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Abstract. The real-time detection of the R peaks of the ECG signal
is crucial to provide information on cardiac functionality, and several
strategies have been presented in the past. In this work, we adapt the
classical Pan and Tompkins (PT) algorithm for efficient execution on low-
power microcontroller (MCU) platforms to design a full-fledged heart
rate detection system. We target a commercial MCU based on ARM
Cortex-M4 and an ultra-low-power solution based on the RISC-V PULP
platform. Experimental results show that our approach achieves an ac-
curacy above 99.5%, comparable to the state-of-the-art solutions, and
an energy efficiency that is one order of magnitude better than other
software solutions.

Keywords: ECG, R peak, heart rate, low- power biosignal processing.

1 Introduction and Related Work

The growing trend of small form factor devices is pushing the development of
wearables, driven by systems such as health patches and trackers [1] [2]. In the
fitness and healthcare area, these systems facilitate remote and continuous moni-
toring of wellness conditions providing the extraction of physiological parameters
from the analysis of biosignals [3]. However, the main weakness of wearable sen-
sor nodes is the request for high computationally-demanding tasks at high energy
efficiency to improve the battery life-time.

Several works exploit digital platforms capable to execute digital signal pro-
cessing (DSP) to achieve ultra-low power (ULP) consumption [4] [5]. In this
context, the designers typically adapt optimization strategies to reduce the al-
gorithm complexity and find the best trade-off between reliability and low power
consumption. Among the biopotentials that can be acquired with real-time low
power devices [6], heart activity parameters are the most used to detect and mon-
itor acute severe conditions. Analysing the QRS complex and detecting R peaks
is crucial for providing cardiac functionality information. Several strategies have
been presented in the literature, using well-established signal processing tech-
niques. Park et al. [7] propose a technique based on a wavelet transform (WT)
coupled with the Shannon energy envelope method in addition to a moving
average filter and a squaring operation for the preprocessing step. This method
achieves accuracy over 99%. However, the algorithm is computationally intensive,
and it is not suitable for real-time execution on an ultra-low-power embedded
device. Martinez et al. [8] adopt the phasor transform. This approach converts
each ECG sample into a complex number maintaining the phase and the root
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mean square values to enhance the wave variations to distinguish them from
each other. Also in this case, the overall accuracy is higher than 99%. However,
the analysis excludes five records from the MIT-BIH Database because of the
low-quality acquisition of highly-variable signals or noise distortion.

A widely explored family of approaches for ECG signal analysis includes
slope-based methods. In Tekeste et al. [9], the authors optimize peak detection
by providing a hardware unit to approximate the computation of the signal
derivative. The power consumption is only 3.9 nW at an operating frequency
of 3 kHz implemented in 65 nm technology. Nevertheless, they do not consider
the contribution to the power consumption of the additional computations that
are strictly required by a real-life scenario. In our work, we use microcontroller-
class devices that can perform pre-processing, peak detection, and subsequent
computations. De Giovanni et al. [10] propose a software-based methodology
that can be considered the current state-of-the-art. Their algorithm implements
a Bayesian filter, normalization, and a clustering technique to optimize the R
peak detection. The authors test the system on a biosignal dataset where sud-
den event changes occur, such as during intense physical exercise [11]. These
physical conditions reduce the robustness of the traditional algorithms affecting
their reliability. Hence, they propose an accurate adaptive design for low-power
platforms. However, the authors do not consider the aspects related to real-time
signal acquisition. They use an existing system (BIOPAC) that requires a 9 V
battery and is not energy efficient. Furthermore, the peak detection algorithm
including all the proposed phases is very complex and requires a core with na-
tive FPU support because the fixed-point representation decreases the accuracy
significantly. Overall, we will show that their results in mJ are 7× higher than
our method.

An effective and computationally efficient threshold-based approach for QRS
extraction and heart rate (HR) calculation is the Pan and Tompkins algorithm
(PT). It relies on an adaptive dual-threshold technique for the R peaks detection
[12], leveraging a filtering stage and simple adaptive thresholding methods. PT
is a robust technique that uses a pre-processing pipeline that includes standard
filtering techniques (pass-band, derivative, squaring, integration). This technique
can also be applied to signals with arrhythmia. Furthermore, it can be adapted to
execute on real-time streaming data, which is crucial in the context of wearable
systems. PT is a standard approach that was proposed several years ago, but
recent works adopt this methodology yet [13] [14]. We outperformed the accuracy
and energy consumption of these works, optimizing the R peak detection on our
target architecture.

In this work, we propose a lightweight design for HR computation based on
the PT algorithm. We implement the PT aiming for an acceptable trade-off be-
tween computational complexity and energy efficiency. Furthermore, we propose
a real-time application for ECG monitoring based on an end-to-end system from
the data acquisition to the inference. The proposed methodology is optimized
by simulating in Matlab the real-time operation and then implementing it with
a multi-board setup. Then, the processing is coded in C language and can work
in data-streaming or with an existing dataset. The proposed system provides a
power budget of less than 5 mW, for wearable and near sensors processors. We
aim to process ECG signal to carry out the HR, which is a crucial physiological
parameter to detect anomaly conditions in the heartbeats [15]. Our methodology
obtains an acceptable HR detection reliability (higher than 99%) in pathological
or sudden changes of the biosignal. The target device that we use for experimen-
tal assessment is the Parallel processing Ultra-Low Power (PULP) many-core
platform designed for smart ULP embedded devices [16]. For the evaluation, we
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Fig. 1. Hardware diagram of the proposed system. The active electrodes are located on
each forearm and one on a wrist, setting Lead I for the collected data. Single-channel
ECG is acquired with a custom AFE board (MAX30003), which sends data via SPI to
the platform for processing. We consider two alternative designs: (1) STM32NUCLEO
for the initial setup and (2) Vega for ULP optimization. Output and communication
are managed via a B/mini-USB and a micro-USB cable, respectively, that leads the
platform to a terminal to visualize the HR values.

analyze the performance on the Vega SoC [17], a PULP platform running at 0.8
V at an operating frequency of 170 MHz, and on ARM Cortex-M4, using the
STM32 NUCLEO-F401RE development board at 1.8 V and 84 MHz. The PULP
provides extreme energy efficiency, and we obtained an energy consumption of
0.2 mJ when considering an average on 25 s of running time. We performed tests
on four datasets, three existing ones and one acquired from the proposed system
in real-time, taking into account several options: normal conditions, arrhythmia
[18], intense physical exercise [11]. Overall, we achieved accuracy above 99.5%
that we compared with other state-of-the-art solutions.

2 Methodology

2.1 System Architecture

This work proposes a modular setup for ECG detection. The acquisition board
relies on Maxim MAX30003 [19], a chip for ULP acquisition of ECG. MAX30003
is a complete, biopotential analog front-end solution for wearable applications.
It offers high performance for clinical and fitness applications at extreme energy
efficiency, reaching 85 µW average power consumption. The analog acquisition is
based on a 2 leads differential channel providing ECG waveforms and heart rate
detection. The biopotential channel has ESD protection, EMI filtering, internal
lead biasing, and DC leads-off detection. The biopotential channel also has high
input impedance, low noise, high CMRR, programmable gain, as well as low-pass
and high-pass filter options. The digital back end is based on an SPI interface
to enable data streaming and communication with an external MCU.

Fig. 1 depicts the custom board equipped with MAX30003 and with two al-
ternative test benches: the first one with NUCLEO-F401RE board, used for ini-
tial setup and algorithm tuning, and the second one with Vega custom board [17],
employed for ULP operation and optimized performance. In both test benches,
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Fig. 2. Signal processing steps based on PT technique: (1) Cancellation of DC compo-
nent and addition of Normalization; (2) Band-pass filter that combines the low- and
the high-pass filters; (3) Derivative function; (4) Squaring function; (5) Moving window
integrator (MWI); (6) R peaks detection. In the last step we compute the HR in beats
per minute.

ECG data are sent from AFE to MCU via SPI. Vega allows a USB device mode
interface with a micro USB connector at an operating frequency of 2.4 GHz with
a reference oscillator frequency of 32 MHz. Vega receives data from AFE via a
5 MHz SPI channel connection (Vega acts as master). Data loaded via SPI is
stored in the Vega L2 memory as 24-bit signed fixed-point numbers, with the
least significant bit. Acquired ECG samples are used as input of the embedded
implementation, described and profiled in Section 3.

The presented prototype can be integrated into a single PCB with a 20×10
mm form factor, suitable for minimally obtrusive wearable applications. We use
a recent SoC implemented in 22 nm technology, namely Vega [17]. It provides a
DSP-oriented instruction set architecture (ISA) based on the Parallel Ultra-Low-
Power Platform (PULP) [16]. The PULP SoC is equipped with a 2 MB SRAM
scratchpad memory (L2), hosting the resident code and application data. A
hardware unit called µ-DMA performs autonomous data transfers between the
L2 memory and the peripherals. The peripherals and the MCU core reside in
different clock domains so that the frequency of each domain can be tuned to
sustain the application workload with low power consumption (up to 500 MHz
for a 22 nm technology node). The clocks of the peripherals can be further
divided to match the operating frequency of slower external devices.

2.2 Algorithm Description

To compute the HR, we adopt a signal processing pipeline based on the PT
technique [12]. This methodology adopts a dual-threshold technique to detect
the R peaks and includes multiple pre-processing signal steps required to improve
the signal analysis. The block diagram is depicted in Fig. 2.

The signal processing pipeline includes a set of pre-processing digital filters
followed by the computation of R-peaks. The original implementation considers
a sampling rate of 200 Hz.

1. Band-pass filter. The low-pass component applies a second-order trans-
fer function to the signal obtaining a difference equation with a delay of 5
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samples and a DC gain of 36. The high-pass design is characterized by a
first-order transfer function, with a delay of 16 points and a gain of 1. Over-
all, the bandpass filter provides a 3 dB pass-band between about 5 and 12
Hz and reduces the noise due to the muscle, the baseline wander and the
T-wave interference/frequency content. This filter supplies poles and zeros
only on the unit circle, so the system is characterized by a minimum phase,
a minimum group delay, and better stability. As a final effect, it increases
the signal-to-noise ratio.

2. Derivative. The signal is differentiated using a 5-points derivative. The
result provides information about the slope of the input waveform. This
filter introduces a delay of 2 samples and a gain of 0.1.

3. Squaring. The output of the derivative signal is squared to enhance the
R peaks, leading the signal to the positive y-axis to emphasize the high
frequencies that include the R-peaks. This step makes it easier to distinguish
R peaks from T-waves.

4. Integration. From the output of the squared signal, a moving window inte-
grator extracts the duration of the QRS complex, obtaining a time-averaged
signal. Usually, the window length is equivalent to the widest QRS complex
(around 150 ms, corresponding to 30 samples at 200 Hz). The time of the
rising direction of the window is the duration of the QRS complex.

5. Computation of R peaks. The final part of the algorithm finds a set
of fiducial marks corresponding to the temporal location of the peaks in
the integrated signal. Fiducial marks determined in this area are potential
candidates for R peaks. An initial phase of the implementation is necessary
for the tuning (2 seconds at 128 Hz). The fiducial mark is compared with a
threshold value thresholdI1 that considers the current estimation and both
signal and noise peaks:

thresholdI1 = npkI + 0.25 ∗ (spkI − npkI) (1)

where npkI is the estimation for any peak that is not related to an R peak
(e.g., the peaks of T waves), and spkI is the estimated value for the R peak
level. When a new peak peakI is detected, it must be classified as a noise
peak or a signal peak. If a sample is greater than the current threshold value
thresholdI1, then it is a peak candidate. In addition, it must have a distance
of at least 200 ms from the previously detected peak: this value, referred to
as min rr width, is the minimum latency time between adjacent R peaks
due to physiological constraints. Otherwise, the fiducial mark is considered
a noise peak. spkI and npkI parameters are updated accordingly:

spkI = 0.125 ∗ peakI + 0.875 ∗ spkI (2)

npkI = 0.125 ∗ peakI + 0.875 ∗ npkI (3)

If no R peak candidate is found in an interval of duration 1.66∗max rr width
starting from the previous peak and ending with the current sample, the
algorithm performs a search-back operation on this interval the interval using
a lower threshold thresholdI2 that is empirically computed as:

thresholdI2 = 0.5 ∗ thresholdI1; (4)

The original PT algorithm performs R peaks detection also on the output
of the bandpass filter, introducing a set of variables with the same mean-
ing (i.e., peakF , spkF , npkF , thresholdF1, and thresholdF2). We verified
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experimentally that this step can be skipped without invalidating the detec-
tion quality. If a peak candidate occurs after the 200 ms refractory period
but within 360 ms of the previous peak, the algorithm makes an additional
check to determine if it is an abnormally prominent T wave. This decision
is based on the mean slope of the waveform at that position, which must
be greater than one-half that of the previous peak. Finally, the average dis-
tance between R peaks is computed as the mean of the eight most-recent
RR intervals. The average heart rate can be used to refine the duration of
the search back interval.

3 Results

This section provides an experimental evaluation of our system. We use GVSoC
[20], an open-source simulator for PULP architectures, to implement and debug
the algorithm. GVSoC can simulate a full platform, including multi-memory
levels and multi I/O peripherals, and provides a good trade-off between simula-
tion speed, timing accuracy, and completeness. The average energy consumption
for the Vega platform has been derived by a post place-&-route simulation on
the RTL. The metrics of interest for our performance analysis are throughput
(computed as the number of input data samples over the total execution cycles),
energy efficiency (operations performed in a second over power consumption),
total energy consumption (in mJ), and accuracy of the detection rate (in per-
centage).

3.1 Implementation on the PULP platform

The AFE IC, described in Section 2.1, is connected to the ECG electrodes using
3 ECG surface sensors: two sensors are placed on the wrist, and the other one
around the upper forearm of the subject, as a voltage reference. This setup
allows sampling with an 18-bits resolution at 128 Hz. In this application, the
signal is read 13 samples at a time using a FIFO. We apply the PT algorithm
described in Section 2.2, implemented in C language, to support different (integer
or floating-point) data types. The code supports both buffered and the data-
streaming simulation with configurable parameters for the sampling frequency.
In the case of buffered execution, the input buffer size is selected to contain at
least 1.66 times an R-R interval, considering that the maximum physiological
beats per minute are 60 or 80 (max 1.66 beats per second). The code includes
buffers for the results of the intermediate filters. These buffers have the exact
window size for the corresponding filter and are implemented as circular buffers
to reduce memory consumption. Buffered execution can be used to execute the
algorithm on pre-recorded ECG datasets, while the streaming variant is more
efficient for real-time data acquisition.

In addition to the original PT design, we added a preliminary normalization
step that removes the DC drift by subtracting the mean value and then dividing
by a maximum absolute value. In the case of buffered execution, this value can be
computed as the maximum value in the input buffer; otherwise, we can use the
maximum value provided by the sensor as reported in the datasheet. The result
is a signal normalized in the range [-1, 1], improving the numerical stability and
precision of the next steps.

The filter coefficients are pre-computed using MATLAB and saved into the
local memory to maximize the efficiency of the initial steps. To guarantee the
minimum latency for streaming execution, we designed a step-by-step convo-
lution function that is invoked for each new available value (i.e., a new input
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. . .

Fig. 3. Output result of the proposed R peaks detection and R-R intervals method
from a segment of record 232 characterized by the supraventricular ectopic beats from
the MIT-BIH database.

Table 1. Cycles for each sample, Instructions, Energy Efficiency, Throughput, and
Time executing on the target platforms (average values on a 25 s time window).

Pulp VEGA
Cortex-M4

(processing pipeline)
Cycles 2771 3154
Instructions 2204 3148
Energy efficiency [Gop/s/W] 34.7 3.8
Throughput [samples/ms] 61.35 26.63

sample or a value computed by the previous filter) and applied a linear con-
volution filter to the tail on the corresponding data buffer. As introduced in
Section 2.2, we only consider the integrated signal for R peak detection. Finally,
we apply the computation of the HR (beats per minute) from the RR average
value. Figure 3 shows an example of the output result of the R peaks detection
and the R-R intervals assessment extracted from a segment of the record 232
of the MIT-BIH Arrhythmia Dataset. Even though some fiducial points can be
drifted forward or backward by one sample w.r.t. the exact peak positions, this
effect does not affect the correct computation of the R-R distance.

3.2 Performance analysis and energy consumption

Table 1 reports the performance parameters executing the program (in stream-
ing mode) on PULP (VEGA SoC) and Cortex-M4 (STM32NUCLEO-F401RE
development board) introduced in Section 1. We deployed an alternative setup
for these experiments where an additional STM32NUCLEO board is used in
place of VEGA for the signal processing pipeline. In both cases, the energy con-
sumption of the Nucleo board used for system initialization and debugging is
not considered. The resulting values show that execution on the PULP platform
is 2.3× faster than Cortex-M4.

Table 2 depicts the energy consumption (in mJ) of our algorithm executed on
NUCLEOF401RE and Vega platforms compared to the state-of-the-art solution
described by De Giovanni et al. [10], which executes on a PULP platform based
on the Mr.Wolf architecture [21]. The operating frequency reported for Cortex-
M4 is its maximum frequency. For VEGA, we are using an operating frequency
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Table 2. Energy consumption of different SoA solutions for R peak detection (average
values on a 25 s time window).

Platform
Architecture ISA Algorithm

Technology
[nm]

Operating
frequency [MHz]

Energy
consumption [mJ]

De Giovanni et al. [10] Pulp (Mr.Wolf) RV32ICMF
+ Spec. Ext. Adaptive slope 40 170 1.553

This work Cortex-M4 ARMv7-M PT 90 84 2.652

Pulp (Vega) RV32ICMX
+ Spec. Ext. PT 22 170 0.203

Table 3. Comparison of R peaks accuracy.

Acc [%]
Moreira et al. [14] 93.26
De Giovanni et al. [10] 97.90
Tekeste et al. [9] 99.37
Lu et al. [13] 99.41
This work 99.53

lower than the maximum to make a more fair comparison with state-of-the-art
solutions. The energy consumption has been estimated using an average power
consumption reported by the datasheets. Considering an execution time of 25 s,
the average energy consumption of our system is almost 7× lower.

3.3 Algorithm Accuracy

Table 3 reports an accuracy comparison between our solution and other works.
In the worst case, our algorithm reaches 99.53% on the high-intensity physical
exercise dataset [11]. To evaluate the accuracy, we used the MATLAB findpeaks
function as a golden reference, which returns the local maxima. It is extremely
accurate, but it has two main flaws. First, it is computed intensive, which is
highly detrimental to its adoption in the ultra-low-power embedded domain.
Second, it cannot be adapted to a streaming context, so its adoption would
increase the latency of the results. We computed the accuracy as follows:

RMSD =

√∑n
i=1 (xG,i − xPT,i)2

n
; (5)

Acc = 100− (
RMSD

xmax − xmin
); (6)

where xG and xPT are the RR intervals (in samples) computed using the golden
model or the proposed method, respectively. The parameter n is the number of
detected RR intervals, and xmax and xmin are the maximum and minimum in
the set of RR interval values.

Figure 4 depicts the accuracy of the code tested on four different datasets.
The datasets we consider are Normal Sinus Rhythm (NSR) and Atrial Flutter
(AFL). They are both from the MIT-BIH Arrhythmia database, sampled at 360
Hz [18]. The third is the ECG signal acquired in real-time (RT) from our signal
acquisition system (described in Section 2.1). Finally, the signal on high-intensity
exercise (HIE), sampled at 250 Hz [11]. The figure shows the higher value in NSR,
for which we achieve 99.95%. In the case of tachyarrhythmia, called atrial flutter
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Fig. 4. Accuracy evaluation on four different datasets: High Intensity Exercise (HIE)
[11], acquired ECG signal in real-time (RT) with the proposed system design, Atrial
Flutter (AFL) [18], and Normal Synus Rhythm (NSR) [18].

(AFL), the accuracy is 99.62%. In the RT, we obtain an accuracy of 99.61%. In
HIE, where the beats change suddenly, we assess the lower value of 99.53%.

4 Conclusion

This work presents the design and implementation of a heart-rate detection sys-
tem leveraging the PT algorithm on low-power MCUs. We consider two alterna-
tive platforms, a commercial MCU based on ARM Cortex-M4 and an ultra-low-
power solution based on RISC-V, namely the Vega SoC. Experimental results
show that our approach is lightweight design and executes in a few thousand
cycles. This system provides a lifetime battery of 81 hours with a 100 mAh
battery, achieving an accuracy comparable to the state-of-the-art solutions and
an energy efficiency that is one order of magnitude better. This work does not
aim at classifying specific health problems but rather to detect HR in real-time
at high reliability and energy efficiency. In future work, we will add machine
learning algorithms (e.g., kNN, SVM, or CNN) to the system pipeline with the
aim of detecting anomalies in the HR variability, such as arrhythmia or stress
conditions. Moreover, we will design a parallel version of the code using the
programmable parallel accelerator available on VEGA to further improve per-
formance and energy efficiency compared to commercial alternatives.
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