

The SPSS MIXED procedure does not generate an R-square statistic, which is also rarely reported when mixed-models are used because different definitions have been proposed with no accepted standards (e.g., Nakagawa and Schielzeth, 2013 and references therein). Furthermore, their implementation may require complex calculations that are not easily accessible after model fitting. In this regard, we chose two distinct measures (Xu, 2003; Nakagawa and Schielzeth, 2013), both of which may be calculated directly using values from the SPSS MIXED output. In particular, Xu's omega square index:

$$
\Omega_{0}^{2}=1-\frac{\sigma_{\varepsilon}}{\operatorname{var}\left(y_{i}\right)},
$$

uses σ_{ε} for the full model residual variance and $\operatorname{var}\left(y_{i}\right)$ for the total variance of the dependent variable; whereas, Nakagawa R-square can be calculated as:

$$
R_{L M M}^{2}=\frac{\sigma_{f}+\sigma_{\alpha}}{\sigma_{f}+\sigma_{\alpha}+\sigma_{\varepsilon}}
$$

where σ_{f} is the fixed effects variance, σ_{α} is the (sum of) random effect variance, and σ_{ε} is the full model residual variance. The last equation could be slightly modified:

$$
R_{L M M(m)}^{2}=\frac{\sigma_{f}}{\sigma_{f}+\sigma_{\alpha}+\sigma_{\varepsilon}},
$$

obtaining Nakagawa "marginal" R-square, which represents the variance explained by the fixed effects only in the linear mixedmodel. While σ_{α} and σ_{ε} are available in the model output, we retrieved σ_{f} by multiplying the design matrix of the fixed effects (\mathbf{X}), with the vector of fixed effects coefficients (b), calculating the variance of these predicted values (c.f. Nakagawa and Schielzeth, 2013):

$$
\sigma_{f}=\operatorname{var}(\mathbf{X b})
$$

