990,160 2 0 2 2

Kids Nr. of children
to
accommodate

990,160 .276 .690 0 2

Check-in Date of
check-in

998,562 29
May

25
September

Check-out Date of check
out

996,920 31
May

27
September

LOS Length of stay 996,920 4.65 2.48 2 7

Free
cancellation

Dummy: is
there free
cancellation?

996,920 .354 .478 0 1

Table 4 (continued)

Variable
name

Description Nr.
observations

Mean Std. Dev Min Max

Board type** Type of board 996,920 1.03 .211 0 4

Lag time Diff. between
check-in and
search dates

996,920 6.81 5.40 0 15

Room
type***

Type of room 747,025 32.09 18.97 10 90

*Categorical variable coding the overall evaluation of the hotel on Booking.com, originally expressed in
words (excellent, good, etc.)
**Categorical variable coding the type of board provided in the offer: 0 � breakfast not included 1 � bed
& breakfast; 2 � half-board; 3 � half-board with lunch; 4 � full-board
***Categorical variable coding the type of room in terms of capacity (e.g., double room, triple room, etc.)
and quality (e.g., Superior room, room with sea view, etc.)
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Table 5 Popularity and ratings of the most important weather forecast apps used in Italy

Name Ilmeteo.it Meteo.it 3Bmeteo MeteoAM

Nr. of downloads (Play Store) > 10 million > 5 million > 1 million > 0.5 million

Average rating 4.3 4.0 4.3 4.1

Number of ratings 460,187 101,475 141,262 5074

Share of 1/5 votes 3.61% 8.91% 2.27% 6.90%

Share of 2/5 votes 2.34% 4.72% 1.64% 5.66%

Share of 3/5 votes 7.93% 12.56% 6.87% 11.17%

Share of 4/5 votes 33.63% 32.13% 39.53% 27.36%

Share of 5/5 votes 52,59% 41.68% 49.70% 48.92%

Data were updated on 10 April 2018

Table 6 Summary statistics for IlMeteo weather forecasts

Variable Obs Mean Std. Dev Min Max

Dump time 1942 13 May 27 September

Forecast date 1942 15 May 30 September

Min temp 1942 21.03 3.28 11 27

Average temp 1942 24.94 2.68 13.5 31.5

Max temp 1942 27.72 3.64 15 37

Weather Forecast code* 1942 5.76 3.06 1 8

Lag time** 1942 6.91 4.32 0 15

*Codes relative to the summary weather conditions, as described in Table 3
**Difference (in days) between the day when the forecast was produced and the forecast day

Table 7 Weather forecasts produced by IlMeteo, Rimini

Forecast icon (and code) Frequency Share Cumulative share

Hot and sunny (WF 1) 279 14.37 14.37

Blue sky (WF 2) 185 9.47 23.84

Overcast / unstable (WF 3) 544 28.01 51.91

Downpour / clear up (WF 4) 397 20.44 72.35

Cloudy (WF 5) 119 6.12 78.48

Misty rain (WF 6) 14 0.72 79.20

Rain (WF 7) 284 14.62 93.82

Shower / thunderstorm (WF 8) 120 6.18 100.00

Total 1942 100.00 100.00
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Table 8 Summary statistics for real weather, Rimini

Variable Obs Mean Std. Dev Min Max

Daily rain (mm) 138 2.53 7.99 0 48.6

Daily pressure (bar) 138 1013.22 4.18 1004.35 1023.63

Daily max temp. (C°) 138 27.03 4.21 15 36.3

Daily aver. temp. (C°) 138 23.42 3.82 13.18 30.53

Daily min temp. (C°) 138 19.26 3.67 10.9 26.1

Daily max hum. (%) 138 79.11 9.90 52 99

Daily mean hum. (%) 138 61.26 9.51 36.67 90.96

Daily min hum. (%) 138 41.35 10.55 19 76

Daily wind direction* 138 4.14 2.05 1 8

Daily wind speed (m/s) 138 2.17 .58 1.4 5.08

*Coded clockwise from 1 (northern) to 8 (north-western)
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