
22 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Kloster K., Moeini M., Vigo D., Wendt O. (2023). The multiple traveling salesman problem in presence of
drone- and robot-supported packet stations. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 305(2),
630-643 [10.1016/j.ejor.2022.06.004].

Published Version:

The multiple traveling salesman problem in presence of drone- and robot-supported packet stations

Published:
DOI: http://doi.org/10.1016/j.ejor.2022.06.004

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/899685 since: 2024-04-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ejor.2022.06.004
https://hdl.handle.net/11585/899685

The multiple traveling salesman problem in presence of
drone- and robot-supported packet stations

Konstantin Klostera, Mahdi Moeinia,∗, Daniele Vigob, Oliver Wendta

aChair of Business Information Systems and Operations Research (BISOR), Technische Universität
Kaiserslautern, 67663 Kaiserslautern, Germany.

bDepartment of Electrical, Electronic and Information Engineering “G. Marconi," University of Bologna,
40136 Bologna, Italy.

Abstract

In this paper, we introduce themultiple Traveling SalesmanProblemwithDrone Stations
(mTSP-DS), which is an extension to the classicalmultiple Traveling Salesman Problem
(mTSP). In the mTSP-DS, we have a depot, a set of trucks, and some packet stations that
host a given number of autonomous vehicles (drones or robots). The trucks start their
mission from the depot and can supply some packet stations, which can then launch and
operate drones/robots to serve customers. The goal is to serve all customers either by
truck or by drones/robots while minimizing the makespan. We formulate the mTSP-
DS as a mixed integer linear programming (MILP) model to solve small instances.
To address larger instances, we first introduce two variants of a decomposition-based
matheuristic. Afterwards, we suggest a third approach that is based on populating a
solution pool with several restarts of an iterated local search metaheuristic, which is
followed by determining the best combination of tours using a set-partitioning model.
To verify the performance of our algorithms, we conducted extensive computational
experiments. According to the numerical results, we observe that the use of drone
stations leads to considerable savings in delivery time compared to traditional mTSP
solutions. Furthermore, we investigated the energy consumption of trucks and drones.
Indeed, depending on the energy consumption coefficients of trucks and drones as well
as on the distance covered by drones, the mTSP-DS can also achieve energy savings in
comparison to mTSP solutions.

Keywords: Logistics, Vehicle routing, Drone deliveries, Mixed integer linear
programming, Heuristics

1. Introduction

Drones, also known as unmanned aerial vehicles, have the potential to transform
many industries and thus may also have a social impact (Floreano & Wood, 2015).
Indeed, infrastructure, agriculture, transport, and security sector offer the best financial

∗Corresponding author
Email address: mahdi.moeini@wiwi.uni-kl.de (Mahdi Moeini)

Preprint submitted to Elsevier August 9, 2022

opportunities for the use of drones (see (Otto et al., 2018) and references therein).
Within the transport area, drones could change the way that packages are delivered to
the customers. In this context, a loaded drone, carrying a light and small- or medium-
sized parcel, could fly to a customer, deliver the package, and then return to its starting
point.

Due to technical limitations, drones, unlike trucks, can usually only transport one
parcel at a time (Agatz et al., 2018). As a result, the total distance covered for deliveries
by drones will be greater than for traditional deliveries by truck. Nevertheless, it is
possible to reduce delivery costs by using drones, e.g., since the delivery drones operate
autonomously, using drones can reduce costs by decreasing labor costs. Considering
that acquisition costs for drones are also relatively low in comparison to trucks, drones
allow for higher parallel operations, which in turn can lead to reduced delivery times.
Another factor that has a positive effect on delivery times is that drones are not tied
to a road network. Indeed, this enables drones to avoid congestion, especially in
densely populated urban areas. Finally, drones have also benefits in terms of CO2

emissions. According to Goodchild & Toy (2018), drones emit less CO2 than trucks
when customers are close to the depot or when only a few customers need to be supplied.

Although many technological advancements have been made in recent years, drone
usage is still accompanied by shortcomings that need to be considered. For example,
the size and the weight of parcels that can be transported by drones are limited. An
alternative to drones, which circumvents some of these problems, are delivery robots
such as those made known by, e.g., Starship Technologies (Figliozzi, 2020). In fact,
robots move either on roads or sidewalks, reaching speeds of up to 30 km/h and 6
km/h, respectively, and are thus slower than trucks and drones (Moeini & Salewski,
2020; Schermer et al., 2020). However, robots offer some advantages, e.g., the use of
sidewalks may reveal shortcuts that trucks cannot use. Moreover, compared to drones,
robots can transport much heavier packages and, some types of robots can carry several
packages at once. Furthermore, robots are more energy-efficient than drones and trucks.
One problem of drones and robots alike is their relatively short range. However, this
problem can be overcome, for example, by the use of drone stations.

A drone station is a facility that can be used to launch and operate drones (Kim &
Moon, 2018). When a truck delivers parcels to a drone station, they are automatically
processed and loaded into a drone. Furthermore, the batteries of returned drones could
be replaced and charged in such stations. In practice, drone stations have already been
tested by DHL (DHL, 2018). Even though the concept of drone stations can also be
transferred to robots, for the sake of easing the readability of the paper, we will use the
term drone station throughout this paper.

The aforementioned technical problems also have implications on the way that
drones are approached from an operational perspective that we address in this paper.
More precisely, the contributions of this paper are as follows:

- We introduce the multiple Traveling Salesman Problem with Drone Stations
(mTSP-DS), a tour planning model that integrates drones and drone stations
into the classical multiple Traveling Salesman Problem (mTSP). In addition, the
mTSP-DS also incorporates elements from parallel machine scheduling (see,
e.g., Cheng & Sin, 1990) and facility location problems (Cornuéjols et al., 1990).

2

In the next sections, we define the mTSP-DS and formulate it as a mixed integer
linear program (MILP).

- The MILP model of the mTSP-DS can be solved by any standard MILP solver,
e.g., Gurobi Optimizer. But, this is possible only on small instances because
the runtime grows too fast due to the complexity of the mTSP-DS. To overcome
this issue, we first introduce two variants of a decomposition-based matheuristic.
Afterwards, we present a two-phase matheuristic that is based on populating a
solution pool and using a set-partitioning model. Recently, a similar approach
has proven successful for truck and trailer routing problems(Accorsi & Vigo,
2020), which share some similarities with the mTSP-DS.

- We report the results of our extensive computational experiments, which prove
the efficiency of the introduced algorithms as well as the usefulness of drones
and drone stations in last-mile delivery. According to the numerical results, we
observe not only that the algorithms are able to provide high-quality solutions,
but also we show that the use of drone stations and drones leads to considerable
savings in delivery time compared to traditional mTSP solutions. Furthermore,
we show that depending on the energy consumption coefficients of trucks and
drones, as well as on the distance covered by drones, the mTSP-DS can also
achieve energy savings in comparison to mTSP solutions.

The remainder of this paper is structured as follows. Section 2 is devoted to an
overview of the existing literature regarding the use of drones in last-mile delivery from
a tour planning perspective. In Section 3, we provide a precise and formal description of
the mTSP-DS as well as its MILP formulation. Afterwards, we describe our algorithms
in Section 4. We report the computational experiments and their numerical results in
Section 5. Finally, some concluding remarks are drawn in Section 6.

2. Drones and drone stations in last-mile delivery

Because of the economic potential of drones for the logistics industry, researchers
have in recent years started to examine drones from an operational perspective and to
incorporate them into tour planning models. Detailed state-of-the-art reviews can be
found, e.g., in (Khoufi et al., 2019; Macrina et al., 2020; Otto et al., 2018; Rojas Viloria
et al., 2021; Schermer et al., 2019a,b). However, for the sake of completeness, we
provide a short overview of the existing literature related to this paper.

Since the operational range of drones is limited and not all packages can be trans-
ported by drones, it is unlikely that drones completely replace delivery by trucks. Thus,
strategies in which trucks are assisted by drones during delivery became prevalent.

The first work that follows such an approach is the Flying Sidekick Traveling Sales-
man Problem (FSTSP), where a truck works in conjunction with a single drone (Murray
& Chu, 2015). It is an extension of the Traveling Salesman Problem (TSP), and the
goal is to serve all customers either by truck or by drone. As in the TSP, the truck
starts from the depot and has to make a round trip, which ends at the depot again. The
drone, however, is either launched from the depot or carried by the truck. In the latter

3

case, the driver can load and launch the drone from a customer node. Once launched,
the drone will fly to a customer, drop (deliver) a parcel, and reunite with the truck at
another customer location. After servicing the drone, the driver can dispatch it to the
next customer or transport it to the depot. Alternatively, the drone might as well return
to the depot after a delivery, where the drone will be taken out of service. Murray &
Chu (2015) presented a MILP model and a simple heuristic to solve the FSTSP.

As a similar problem, Agatz et al. (2018) proposed the TSP with Drone (TSP-D).
Unlike the FSTSP, the TSP-D allows the drone to return to its origin after a delivery,
where, in the meantime, the truck can wait at this node. Additionally, the TSP-D
assumes that the truck may revisit nodes. Agatz et al. (2018) formulated the TSP-D
as an integer program and suggested several variations of a route-first, cluster-second
heuristic. As an extension, Marinelli et al. (2018) introduced en-route operations for
the TSP-D. This means that starting and retrieving drones is not limited to nodes of the
underlying graph, but can also be performed from points on the edges. Marinelli et al.
(2018) proposed a heuristic based on the greedy randomized adaptive search procedure
and numerically showed that en-route operations can reduce the overall delivery time.

The Vehicle Routing Problem with Drones (VRPD) is another extension to the
FSTSP. The VRPD considers several trucks such that each truck can transport one
or multiple drones (Wang et al., 2017). Several papers have studied the VRPD and
its variants and suggested different solution methods for solving the VRPD (see, e.g.,
Kitjacharoenchai et al., 2020; Sacramento et al., 2019; Schermer, 2019; Schermer et al.,
2018a,b, 2019b, and references therein). In particular, the Vehicle Routing Problem
with Drones and en Route Operations (VRPDERO) is a variant of the VRPD that
incorporates en route operations (Schermer et al., 2019a). Schermer et al. (2019a)
provided a MILP formulation for the VRPDERO and introduced valid inequalities to
enhance the performance of the MILP solver. In addition, Schermer et al. (2019a)
proposed a heuristic based on Variable Neighborhood Search and Tabu Search.

In the problemsmentioned so far, the truck has two functions: besides the traditional
delivery of parcels, the truck can be seen as a moving depot, which increases the
operational range of drones. In the Two-echelon Routing Problem with Truck and
Drones, the truck gives up delivering packages and operates only as a mobile depot (Vu
et al., 2021). In these problems, the truck visits a set of so-called truck nodes at which
it might stop to launch drones, which will then fly to the customer nodes to deliver
packages. Once all drones have returned from their deliveries, the truck continues
its tour. The authors propose single and multi-trip drone variants of the problem and
present MILP formulations as well as a GRASP approach to solve the problem. In the
Mothership and Drone Routing Problem (MDRP), the truck is replaced by a so-called
mothership (Poikonen & Golden, 2019). The mothership is a large aircraft that fulfills
the function of themobile depot. Compared to a truck, themothership has the advantage
of not being tied to the road network, i.e., a feature similar to drones. Therefore, the
mothership can move in continuous Euclidean space and launch drones from anywhere.
To solve the MDRP, Poikonen & Golden (2019) introduced an exact branch-and-bound
algorithm and several heuristic methods.

If most customers are relatively far away from the depot, then using the FSTSP can
be an appropriate approach, where the operation range of drones is extended by trucks.
However, if most of the customers are within the range of the depot, it makes more

4

sense to supply the customers directly by drone from the depot. For this case, Murray &
Chu (2015) suggested the Parallel Drone Scheduling TSP (PDSTSP). As in the FSTSP,
the PDSTSP assumes that some given customers can only be served by the truck.
Furthermore, in the PDSTSP, the truck is tasked to serve customers through a TSP tour.
Simultaneously, a set of drones delivers parcels to customers that are located within a
given range through round trips, i.e., starting from the depot, serving a customer, and
returning to the depot. When a drone returns to the depot after a delivery, the drone
can be loaded again to serve another customer. One particular characteristic of the
PDSTSP is that the truck and the drones work independently of each other. The authors
introduced aMILP formulation and a heuristic for the PDSTSP, where the heuristic uses
the longest processing time (LPT) algorithm to schedule the drone deliveries. Nguyen
et al. (2022) present themin-cost Parallel Drone Scheduling VRP as an extension of the
PDSTSP in which several trucks and a cost objective are considered. In addition, the
authors formulate the problem as a MILP and present a ruin-and-recreate algorithm.

The potential of the PDSTSP approach and its variants depends on the location of
the depot. To cover other areas as well, additional depots could be built. However,
the construction and maintenance of conventional depots can be expensive, especially
in densely-populated urban areas. To circumvent this obstacle, Kim & Moon (2018)
suggested the use of a drone station and introduced the Traveling Salesman Problem
with a Drone Station (TSP-DS), which extends the PDSTSP to include an additional
depot as drone station, where the drones are automatically loaded, launched, retrieved,
and serviced. In the TSP-DS, the truck serves the customers through a TSP tour, and
some customers might be served by drones that are located at the drone station. For this
purpose, the truck can activate the drone station by visiting it during a TSP tour, and
supplying the drone station with parcels. Once activated, the drone station uses drones
to serve customers within the range of the drone station. The TSP-DS is formulated as a
MILP and, if enough drones are provided, it is possible to decompose the problem into
an independent TSP and a parallel machine scheduling problem (Kim & Moon, 2018).

Based on the TSP-DS, Schermer et al. (2019c) introduced the Traveling Salesman
Drone Station Location Problem (TSDSLP) that incorporates several possible drone
stations from which a subset might be activated by the truck. An optimal solution of
the TSDSLP indicates which drone stations should be activated, assigns customers to
a truck or drone delivery, and sequences the deliveries such that the mission time is
minimized. Schermer et al. (2019c) presented a MILP formulation that can be used to
solve small-sized problem instances. Experiments show that using the TSDSLP can
significantly reduce delivery times compared to the classic TSP. In the next sections, we
introduce and investigate a natural extension to the TSDSLP, where we consider more
than one truck.

3. The multiple traveling salesman problem with drone stations

In this section, we introduce the multiple Traveling Salesman Problem with Drone
Stations (mTSP-DS) that is a generalization of the TSDSLP and combines elements
of the mTSP as well as of the facility location and the parallel machine scheduling
problems. In Section 3.1, we describe the problem and, afterwards, we present a formal
description as well as a MILP formulation of the mTSP-DS in Section 3.2.

5

Figure 1 A sample mTSP-DS solution with 2 trucks (solid and dotted arrows) and 3 potential
drone stations. The square, circle, and star shapes represent the depot, customers,
and drone stations, respectively. The dashed circles around the drone stations show
the operation range of drones, and the dashed arrows depict the drone deliveries.

3.1. Problem definition
Assume that a single depot, a set of customers, and a fleet of trucks are given.

Moreover, we suppose that a set of drone stations, each of them hosting a certain
number of drones (or robots), is available. In the mTSP-DS, each truck must make
a tour that starts from the depot, visits some customers, and ends at the depot again.
A truck can visit a number of available drone stations to hand over some parcels. In
such a case, the visited drone stations are considered as activated, i.e., the activated
drone stations can load and launch a set of drones located at the drone stations to serve
customers, which are in operation range of drones, through round trips starting and
ending at the same drone station. Moreover, each drone may serve multiple customers
through different round trips. The goal of the mTSP-DS is to serve all customers either
by trucks or by drones while minimizing the overall makespan. In this context, the
makespan is defined as the latest arrival time of a truck at the depot or of a drone at a
drone station.

To formulate the mTSP-DS, we make the following assumptions:

- Every customer must be visited exactly once, either by a truck or by a drone.
- A predefined number of drone stations can be activated. Drone stations may also
not be visited more than once.

- Once a truck or drone has arrived at a customer location, we assume that the time
required to handover the parcel is negligible.

- Each drone station operates the same number of drones of the same type and size.
- Drones may not exceed their range of operation during tours. On return, their
battery and cargo will be replaced instantly.

- Our formulation takes no kind of costs into account. In particular, the operation
of drone stations does not incur any costs.

Figure 1 provides a visualization of the mTSP-DS, where three drone stations are
available but only two drone stations are activated by two trucks (one drone station per
truck). Indeed, which drone stations to activate by which truck is one of the questions
that is answered by solving the MILP formulation presented in the next section.

6

3.2. MILP formulation of the mTSP-DS
To formulate the mTSP-DS, assume that a complete graph G = (V,E) is given,

where the set of nodes V consists of n customers VN = {1, ..., n}, m drone stations
VS = {s1, ..., sm}, and the depot, which is represented by nodes 0 andn+1 (0 ≡ n+1).
The depot is referred to as node 0 when it represents the start of a tour, and node
n + 1 is used when it represents the end of a tour. The set of nodes is thus defined by
V = {0}∪VN ∪VS∪{n+1}. For the sake of simplifying the notation, we additionally
define the sets VL and VR as VL = V \ {n + 1} and VR = V \ {0}. Moreover, the
mathematical model of the mTSP-DS depends on the following parameters:

- C ∈ Z+ specifies the maximum number of drone stations that can be activated.
It is clear that C should be less than or equal to the number of drone stationsm.

- DN ∈ Z+ sets the number of available drones per drone station. We define
D = {1, ..., DN} as the set of all drones hosted in a drone station.

- α ∈ R+ is a factor to indicate the drone velocity relative to the truck speed. More
precisely, α > 1 shows that the drones are faster than the trucks, while α < 1
means that the drones are slower, and α = 1 is used when drones and trucks
have the same velocity. The case of α < 1 typically refers to autonomous ground
vehicles (AGVs) or robots, which move at a slower speed than conventional
trucks. It is usually assumed that the trucks can move at a unit velocity of v = 1,
and the drones’ velocity is defined as v = α · v (see, e.g., Wang et al., 2017).

- The maximum distance that can be covered by the drones without recharging is
determined by E ∈ R+. This parameter indicates that the range of the drone
stations can be derived as Er = E/2.

- The total number of trucks is given byKN ∈ Z+ and the set of trucks is defined
byK = {1, ...,KN}, |K| = KN . IfKN = 1, the mTSP-DS becomes equivalent
to the special case of the TSDSLP (Schermer et al., 2019c).

The distance that trucks need to traverse between nodes i and j is specified by
dij , which is considered as the Euclidean distance between i and j (where i, j ∈ V).
Analogously, dij is defined as the distance that drones need to cover between nodes
i and j, for all i, j ∈ V . For trucks, the time required to travel from node i to node
j is defined as tij = dij . Regarding drones, this time is defined as tij = dij/α.
Furthermore, we assume that the distances are symmetric.

Finally, we need the following decision variables to formulate the mTSP-DS:

τ ∈ R≥0 :
A continuous variable that represents
the makespan.

xk
ij

∀k∈K,i∈VL,j∈VR
∈ {0, 1} :

Variables that are used to indicate
whether truck k traverses edge (i,j).

yd
sj

∀d∈D,s∈VS ,j∈VN
∈ {0, 1} :

Variables that specify if customer j is
served by drone d from drone station s.

zs
∀s∈VS

∈ {0, 1} :
Variables that state whether
a drone station is activated.

ak
i

∀k∈K,i∈V ∈ R≥0 :
Continuous variables that indicate the
time at which truck k arrives at node i.

7

The MILP formulation of the mTSP-DS is given by (1) - (13). In the following, we
present the objective function as well as the constraints, and describe them step-by-step.

min τ (1)
s.t. akn+1 ≤ τ : ∀k ∈ K, (2)

aks +
∑
j∈VN

2 · tsj · ydsj ≤ τ : ∀k ∈ K, s ∈ Vs, d ∈ D, (3)

∑
k∈K

∑
i∈VL
i 6=j

xkij +
∑
s∈Vs

∑
d∈D

ydsj = 1 : ∀j ∈ VN , (4)

∑
j∈VN

xk0j =
∑
i∈VN

xki,n+1 = 1 : ∀k ∈ K, (5)

∑
i∈VL
i6=h

xkih −
∑
j∈VR
h 6=j

xkhj = 0 : ∀k ∈ K,h ∈ VN ∪ VS , (6)

∑
k∈K

∑
i∈VL
i6=s

xkis ≤ 1 : ∀s ∈ VS , (7)

∑
k∈K

∑
i∈VL
i6=s

xkis = zs : ∀s ∈ VS , (8)

∑
s∈VS

zs ≤ C, (9)

∑
d∈D

∑
j∈VN

ydsj ≤ nzs : ∀s ∈ VS , (10)

2 · dsj · ydsj ≤ E : ∀s ∈ VS , d ∈ D, j ∈ VN , (11)

M(xkij − 1) + aki + tij ≤ akj : ∀k ∈ K, i ∈ VL, j ∈ VR, i 6= j, (12)∑
i∈S

∑
j∈S
i6=j

xkij ≤ |S| − 1 : ∀k ∈ K,S ⊂ V, {0, n+ 1} /∈ S, |S| > 1.

(13)

The objective function of the mTSP-DS is to minimize the makespan τ . Constraints
(2) and (3) define τ through lower bounds. More precisely, constraints (2) set the arrival
time of each truck as a lower bound for τ . This ensures that τ is at least as large as the
last arrival of a truck at the depot. Further lower bounds are provided by the arrival
times of the drones to their drone station. To calculate these bounds, constraints (3)
take the activation times of the drone stations. The activation times are added to the
times that the individual drones in the corresponding drone station need for deliveries.
If customer j is served by drone d from drone station s, the time for this operation is
determined by 2 · tsj , since the way back also has to be taken into account.

Constraints (4) ensure that each customer is served either by a truck or by a drone
exactly once. The vehicle flow conditions are defined through constraints (5) - (7).
More precisely, constraints (5) state that each vehicle has to start and end its tour at the

8

depot. In addition, flow-conservation constraints (6) enforce that, for all nodes except
the depot, the number of incoming flows is equal to the number of outgoing flows.
Finally, constraints (7) guarantee that each drone station is visited at most once.

We use constraints (8) and (9) to handle the activation of drone stations. Constraints
(8) state that drone stations cannot be visited without activating them, and constraint
(9) ensures that at most C drone stations are activated. Drone operations are controlled
by constraints (10) and (11). Indeed, constraints (10) limit the number of drone
operations, that can be performed by an activated drone station, to the number of
customers. Alternatively, the actual number of customers within the range of the drone
station could be set as a limit. Constraints (11) determine which customers are eligible
for drone deliveries. For this purpose, E sets an upper bound on the distance traveled
by a drone, i.e., from the drone station to a customer location and the way back, before
that any recharge becomes required.

The time at which a truck arrives at a node j is set by constraints (12), whereM is
a sufficiently large number. More precisely, if the edge (i, j) is a part of truck k’s tour,
akj is determined by the time that truck k needs to get to node i plus the time the truck
needs to travel from i to j. Otherwise, i.e., if (i, j) is not traversed by truck k, inequality
(12) becomes redundant. If all nodes are located at unique coordinates, constraints
(12) are sufficient to eliminate subtours. In other cases, however, we additionally need
constraints (13): These constraints ensure that the number of selected edges of each
non-empty subset S ⊂ V , not containing the depot, does not exceed |S| − 1. The
exponential number of constraints (13) require that, while solving the model (1) - (13)
by a MILP solver, we implement constraints (13) as lazy constraints using a callback
function. More precisely, each time the MILP solver finds a solution that satisfies all
other constraints, all truck tours are checked for subtours. If a subtour is found, only the
corresponding violated constraint is added to the model, and the model is solved again.

We can solve the MILP model (1)-(13) to obtain valid mTSP-DS solutions. For
this purpose, any standard MILP solver, e.g., Gurobi Optimizer or IBM Cplex, can be
used. Nevertheless, with the intention of enhancing the solver’s performance, we can
use valid inequalities, which are a way to shrink the solution space without excluding
optimal solutions (Schermer et al., 2018b). Schermer et al. (2018b) have introduced
valid inequality (14) for the VRPD; however, it can also be employed for the mTSP-DS.
In fact, for each truck k ∈ K, the valid inequality (14) sets the travel time of the truck
as a lower bound on the earliest arrival time of this truck at the depot. Despite the
simplicity of these valid inequalities, the numerical results show that they are quite
effective. Hence, we used them in our computational experiments.∑

i∈VL

∑
j∈VR
i 6=j

xkijtij ≤ akn+1 : ∀k ∈ K.
(14)

Nevertheless, even with these valid inequalities (14), the mTSP-DS remains a com-
putationally complex problem, and we can only solve small instances using MILP
solvers. This argument has been supported numerically through our computational
experiments. Hence, in order to address large mTSP-DS instances, we designed
matheuristic algorithms that we present in the next section.

9

4. Matheuristics for solving the mTSP-DS

In the literature, matheuristics are defined as algorithms that are results of interop-
eration between heuristics and mathematical programming techniques (Boschetti et al.,
2009). Based on this definition, Archetti & Speranza (2014) identify three classes of
matheuristics: decomposition approaches, improvement heuristics, and branch-and-
price/column generation-based approaches. In the context of tour planning, decom-
position approaches have been successfully applied to a variety of routing problems
(Archetti & Speranza, 2014; Dell’Amico et al., 2020; Schermer et al., 2019b).

In this section, we present three matheuristic algorithms to solve the mTSP-DS.
More precisely, in Section 4.1, we introduce two variants of a decomposition-based
matheuristic. Afterwards, in Section 4.2, we present a two-phase algorithm inspired by
Accorsi & Vigo (2020), which first populates a pool of solutions using a metaheuristic
and then solves a set-partitioning formulation to determine the best combination of
tours from the solutions in the pool.

4.1. A decomposition-based matheuristic
Themain idea of the algorithms presented in this section is to decompose the mTSP-

DS into smaller and easier-to-handle subproblems. Indeed, the mTSP-DS is composed
of the following interconnected subproblems:

- Drone Station Location Problem: Which drone stations should be activated?
- Allocation Problem: Which customers should be served by which truck and
which selected drone stations should be activated by which truck?

- Sequencing Problem: In what order should the customers of each allocation be
served? When should the drone stations be activated?

- Assignment Problem: Which customers within the range of an activated drone
station should be served by truck and which one(s) by drone(s)?

- Scheduling Problem: By which drone should the selected customers be served?
This subproblem corresponds to the parallel machine scheduling problem.

Algorithm 1: mTSP-DS Matheuristic
1 init solution_pool
2 d_station_combos = get_all_d_station_combos(VS , C)
3 foreach d_station_combo ∈ d_station_combos do
4 solution = get_mtsp_tours(depot, VN , d_station_combo)
5 foreach d_station ∈ d_station_combo do
6 solution = solve_local_dasp(solution, d_station)
7 solution_pool.add(solution)
8 best_solution = get_best_solution(solution_pool)
9 best_solution = post_processing(best_solution)

10 return best_solution

10

These subproblems are addressed in Algorithm 1, where lines 2 and 3 represent
the drone station location subproblem. In this algorithm, the problem is solved
by checking all possible drone station combinations. Consequently, the function
get_all_d_station_combos returns a list of

(
VS

C

)
possibilities. Afterwards, all of the

subsequent subproblems are solved for all these possible combinations.
The allocation and the sequencing problems can be grouped under the term routing

problem. In Algorithm 1, this routing problem is solved by the get_mtsp_tours function,
which is in line 4. The function takes the depot, the set of customers VN , and the current
drone station combination as input, and returns a set of KN vehicle tours. Any mTSP
heuristic or a MILP solver can be used to implement this function. In our experiments,
we used the Lin-Kernighan-Helsgaun mTSP solver (Helsgaun, 2017).

The key element of this algorithm, the Drone Assignment and Scheduling Problem
(DASP), is primarily a combination of the assignment and the scheduling problem (for
details, refer to Section 4.1.1). But depending on the implementation, it can also resolve
parts of the routing problem. Since we solve the DASP for each drone station separately,
we refer to this problem as the local DASP. Indeed, the function solve_local_dasp in line
6 gets a solution, which consists of standard mTSP tours in the first iteration of the loop
in lines 5-6, and the current drone station as input. Afterwards, the function decides
which of the customer(s) within the range of the drone station should be supplied by
truck and which one(s) by drone. Then, the function returns an updated set of vehicle
tours and the scheduled drone deliveries for the current drone station. We reuse this
updated solution as input for the solve_local_dasp function in subsequent iterations of
the loop in lines 5-6. In the forthcoming subsections, we will introduce two MILP
formulations that can be used to solve the local DASP.

As soon as the local DASP has been solved for all locations in a drone station
combination, the solution is stored in a solution pool. In line 8 of Algorithm 1, the
solution with the minimal objective value is chosen from this pool. In some cases, truck
tours that have been modified by the local DASP may be much shorter than before,
which can lead to unbalanced tours. To rebalance them, and to possibly improve the
solution quality, we use a post_processing procedure, which is in line 9 of Algorithm
1. During this post_processing, we use inter- and intra-route operations (Toth & Vigo,
2014) that we repeat until no further improvement can be achieved:

- inter-route operation: We remove a customer from the longest tour and insert
it into the shortest one. The savings of all possible customer relocations are
calculated, and then the best one is performed.

- intra-route operation: Each time a customer relocation is performed, 2-opt is
applied to both involved tours, i.e., the subtour between two nodes of a tour is
reverted, if it reduces the tour’s length.

Since the mTSP-DS is an asymmetric problem, reversing a truck tour might improve
the makespan. If this is the case, the corresponding tour is reversed to be saved as a
better solution. Finally, the algorithm returns the post-processed solution.

4.1.1. Local DASP
Firstly, the goal of the local DASP is to decide which customers within the range of

a single drone station should be served by trucks and which ones by drones. Secondly,

11

the local DASP schedules the drone deliveries. In this section, we present a MILP
formulation to solve this problem in the best possible way, i.e., by mean of an exact
solution of the MILP. In the following, we start by presenting additional concepts and
notation that we are going to use in the description of the local DASP.

s c

c

os

oe

c
c

c

e

s

c

c

os oe

c

e

n

Figure 2 In the local DASP, we only consider customers in the immediate surrounding of the
drone station (the star-shaped node). Trucks depart from start nodes (s) and end their
tours at end nodes (e). Nodes labeled with the letter c can be served either by truck
or by drone. The rectangular boxes represent outlier groups. The node labeled with
the letter n is already assigned to another drone station and is thus not considered.

The solve_local_dasp function in line 6 of Algorithm 1 receives a solution and a
drone station as argument. Moreover, the local DASP only considers trucks that visit
at least one node within the range of the passed drone station and only nodes in the
immediate surrounding of the drone station. In case of overlapping drone ranges, i.e.,
if a node can potentially be served from more than one drone station, the local DASP
does not involve the nodes that are already assigned to drones in other drone stations.
Figure 2 gives an illustration of the situation. In the figure, we observe segments of two
truck tours that are in the vicinity of a drone station. Assume that the set of trucks that
visit at least one node in the vicinity of the drone station is defined as K = {1, ..., k}.
In Figure 2, the two nodes that are labeled with an s lead the trucks into the range of
the drone station. Therefore, in the following, we call these two nodes start nodes. We
define the set of such start nodes as Vstart = {start1, ..., startk}, |Vstart| = k, i.e.,
each considered truck has a start node, which leads the truck into the range of the drone
station. We note that even the depot can be a start node. In this case, several vehicles
can start from the same node, but in the set Vstart, we nevertheless reference them as
individual start nodes. The nodes labeled with the letter c within the range of the drone
station indicate the customers that can be served either by vehicles or by drones. In the
local DASP, those customers constitute the set of customers VN and the single drone
station is referred to as node ds. The nodes labeled with an e represent the nodes at
which the trucks finish their tours in the local DASP; hence, those nodes are called end
nodes. We define Vend = {end1, ..., endk}, |Vend| = k as the set of end nodes.

While a truck is driving through the perimeter of a drone station, the truck may
serve customers outside the range of the drone station, and then enter the area within
range again. In the following, these nodes out of range are referred to as outliers. Each

12

truck can have none, one, or several groups of outliers in its tour, and each outlier group
consists of one or more outliers. In Figure 2, the two rectangular boxes represent two
sample outlier groups. The first node of each outlier group is called outlier-start (os)
node. The set of outlier-start nodes is denoted by VOS = {os1, ..., oso}, where o is the
number of outlier groups. Similarly, the set of the last nodes of all outlier groups, the
set of outlier-end (oe) nodes, is defined as VOE = {oe1, ..., oeo}. If an outlier group
consists of only one node, this node is simultaneously an outlier-start and an outlier-end
node. Now, consider the outlier-start and outlier-end node pairs of each outlier group;
then, the set of outlier groups can be defined asO = {(os1, oe1), ..., (oso, oeo)}, where
each pair (osi, oei) can refer to at least one outlier node.

If an outlier group consists of more than two nodes, then the nodes enclosed by
the outlier-start and outlier-end are not directly considered in the local DASP that we
present. Hence, the model will not modify parts of the truck tours that correspond to
outlier groups. However, we take into account the time that trucks need to traverse outlier
groups. More precisely, travel_cost(os, oe) represents the time required by a truck
to travel from the outlier-start node os to the outlier-end node oe, including the nodes
in between. Moreover, the nodes before start nodes and after end nodes are ignored
too. We only consider the time that truck k needs to get from the depot to the start
node (cost_to_start_k) and from the end node back to the depot (cost_after_end_k),
again including the nodes in between.

We use the setVL = Vstart∪VN∪{ds}∪VOE as the nodes that can be the first nodes
of an arc. Similarly, VR = VN ∪ {ds} ∪ VOS ∪ Vend is defined as the set of nodes that
can be the second nodes of an arc. This means that in the following MILP formulation,
the trucks can only traverse the outlier groups in their original order of nodes. Finally,
the set of all nodes is defined as V = Vstart ∪ VN ∪ {ds} ∪ VOS ∪ VOE ∪ Vend.

In theMILP formulation of the local DASP, we use the following decision variables:

τ ∈ R≥0 : A continuous variable representing the makespan.
xk
ij

∀k∈K,i∈VL,j∈VR

∧∀k∈K,(os,oe)∈O
∈ {0, 1} :

Variables that indicate whether
truck k traverses arc (i,j).

yd
j

∀d∈D,j∈VN
∈ {0, 1} :

Variables that specify if customer j is
served by drone d from drone station ds.

ak
i

∀k∈K,i∈V ∈ R≥0 :
Continuous variables that indicate the
time at which truck k arrives at node i.

min τ (15)
s.t. akendk

≤ τ : ∀k ∈ K, (16)

akds +
∑
j∈VN

2 · tds,j · ydj ≤ τ : ∀k ∈ K, d ∈ D, (17)

∑
k∈K

∑
i∈VL
i6=j

xkij +
∑
d∈D

ydj = 1 : ∀j ∈ VN , (18)

13

∑
j∈VN∪ds
∪VOS∪endk

xkstartk,j =
∑

i∈VN∪ds
∪VOE∪startk

xki,endk
= 1 : ∀k ∈ K, (19)

∑
k∈K

∑
i∈VL
i6=ds

xki,ds =
∑
k∈K

∑
j∈VR
j 6=ds

xkds,j = 1, (20)

∑
k∈K

∑
i∈VL
i 6=oe

xki,os = 1 : ∀(os, oe) ∈ O, (21)

∑
k∈K

∑
j∈VR
j 6=os

xkoe,j = 1 : ∀(os, oe) ∈ O, (22)

∑
i∈VL

xki,os − xkos,oe = 0 : ∀k ∈ K, (os, oe) ∈ O, (23)

∑
i∈VL
i6=h

xkih −
∑
j∈VR
j 6=h

xkhj = 0 : ∀k ∈ K,h ∈ VN , (24)

cost_to_start_k = akstartk : ∀k ∈ K, (25)

M(xkij − 1) + aki + tij ≤
akj : ∀k ∈ K, i ∈ VL,

j ∈ VN ∪ ds ∪ VOS , i 6= j,
(26)

M(xkos,oe − 1) + akos+

traversal_cost(os, oe)
≤ akoe : ∀k ∈ K, (os, oe) ∈ O, (27)

M(xki,endk
− 1) + aki + ti,endk

+

cost_after_endk
≤ akendk

: ∀k ∈ K, i ∈ VL, (28)

∑
i∈S

∑
j∈S
i6=j

xkij ≤
|S| − 1 : ∀k ∈ K, |S| > 1,

S ⊂ (V \ (Vstart ∪ Vend)).
(29)

The MILP formulation for the local DASP is given by (15) - (29). The objective
function and some of the constraints of this formulation are the same as they are in the
mTSP-DS. However, some of the constraints are specific for the local DASP.

The objective of the local DASP consists in minimizing the makespan τ . The
makespan τ is defined through lower bounds provided by constraints (16) and (17). In
constraints (16), lower bounds for τ are set through the arrival time of each truck at its
end node. As shown in constraints (17), the activation time of the drone station plus
the delivery times of the drones result in additional lower bounds on τ .

Constraints (18) ensure that each customer within the range of the drone station is
served only once, either by a drone or by a truck. Constraints (19) guarantee that each
vehicle starts its tour at its start node and ends its tour at its end node. From its start
node, a truck can visit either a customer, the drone station, the start of an outlier group,
or its end node. Similarly, a truck can reach its end node from the customers, the drone
station, the outlier-ends, or its start node.

We use constraints (20) to enforce that drone station ds has exactly one incoming

14

and one outgoing arc. Furthermore, each outlier-start node must have exactly one
incoming arc, and each outlier-end node must have exactly one outgoing arc. These
conditions are defined by constraints (21) and (22). Constraints (21) and (22) also allow
that a truck travels from an outlier-end node to an outlier-start node of another group.
Constraints (23) ensure that if a truck visits an outlier-start node, then the truck must
also visit the outlier-end node of the same outlier group. For all customers that can be
served by drone, the vehicle flow is preserved by constraints (24), meaning that each of
those customer nodes must have the same amount of incoming and outgoing arcs.

The earliest arrival of the trucks at the nodes is computed by constraints (25) - (28).
More precisely, constraints (25) are used to determine the arrival time instants of trucks
at their start nodes. Constraints (26) define the earliest arrival times at the customer
nodes VN , the drone station ds, and the outlier start nodes. For each node j in this
set of nodes, the arrival time is set by the arrival time at the predecessor i plus the
travel time from node i to j. Constraints (27) set the earliest arrival times at outlier-end
nodes. For each outlier-end node oe, the earliest arrival time is calculated by the sum of
the arrival time at the outlier-start node os belonging to the same outlier group and the
traversal_cost(os, oe). Finally, the arrival time of a truck at its end node is determined
by constraints (28), where the arrival time at an end node comprises three components:
the time it takes to reach the predecessor of the end node, the time needed to get from the
predecessor to the end node, and the pre-computed constant cost_after_end_k. As in the
MILP formulation of the mTSP-DS, subtours are also eliminated in this model through
lazy constraints (see constraints (29)) if multiple nodes have identical coordinates. That
is, whenever the MILP solver encounters an incumbent solution, all truck tours of this
solution will be checked for subtours. If a solution contains a subtour, a corresponding
subtour elimination constraint will be added to the model and it will be solved again.

To enhance the performance of the MILP solver, valid inequalities (14) can also be
employed without adjustment. In addition, the original truck tours of the input solution
are passed as an initial solution to the MILP solver. This is possible because the partial
mTSP-DS solution (see Figure 2), which is passed to the local DASP, is also a valid
local DASP solution. In fact, this implicitly creates an upper bound for the local DASP,
i.e., this upper bound is equal to the longest truck tour of the input solution that visits
at least one customer within the range of the drone station or the drone station itself.

4.1.2. Local DASP with limited truck rerouting
The time required to solve theMILPmodel of the local DASP, which was introduced

in the previous subsection, increases quite fast as the number of customers within the
range of drones increases. Therefore, this section outlines a modification to the local
DASP that attempts to reduce the runtime for solving the model. The core idea is to
limit the capabilities of the model to reroute truck tours. Hence, we call this approach
the local DASP with limited truck rerouting (DASP-LTR). The main difference to the
local DASP is that the truck tours, which lead through the delivery area of the drone
station, are treated in isolation from each other. More precisely, in the local DASP-LTR,
trucks are only allowed to visit nodes that they also visit in the input solution.

Another restriction of the model concerns the possible arcs between the nodes. To
simplify the description of the situation, we use Figure 3. Assume that the arrows in
Figure 3a represent a truck tour in the input solution. In the local DASP, each of the

15

s e

(a) A sample truck tour passed
to the local DASP.

s e

(b) Possible arcs between the
nodes in the local DASP.

s e

(c) Possible arcs between the
nodes in the local
DASP-LTR.

Figure 3 Illustration of the arcs between the nodes in the local DASP versus DASP-LTR. In
the local DASP-LTR, the truck cannot be rerouted because the nodes are only
connected to their successor nodes.

customer nodes in the set VN can be connected to all other nodes in this set, which is
illustrated in Figure 3b. However, as we see in Figure 3c, the local DASP-LTR concerns
a smaller set of possible connections. In fact, in the local DASP-LTR, each node in
the set VN can only be connected to its succeeding nodes in the corresponding input
solution truck tour. As a result, there will always be only one valid truck tour, regardless
of how many customers from the set VN are served by a drone.

Restricting the possible connections between nodes reduces the number of variables
in the model significantly. Consequently, the search space becomes smaller, and in
comparison to the local DASP, we can solve the DASP-LTR in a shorter computation
time. However, due to the imposed restrictions, the solutions obtained through using
the DASP-LTR might have lower quality.

4.2. A two-phase matheuristic
The third approach, which we present in this paper, is a two-phase algorithm that

starts by generating a solution pool using several restarts of a metaheuristic. Then, in
a polishing phase, a set-partitioning model is solved to determine the best combination
of tours from the solution pool. The basic idea of this approach and its effectiveness
on several variations of the VRP was presented by Subramanian et al. (2013). More
recently, Accorsi & Vigo (2020) presented a variant of this approach for the class of
truck and trailer routing problems. Algorithm 2 provides an overview of the approach.

Phase 1 of the algorithm consists of two steps that are repeated Γ times. The first
step is the construction of an initial solution. To this end, the algorithm selects C
drone stations randomly. All customers who are in the range of one of the selected
drone stations are assigned to be served by the drones in this drone station. Customers
who are in the range of multiple drone stations are randomly assigned to one of them.
The remaining customers and the selected drone stations are assigned to the different
vehicles using the sweep algorithm (Gillett & Miller, 1974). At each iteration, the
sweep algorithm starts the assignment from a randomly selected node. After that, the
algorithm computes a TSP tour for each vehicle using the Lin-Kernighan-Helsgaun TSP
solver (Helsgaun, 2000). However, any other mTSP algorithm could be used instead.
Indeed, our preliminary experiments showed that the quality of the initial solutions does
not have a big impact on the quality of the final solutions.

To complete the construction of the initial solution, the drone deliveries have to
be scheduled for all selected drone stations. Moreover, in the further course of our
matheuristic, drone deliveries must be rescheduled whenever the drone station assign-
ments are changed. We preliminary tested LPT (Cheng & Sin, 1990), MULTIFIT

16

Algorithm 2: Two-phase matheuristic
input: Γ, πbase,δ, φ, λ

1 Ω = init_solution_pool()
2 Ψ = init_drone_delivery_cache()
3 S∗ = empty_solution()
4 for r = 1 to Γ do // Phase 1; Γ: Number of restarts
5 S = construct_initial_solution(Ψ)
6 S = improve_solution(S, Ω,Ψ, πbase,δ, φ, λ)
7 if cost(S) < cost(S∗) then
8 S∗ = S
9 end

10 end
11 S∗ = polish(S∗, Ω) // Phase 2
12 return S∗

(Coffman et al., 1978), COMBINE (Lee & Massey, 1988), and a binary programming
model to schedule the drone deliveries, and decided to use the COMBINE algorithm
since it provides a good trade-off between solution quality and runtime. As a combina-
tion of LPT and MULTIFIT, the COMBINE algorithm uses LPT to find a scheduling
to feed, as a tighter initial upper bound, into the MULTIFIT algorithm. To enhance the
runtime performance of our approach, we save the resulting drone delivery schedules
in a global cache Ψ. Thus, we can reuse them if we encounter an already scheduled
combination of a drone station and a certain set of customers during the search.

In the second step of phase 1, we improve the initial solution by applying a meta-
heuristic based on the iterated local search (ILS) framework (Lourenço et al., 2003)
until the termination criterion of δ nonimproving iterations is met. Pseudocode for the
improve_solution function in line 6 of Algorithm 2 is given in Algorithm 3.

The rvnd_local_search function in line 4 of Algorithm 3 improves the solution
using variable neighborhood descent with random neighborhood ordering (RVND),
which searches through a predefined set of local search neighborhoods in a randomized
order (Penna et al., 2013). We use the following neighborhoods in the RVND:

- Intra-route and inter-route relocate: Removes a node from a truck tour and
reinserts it into one of the truck tours.

- Intra-route and inter-route swap: Swaps a pair of nodes in the truck tours.
- Multirange drone relocate: Assigns a customer who is in range of multiple drone
stations to a different drone station.

- Drone-to-truck relocate: Removes a customer node that is scheduled to be served
by a drone and inserts it into a truck tour.

- Truck-to-drone relocate: Removes a customer node from a truck tour and assigns
it to a drone station.

During the local search, we evaluate the neighborhoods, as well as the moves within
each neighborhood, in a randomized order following a first-improvement strategy. Once
an improving move is found and performed, we restart the search in the current neigh-
borhood, and if no more improving moves can be found in the current neighborhood,

17

Algorithm 3: improve_solution
input: solution S, Ω, Ψ, πbase,δ, φ, λ

1 π = πbase // Initialize the sparsification factor π with the

// value of the initial sparsification factor πbase

2 i = 0, S′ = S
3 while true do
4 S = rvnd_local_search(S,Ω, Ψ, π)
5 if cost(S) < cost(S′) then
6 i = 0, S′ = S, π = πbase

7 end
8 i = i+ 1
9 if i ≥ δ then // Terminate after δ nonimproving iterations

10 break
11 end
12 if (i mod (φ · δ)) == 0 then
13 π = λ · π // Increase π after φ · δ nonimproving iterations
14 end
15 S = S′

16 S = shake(S)
17 end
18 return S′

we add the solution to the solution pool. Furthermore, we repeat the local search until
a complete RVND run is executed without improvement.

After applying a move that changes the customer assignments of a drone station
(multirange drone relocate, drone-to-truck relocate, or truck-to-drone relocate), we
check if we already encountered the resulting customer assignment for this drone
station. If yes, we reuse the respective drone delivery schedule from the global cache.
Otherwise, we will schedule the drone deliveries using the COMBINE algorithm and
store the schedule in the global cache.

To further speed up computations, we use granular neighborhoods for the relocate,
swap, and drone-to-truck relocate operators (Toth & Vigo, 2003). A move is thereby
only evaluated if the current granular neighborhood contains at least one of its resulting
arcs. The granular neighborhood is defined by the π · (|VN | + 1) shortest truck arcs,
where π is the sparsification factor, and VN is the set of customer nodes.

Furthermore, we update the size of the granular neighborhood dynamically (Ac-
corsi & Vigo, 2020; Goeke, 2019). Indeed, we start with the initial sparsification factor
πbase, and use the parameter φ (0 < φ < 1) to determine the number of nonimprov-
ing iterations, after which the size of the granular neighborhood is increased. More
precisely, after each φ · δ nonimproving iterations, we increase the size of the granular
neighborhood by multiplying π with the factor λ (lines 12-14 of Algorithm 3). If the
local search is able to improve the current restart’s best solution, we reset π to πbase.

After the local search, in line 16 of Algorithm 3, we apply the shake function to the
current restart’s best solution. The shake function randomly deletes 50%of the customer
nodes in the solution and reinserts them into the position that minimizes the insertion

18

cost. During the reinsertion, we consider truck tours as well as drone deliveries. Finally,
the improve_solution function terminates after δ nonimproving iterations and returns
the best-found solution.

We repeat the creation of initial solutions and the improvement of those solutions
Γ times. During this first phase of the two-phase algorithm, we not only populate
the solution pool, but we also keep track of the best solution encountered so far. The
solution pool and the best-found solution will then be used in the subsequent polishing
phase (line 11 of Algorithm 2).

The goal of the polishing phase is to find the best combination of truck tours and
drone deliveries from the solution pool by solving a set-partitioning MILP model. To
do this, we first need to prepare the set of routes R and to determine the cost for each
route. For this purpose, we generate a set of nodesXr for each truck tour r of a solution
in the solution pool. We first add all nodes, except the depot, visited in truck tour r to
the set Xr. If truck tour r contains one or more drone stations, we also add the nodes
served by drones from those drone stations to the set Xr. We then define the set of
routes as R = {X1, ...,XKN ·|Ω|}, where KN is the number of trucks and |Ω| is the
number of solutions in the solution pool.

If a route r ∈ R contains one or more drone stations, the cost cr of this route is
equal to the maximum of the truck tour travel time and the drone delivery times of
the activated drone stations in the corresponding solution. Otherwise, cr is equal to
the truck tour travel time. Furthermore, we define a 0-1 matrix whose entries air, for
i ∈ VN ∪VS and r ∈ R are defined as follows: air = 1 if and only if node i ∈ VN ∪VS
is contained in the route r ∈ R. For themTSP-DS set-partioning (mTSP-DS-sp) model,
we also introduce the binary decision variables xr, which are used to indicate if route r
is a part of the solution. Finally, we use the continuous decision variable τs to represent
the makespan.

Using the presented notation, we formulate the mTSP-DS-sp as follows:

min τs (30)
s.t. cr · xr ≤ τs : ∀r ∈ R, (31)∑

r∈R
xr = KN , (32)∑

r∈R
air · xr = 1 : ∀i ∈ VN , (33)∑

r∈R
air · xr ≤ 1 : ∀i ∈ VS , (34)∑

i∈VS

∑
r∈R

air · xr ≤ C, (35)

xr ∈ {0, 1} : ∀r ∈ R, (36)
τs ∈ R. (37)

The objective of the MILP model (30) - (37) is to minimize the makespan τs that
is determined by constraints (31), which set τs to be equal to the cost of the longest

19

selected route. Constraint (32) ensures that exactly KN routes are selected. We make
this restriction to be consistent with the mTSP-DS MILP formulation (1) - (13), but
it would also be possible to allow the set-partitioning model to select fewer than K
routes. Constraints (33) guarantee that each customer node is visited in exactly one of
the selected routes. Due to constraints (34), each drone station node can be visited in
at most one of the selected routes. Finally, constraint (35) states that the number of
drone station nodes in all selected routes is less than or equal to the maximum number
of drone stations C. To enhance the performance of the MILP solver, we use the best
solution found in the first phase of the two-phase algorithm as a start solution.

5. Computational experiments and their numerical results

We carried out extensive computational experiments to assess the performance of
the algorithms that we presented for solving the mTSP-DS. In this section, we present
the results of our computational experiments and their evaluations.

More precisely, in Section 5.1, we introduce the instances and the parameters that we
used for our experiments. Afterwards, we report the results and analyze the performance
of the algorithms in Section 5.2. Finally, in Section 5.3, we use the numerical results to
investigate the effects of drones on energy consumption of a fleet of delivery vehicles.

5.1. Instance generation and experiment parameters
For the experiments, we adopted 25 scattered and 25 clustered instances from

the well-known A, B, P (Augerat, 1995), E (Christofides & Eilon, 1969), and M
(Christofides et al., 1979) instance sets for the Capacitated Vehicle Routing Problem
(CVRP). Depending on the minimum feasible number of trucks required to solve the
corresponding CVRP instance, we placed drone stations in those instances: 4 drone
stations if the respective number of trucks is less than or equal to 6, and 6 drone stations
otherwise. We positioned the drone stations in such a way that the number of customers
that can be supplied by drones is maximized (Kloster et al., 2022). Consequently, the
positioning of the drone stations depends on the operational drone range, which we
set to Er ∈ {8, 12, 16} in our experiments (see Agatz et al., 2018; Schermer et al.,
2019c). Furthermore, we assume that all available drone stations can be activated, i.e.,
depending on the instance C = 4 or C = 6, and we assume that each drone station
is equipped with DN ∈ {1, 2, 3} drones. For the drone velocity relative to the trucks,
we tested the values α ∈ {0.5, 1, 2}, where α = 0.5 refers to the case of autonomous
robots, as they are generally considered to be slower than conventional delivery trucks.
These values are commonly accepted in the literature (see Agatz et al., 2018; Schermer
et al., 2019a,b,c). Finally, tests were carried out with KN ∈ {2, 3, 4} trucks, and
if the minimum feasible number of trucks required to solve the corresponding CVRP
instance is greater than 4, we also tested the respective value. Considering all parameter
variations, 5265 experiments were carried out for each solution approach.

We implemented the algorithms in Python, and solved theMILPmodelswithGurobi
Optimizer 8.1.1 (Optimization, 2019). All experiments were carried out on Intel Xeon
Gold 6126 CPUs with 32GB RAM.

A time limit of 20 minutes (per run) was imposed on Gurobi Optimizer in solving
the MILP models of the mTSP-DS. The runtime of the solve_local_dasp function in

20

the decomposition-based matheuristic (see Algorithm 1) is mainly determined by the
number of customers within the range of the respective drone stations. Therefore, we
set a time limit based on the drone range Er for this function. More precisely, the time
limit was set to 1s for Er = 8, 3s for Er = 12, and 5s for Er = 16. We did not set any
explicit time limit for the two-phase algorithm. Instead, the runtime of the algorithm is
implicitly determined by its parameters. Based on some preliminary experiments, we
decided to use the following parameters for the two-phase algorithm to have the best
performance of the algorithm:

- number of restarts Γ = 50,
- number of nonimproving ILS iterations δ = 50,
- initial sparsification factor πbase = 1.25,
- fraction of nonimproving iterations after the granular neighborhood size is in-
creased φ = 0.2,

- factor to increase the size of the granular neighborhood λ = 2.

5.2. Results
In this section, we examine the performance of Gurobi in solving the MILP for-

mulation (1) - (13), with and without valid inequalities (14), the decomposition-based
matheuristic (with both local DASP variants), and the two-phase algorithm.

Unfortunately, without valid inequalities (14), Gurobi could not manage to solve
the instances within the time limit. For many experiments, the solver cannot find
any feasible solution at all, and for the remaining experiments, the average MIP Gap is
90.8%. Table 1 shows that introducing valid inequalities (14) improves the performance
of the solver significantly and lowers the averageMIP Gap to 44.4%. Some experiments
with smaller instances (n ≤ 50) were even solved optimally. In total, the solver was able
to obtain 90 optimal solutions in the experiments with scattered instances and 3 optimal
solutions in the experiments with clustered instances. For larger instances, however, the
quality of the solutions remains poor, and in many cases still no feasible solution was
found (indicated by "-" in Table 1), especially for experiments withKN > 4.

Following the evaluation of the MILP solver, we tested the performance of the
matheuristic algorithms. In Table 1, we present the average runtimes of each solution
method. Averaged across all instances and parameters, the runtime of the DASP
and DASP-LTR is 12.9 and 2.0 seconds, respectively. Furthermore, with an average
runtime of 126.6 seconds, the two-phase algorithm is slower than both variants of
the decomposition-based matheuristics, whereby the runtime of the second phase of
the two-phase approach accounts for 57.4 seconds of the total runtime on average.
Especially for larger instances and experiments with many trucks, the runtime of the
second phase increases quite quickly. For such experiments, it might thus make sense
to limit the size of the solution pool |Ω|. However, the second phase of the two-
phase approach improved the best solution found during the first phase in 28.5% of the
experiments. In doing so, the second phase improved the objective value by 3.8% on
average.

To analyze the solution quality of the proposedmethods, we use the followingmetric

21

Table 1 Average runtime (in seconds) and savings ∆mTSP . For Gurobi with valid
inequalities (14), we additionally present the MIP Gap and the number found of
optimal solutions. We also provide additional information for the two-phase
approach: size of the solution pool (|Ω|), runtime of the second phase (t2), percent of
experiments in which the second phase improved the solution (%imp2), and the
percentage of drone-eligible customers that are served by drones (%y).

Gurobi with (14) DASP DASP-LTR Two-Phase

Instance Gap #opt t ∆mTSP t ∆mTSP t ∆mTSP t ∆mTSP |Ω| t2 %imp2 %y
A-n34-k5 31.3% 0 1200.0 0.5% 5.0 1.2% 0.5 0.7% 62.6 7.5% 24212.5 21.8 6.5% 85.5%
A-n36-k5 46.8% 0 1200.0 -0.5% 8.8 0.7% 0.6 2.0% 52.2 3.3% 20469.2 18.5 3.7% 70.0%
A-n45-k7 44.2% 0 1200.0 -4.8% 13.2 3.3% 1.0 1.6% 110.4 8.6% 36045.5 46.8 15.7% 82.5%
A-n46-k7 43.5% 0 1200.0 -4.6% 11.3 6.0% 0.7 4.2% 79.7 8.8% 26805.6 30.6 26.9% 78.6%
A-n48-k7 48.6% 0 1200.0 -15.1% 11.2 4.3% 0.9 3.7% 101.1 9.4% 33200.2 40.4 21.3% 78.9%
A-n55-k9 - 0 1200.0 - 10.5 5.7% 0.8 6.1% 96.8 11.9% 27219.9 41.8 19.4% 77.8%
A-n60-k9 - 0 1200.0 - 13.7 6.7% 1.1 3.9% 101.2 9.8% 28561.3 41.0 16.7% 71.7%
A-n62-k8 - 0 1200.0 - 15.6 3.5% 1.3 3.7% 158.9 8.3% 41039.5 76.5 28.7% 77.7%
A-n69-k9 - 0 1200.0 - 16.2 7.8% 1.2 5.3% 153.5 13.5% 37902.9 71.1 26.9% 79.4%
A-n80-k10 - 0 1200.0 - 18.4 4.7% 1.7 4.4% 178.0 8.8% 43323.0 72.8 19.4% 75.8%
E-n22-k4 20.4% 17 1015.0 15.7% 3.7 8.4% 0.3 2.8% 33.2 16.5% 14623.1 9.4 22.2% 73.8%
E-n23-k3 12.5% 17 1005.6 10.3% 1.0 5.3% 0.3 4.1% 35.1 11.0% 13861.5 9.4 4.9% 86.6%
E-n30-k3 41.5% 0 1200.0 9.0% 6.6 7.0% 0.5 6.2% 40.8 11.1% 17162.4 12.5 16.0% 64.3%
E-n33-k4 36.4% 0 1200.0 6.8% 8.4 6.1% 0.6 4.2% 72.1 8.8% 27914.9 27.5 17.3% 83.4%
E-n51-k5 36.6% 0 1200.0 -0.6% 12.1 8.7% 0.8 4.2% 90.4 18.3% 31547.5 37.6 46.3% 70.4%
E-n76-k7 42.3% 0 1200.0 -0.5% 18.9 12.9% 1.7 8.4% 170.1 23.4% 42801.3 76.0 59.3% 69.0%
E-n101-k14 - 0 1200.0 - 20.0 11.5% 2.8 5.3% 362.8 20.5% 53812.2 203.5 46.3% 63.1%
M-n151-k12 - 0 1200.0 - 21.4 11.9% 6.4 0.9% 688.0 19.2% 83445.5 328.5 54.6% 56.4%
M-n200-k16 - 0 1200.0 - 24.8 10.5% 10.7 3.6% 1042.8 17.3% 77116.8 537.1 45.4% 53.4%
P-n16-k8 13.3% 31 935.2 18.7% 5.4 11.2% 0.3 7.5% 43.2 18.7% 15310.5 14.9 20.4% 75.7%
P-n19-k2 19.8% 15 1029.7 18.5% 4.2 15.4% 0.3 11.2% 26.9 18.6% 12262.7 7.4 25.9% 71.5%
P-n40-k5 24.0% 7 1148.8 13.4% 10.1 11.1% 0.6 4.7% 67.0 18.7% 26258.5 25.7 49.1% 70.0%
P-n50-k7 34.4% 3 1193.1 11.1% 15.1 9.9% 0.8 3.7% 101.1 18.0% 31872.7 44.8 44.4% 70.7%
P-n60-k10 38.1$ 0 1200.0 10.2% 16.9 13.1% 1.1 8.1% 146.2 20.5% 38294.4 73.6 45.4% 67.3%
P-n65-k10 37.4% 0 1200.0 8.7% 18.4 11.9% 1.3 3.4% 179.7 21.9% 44426.5 92.7 50.0% 68.2%
Mean Scattered 33.9% 1169.0 5.2% 12.8 7.9% 1.6 4.5% 174.4 14.1% 34864.6 81.9 29.9% 72.7%
B-n31-k5 35.4% 3 1189.3 4.0% 8.4 1.7% 0.9 1.4% 24.5 3.0% 11613.1 7.1 1.9% 82.0%
B-n34-k5 30.7% 0 1200.0 9.7% 8.5 7.0% 1.0 6.7% 39.9 13.1% 13830.3 11.9 45.4% 76.0%
B-n35-k5 45.5% 0 1200.0 8.8% 9.2 7.8% 0.6 7.0% 34.4 9.7% 12122.7 10.4 18.5% 83.3%
B-n38-k6 55.1% 0 1200.0 5.2% 8.2 6.7% 0.9 5.7% 40.3 7.3% 14734.3 13.5 14.8% 68.6%
B-n39-k5 64.2% 0 1200.0 10.2% 9.7 10.0% 1.2 9.1% 44.8 11.5% 17322.8 16.7 15.7% 71.0%
B-n41-k6 64.2% 0 1200.0 4.8% 6.5 4.7% 2.0 6.3% 62.1 9.8% 21111.5 22.6 25.9% 70.9%
B-n43-k6 56.8% 0 1200.0 -1.5% 8.5 3.4% 1.2 2.7% 65.5 8.5% 22197.4 25.0 29.6% 75.1%
B-n44-k7 70.5% 0 1200.0 7.2% 13.4 5.6% 1.4 6.4% 53.3 10.2% 16329.9 22.3 21.3% 78.9%
B-n45-k5 49.6% 0 1200.0 0.7% 10.9 1.5% 0.9 1.8% 53.1 6.4% 17999.7 18.9 6.5% 71.4%
B-n45-k6 44.9% 0 1200.0 7.2% 9.8 9.3% 1.4 8.1% 70.4 13.6% 23887.9 28.3 46.3% 65.0%
B-n50-k7 53.3% 0 1200.0 7.0% 12.9 13.3% 1.6 11.7% 57.3 17.0% 17455.1 20.7 39.8% 67.9%
B-n50-k8 64.1% 0 1200.0 -0.9% 10.9 6.4% 1.0 5.7% 63.5 7.3% 19049.8 24.0 4.6% 80.5%
B-n51-k7 46.0% 0 1200.0 0.4% 12.2 9.5% 3.0 9.2% 53.6 13.9% 14886.2 17.8 25.9% 72.5%
B-n52-k7 73.0% 0 1200.0 1.0% 14.2 7.8% 2.4 8.9% 66.8 14.1% 19163.5 23.9 39.8% 72.2%
B-n56-k7 77.2% 0 1200.0 0.3% 15.4 9.0% 2.3 7.3% 70.8 11.9% 22242.7 26.8 21.3% 65.5%
B-n57-k7 - 0 1200.0 - 13.1 5.4% 3.7 3.1% 73.2 8.0% 20483.0 27.1 24.1% 74.5%
B-n57-k9 - 0 1200.0 - 15.6 8.7% 2.3 8.8% 74.0 11.2% 20191.0 30.2 31.5% 77.5%
B-n63-k10 - 0 1200.0 - 14.4 5.5% 2.0 3.3% 99.1 10.0% 25115.9 40.6 32.4% 75.5%
B-n64-k9 - 0 1200.0 - 15.1 9.9% 2.9 6.6% 61.5 12.6% 16633.4 21.8 23.1% 69.4%
B-n66-k9 - 0 1200.0 - 14.3 3.5% 3.0 3.8% 110.5 8.2% 27936.4 42.6 21.3% 78.1%
B-n67-k10 - 0 1200.0 - 16.1 4.9% 1.3 4.2% 81.1 8.3% 20959.5 31.4 13.9% 77.8%
B-n68-k9 - 0 1200.0 - 18.4 4.6% 3.2 2.1% 97.6 9.1% 23867.0 39.4 42.6% 66.9%
B-n78-k10 - 0 1200.0 - 18.8 7.1% 2.7 4.2% 132.2 10.7% 30806.6 55.3 35.2% 64.5%
M-n101-k10 - 0 1200.0 - 19.4 6.8% 4.0 5.4% 165.2 14.0% 31401.7 66.4 47.2% 62.3%
M-n121-k7 - 0 1200.0 - 21.0 12.9% 11.4 11.9% 336.6 15.9% 37507.0 207.4 49.1% 68.9%
Mean Clustered 55.1% 1199.6 4.3% 13.0 6.9% 2.3 6.1% 81.3 10.6% 20753.9 34.1 27.1% 72.6%
Mean Overall 44.4% 1184.7 4.8% 12.9 7.4% 2.0 5.3% 126.6 12.3% 27628.4 57.4 28.5% 72.7%

(Schermer et al., 2019b):

∆mTSP = 100%− τ

τ∗mTSP

, (38)

where τ represents the objective value obtained either by the solver or by an algorithm
in solving the mTSP-DS, and the baseline is τ∗mTSP , which is the length of the mTSP
solution for a given instance obtained by the Lin-Kernighan-Helsgaun mTSP solver,

22

i.e., in absence of drones and drone stations. Using this metric, negative values of
∆mTSP show a deterioration compared to the corresponding mTSP solution.

1 2 3 1 2 3 1 2 3
0%

5%

10%

15%

20%

25%

30%

0.5 1.0 2.0

S
ca

tte
re

d

Er = 8

1 2 3 1 2 3 1 2 3
0.5 1.0 2.0

Er = 12

1 2 3 1 2 3 1 2 3
0.5 1.0 2.0

Er = 16

1 2 3 1 2 3 1 2 3
0%

5%

10%

15%

20%

25%

30%

0.5 1.0 2.0

C
lu

st
er

ed

1 2 3 1 2 3 1 2 3
0.5 1.0 2.0

1 2 3 1 2 3 1 2 3
0.5 1.0 2.0

DASP-LTR DASP 2-Phase

DN

α

DN

α

Figure 4 Average ∆mTSP grouped by instance type, Er , α, andDN .

According to the results, presented in Table 1, the two-phase algorithm outperforms
both variants of the decomposition-based matheuristics in terms of the savings in
comparison to mTSP solutions, and the DASP performs better than the DASP-LTR.
The two-phase algorithm achieved an average ∆mTSP of 12.3% and was able to find 76
of the 93 known optimal solutions. With an average ∆mTSP of 7.4%, the DASP found
9 known optimal solutions, and finally, the DASP-LTR achieved an average ∆mTSP

of 5.3% and found two of the known optimal solutions. Interestingly, the difference
between the DASP and the local DASP-LTR in terms of solution quality is negligible for
many experiments with clustered instances. This is also illustrated in Figure 4, which
shows the average makespan savings ∆mTSP of the heuristic approaches grouped by
the instance type, Er, α, and DN .

In experiments with Er = 8, the savings from additional or faster drones are small
or nonexistent, suggesting that most of the customers within the range of a drone station
that have an impact on the makespan can already be supplied with comparatively few
or slow drones. Indeed, in experiments with Er = 8, 79.1% of the drone-eligible
customers are supplied by drones. More generally speaking, Table 1 shows that the
percentage of drone-eligible customers that are served by drones is relatively high.
Nevertheless, it is not always useful to activate all available drone stations, particularly
when investigating small problem instances. In fact, in 33 of the 93 known optimal
solutions obtained by Gurobi Optimizer, fewer than C drone stations were activated.
One of these solutions is visualized in Figure 5a. Through the set-partitioning model,
the two-phase algorithm also has the ability to activate fewer than C drone stations.
While this did not happen in a single case, some of the solutions obtained by the two-
phase algorithm are nevertheless optimal, even if the number of activated drone stations
differs in the corresponding Gurobi solution. In Figure 5b, we show an optimal solution
of the same instance shown in Figure 5a, in which all drone stations are activated.

23

Overall, all the algorithms that we presented are able to achieve savings compared
to mTSP solutions. In particular, the two-phase algorithm consistently delivered the
best results. However, especially for the larger instances, the good solution quality of
the two-phase algorithm goes hand-in-hand with a comparatively longer runtime.

(a) Method: Gurobi with (14), t = 495.5 (b) Method: Two-Phase, t = 14.7

Figure 5 Two optimal mTSP-DS solutions for the instance P-n19-k2 with the parameters
DN=3, C = 4, α = 1, Er = 12,KN = 2. The objective value of the solutions is
76.6 and they achieve savings of ∆mTSP = 32.0%. The square, circle, and star
shapes represent the depot, customers, and drone stations, respectively. The dotted
circles around the drone stations show the operation range of drones, the dashed
lines depict the drone deliveries, and the solid lines represent the truck tours.

5.3. Energy consumption
The previous sections have shown that the use of drones can reduce the overall

delivery time. However, since drones can only transport one package at a time in the
mTSP-DS, it might happen that drones require to travel a longer distance than trucks. In
this section, we use the data generated in our experiments, and we compare the results
of the two-phase algorithm (see Section 4.2) with mTSP routes to analyze the effects
of drone usage in terms of energy consumption.

In the following, we indicate the sum of the distances covered by trucks in a mTSP
solution by dmTSP . Similarly, we refer to the sums of distances covered by trucks and
by drones in a heuristic solution as dt and dd, respectively. We also define the average
energy consumption of trucks and drones per kilometer by et and ed, and we assume
that the energy consumption of drone stations is negligible. Using this notation, we
utilize the following metric to compute the energy savings:

∆E = 100%− dt · et + dd · ed
dmTSP · et

. (39)

In the literature, wefind considerably different values for energy consumption of vehicles
(see, e.g., Zhang et al., 2021, and references therein). In this paper, we follow the
approach of Goodchild & Toy (2018) and consider different values for et and ed to
cover a range of different scenarios. For et, we use values from 100 to 1000 Wh/km,

24

increasing in steps of 100, and for ed, we utilize values from 10 to 100 Wh/km,
increasing in steps of 10.

Figure 6 visualizes the average energy savings of the solutions obtained by the two-
phase algorithm for all ratios of et and ed. In our experiments, savings can be achieved
if et/ed ≥ 6.7 for scattered instances and if et/ed ≥ 7.9 for clustered instances.

0 10 20 30 40 50 60 70 80 90 100

−70
−60
−50
−40
−30
−20
−10

0
10

et/ed

E
ne

rg
y

S
av

in
gs

∆
E

(%
)

Scattered
Clustered

Figure 6 Average energy savings ∆E for different truck/drone energy consumption ratios.

In addition, in Figure 7, we display the average energy consumption depending
on the drone range and velocity for two different settings, where we assume that
drones consume 50, 75, and 100 Wh/km if their relative velocity α is 0.5, 1, and 2,
respectively. Furthermore, we assume that if α = 0.5, energy-efficient robots that
consume 25 Wh/km could be used instead of drones1. Figure 7a represents the use
of conventional trucks2, where et is set to 1016 Wh/km. In this case, the solutions
obtained by the two-phase algorithm always achieve energy savings in comparison to
the mTSP routes. In experiments with Er = 8, robots achieve higher energy savings
than drones. At higher drone ranges, however, faster drones can serve more customers.
Figure 7a shows that this increases the energy savings, but it also increases the distance
traveled by drones significantly.

If we replace the conventional trucks with electric ones3, and assume that they
consume 215Wh/km, the long distances covered by drones become an issue. Figure 7b
shows that in this second setting, the average energy savings are negative if drones are
used, meaning that the mTSP solutions require less energy. In such cases, the energy
consumption of the drones and robots is higher than the energy savings obtained by
shorter truck tours.

As a final note, we know that the two objectives, minimization of the makespan and
minimization of energy consumption, are not necessarily complementary to each other.
Therefore, if the main goal is to minimize energy consumption, the objective function
of the mTSP-DS should be adjusted accordingly.

6. Conclusion

In this paper, we presented the multiple Traveling Salesman Problem with Drone
Stations (mTSP-DS). In the mTSP-DS, for a given depot, a set of trucks, a set of

1Figliozzi (2020) estimates that a Starship delivery robot consumes 24.7 Wh/km.
2Estimated energy consumption of a RAM ProMaster 2500 truck (Figliozzi, 2020).
3More precisely, we assume the use of a Volkswagen e-Crafter fleet (Volkswagen, 2018).

25

8.0 12.0 16.0
0

5

10

15

20

Range

E
ne

rg
y

S
av

in
gs

∆
E

(%
)

robots(alpha=0.5) drones(alpha=0.5)
drones(alpha=1) drones(alpha=2)

(a)

8.0 12.0 16.0
−50

−40

−30

−20

−10

0

10

20

Range

E
ne

rg
y

S
av

in
gs

∆
E

(%
)

robots(alpha=0.5) drones(alpha=0.5)
drones(alpha=1) drones(alpha=2)

(b)

Figure 7 Average energy savings ∆E grouped by drone range Er and relative drone velocity
α. In both figures, we suppose that robots consume 25 Wh/km, and drones with α
equal to 0.5, 1.0, and 2.0 consume 50, 75, and 100 Wh/km, respectively. In (a), we
consider the use of conventional trucks, which consume 1016 Wh/km. In (b), we
assume that electric trucks, which consume 215 Wh/km, are used.

customers, and a set of drone stations hosting a certain number of autonomous drones,
the goal consists in serving all customers either by truck or by drone in the shortest
possible time. For this purpose, trucks start their tour from the depot, serve the
customers, and can visit drone stations to activate them and supply them with parcels.
Then, an activated drone station can launch and operate drones autonomously. Indeed,
through parallel serving operations conducted by drones and trucks, we can reduce
the total mission time. Compared to previous approaches, in which the drones supply
customers directly from the depot, drone stations allow a more targeted use of drone
deliveries, especially in densely populated urban areas, where it is not practicable to
build additional depots.

We formulated themTSP-DS as amixed integer linear programming (MILP)model,
which can be solved by any standard MILP solver. However, this is only possible for
small instances. To address larger instances, the use of a solver is not reasonable
anymore because of the excessively long runtime. To overcome this issue and to be
able to solve larger problem instances, we designed three algorithms.

Thefirst algorithm is called local drone assignment and scheduling problem (DASP),
which decomposes the problem into easier subproblems. The second method is the
local DASP with limited truck rerouting (DASP-LTR), which restricts the rerouting of
trucks within the range of a drone station. We formulated both variants of the local
DASP as a MILP and embedded them in an iterative heuristic. The third algorithm is
a two-phase approach, where after generation of a solution pool, we apply a polishing
phase through which we solve a set-partitioning model to find the best combination of
tours.

The results of our extensive computational experiments show that the two-phase
algorithm is superior to the DASP approaches in terms of solution quality. However,
the runtime of both DASP approaches is considerably shorter. Furthermore, our exper-
iments have shown that, depending on the parameters, the mTSP-DS can substantially
reduce the makespan in comparison to traditional mTSP solutions.

Nevertheless, our numerical investigations confirm that a reduction in delivery time

26

is not necessarily accompanied by reduced energy consumption. Indeed, whether the
mTSP-DS reduces energy consumption depends strongly on the consumption coeffi-
cients of the utilized trucks/drones and the distance covered by drones.

Future research might investigate the trade-off relationships of different objective
functions for the mTSP-DS, e.g., the minimization of energy consumption, cost, and
makespan in a multi-objective optimization context. From an algorithmic perspective,
design of efficient exact methods, which might also use the algorithms that we presented
in this paper, can be an promising future research direction to follow. Finally, since
examining all possible combinations in the DASP is quite time-consuming; hence, a
future work might investigate how to assess the potential of drone station activation to
reduce the amount of examined combinations.

References

Accorsi, L., & Vigo, D. (2020). A hybrid metaheuristic for single truck and trailer
routing problems. Transportation Science, 54, 1351–1371.

Agatz, N., Bouman, P., &Schmidt, M. (2018). Optimization approaches for the traveling
salesman problem with drone. Transportation Science, 52, 965–981.

Archetti, C., & Speranza, M. G. (2014). A survey onmatheuristics for routing problems.
EURO Journal on Computational Optimization, 2, 223–246.

Augerat, P. (1995). Approche polyèdrale du problème de tournées de véhicules. Ph.D.
thesis Institut National Polytechnique de Grenoble - INPG.

Boschetti, M. A., Maniezzo, V., Roffilli, M., &Bolufé Röhler, A. (2009). Matheuristics:
optimization, simulation and control. InM. J. Blesa, C. Blum, L. Di Gaspero, A. Roli,
M. Sampels, & A. Schaerf (Eds.), Hybrid Metaheuristics (pp. 171–177). Springer.

Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine
scheduling research. European Journal of Operational Research, 47, 271–292.

Christofides, N., &Eilon, S. (1969). AnAlgorithm for theVehicle-dispatching Problem.
Journal of the Operational Research Society, 20, 309–318.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In
N. Christofides, A.Mingozzi, P. Toth, &C. Sandi (Eds.),Combinatorial Optimization
(pp. 315–338). Wiley.

Coffman, E. G., Jr., Garey, M. R., & Johnson, D. S. (1978). An application of bin-
packing tomultiprocessor scheduling. SIAM Journal on Computing, 7, 1–17. doi:10.
1137/0207001.

Cornuéjols, G., Nemhauser, G., &Wolsey, L. (1990). The uncapicitated facility location
problem. In P. B. Mirchandani, & R. L. Francis (Eds.), Discrete Location Theory
(pp. 119–171). John Wiley and Sons.

27

http://dx.doi.org/10.1137/0207001
http://dx.doi.org/10.1137/0207001

Dell’Amico, M., Montemanni, R., & Novellani, S. (2020). Matheuristic algorithms
for the parallel drone scheduling traveling salesman problem. Annals of Operations
Research, 289, 211–226.

DHL (2018). Dhl’s parcelcopter: changing shipping forever.
URL: https://discover.dhl.com/business/business-ethics/
parcelcopter-drone-technology accessed 4 May 2020.

Figliozzi, M. A. (2020). Carbon emissions reductions in last mile and grocery deliveries
utilizing air and ground autonomous vehicles. Transportation Research Part D:
Transport and Environment, 85, 102443.

Floreano, D., & Wood, R. J. (2015). Science, technology and the future of small
autonomous drones. Nature, 521, 460–466.

Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch
problem. Operations research, 22, 340–349.

Goeke, D. (2019). Granular tabu search for the pickup and delivery problem with time
windows and electric vehicles. European Journal of Operational Research, 278,
821–836.

Goodchild, A., & Toy, J. (2018). Delivery by drone: an evaluation of unmanned
aerial vehicle technology in reducing co2 emissions in the delivery service industry.
Transportation Research Part D: Transport and Environment, 61, 58–67.

Helsgaun, K. (2000). An effective implementation of the lin–kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126, 106–130.

Helsgaun, K. (2017). An extension of the Lin-Kernighan-Helsgaun TSP solver for
constrained traveling salesman and vehicle routing problems. Technical Report
Roskilde Universitet.

Khoufi, I., Laouiti, A., & Adjih, C. (2019). A survey of recent extended variants of
the traveling salesman and vehicle routing problems for unmanned aerial vehicles.
Drones, 3, 66.

Kim, S., & Moon, I. (2018). Traveling salesman problem with a drone station. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 49, 42–52.

Kitjacharoenchai, P., Min, B.-C., &Lee, S. (2020). Two echelon vehicle routing problem
with drones in last mile delivery. International Journal of Production Economics,
225, 107598.

Kloster, K., Moeini, M., Vigo, D., & Wendt, O. (2022). Instances for the multiple
traveling salesman problem with drone stations (mtsp-ds). doi:https://doi.org/
10.5281/zenodo.6380739.

Lee, C.-Y., & Massey, J. D. (1988). Multiprocessor scheduling: combining lpt and
multifit. Discrete Applied Mathematics, 20, 233–242.

28

https://discover.dhl.com/business/business-ethics/parcelcopter-drone-technology
https://discover.dhl.com/business/business-ethics/parcelcopter-drone-technology
http://dx.doi.org/https://doi.org/10.5281/zenodo.6380739
http://dx.doi.org/https://doi.org/10.5281/zenodo.6380739

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In F. Glover,
& G. A. Kochenberger (Eds.), Handbook of Metaheuristics (pp. 320–353). Springer.
doi:https://doi.org/10.1007/0-306-48056-5_11.

Macrina, G., Pugliese, L. D. P., Guerriero, F., & Laporte, G. (2020). Drone-aided
routing: a literature review. Transportation Research Part C: Emerging Technologies,
120, 102762. doi:https://doi.org/10.1016/j.trc.2020.102762.

Marinelli, M., Caggiani, L., Ottomanelli, M., & Dell’Orco, M. (2018). En route
truck–drone parcel delivery for optimal vehicle routing strategies. IET Intelligent
Transport Systems, 12, 253–261.

Moeini, M., & Salewski, H. (2020). A genetic algorithm for solving the truck-drone-atv
routing problem. In H. A. Le Thi, H. M. Le, & T. Pham Dinh (Eds.), Optimization of
Complex Systems: Theory, Models, Algorithms and Applications (pp. 1023–1032).
Springer.

Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem:
Optimization of drone-assisted parcel delivery. Transportation Research Part C:
Emerging Technologies, 54, 86–109.

Nguyen, M. A., Dang, G. T.-H., Hà, M. H., & Pham, M.-T. (2022). The min-cost
parallel drone scheduling vehicle routing problem. European Journal of Operational
Research, 299, 910–930. doi:10.1016/j.ejor.2021.07.008.

Optimization, G. (2019). Gurobi Optimizer Reference Manual.

Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization
approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones:
a survey. Networks, 72, 411–458.

Penna, P. H. V., Subramanian, A., & Ochi, L. S. (2013). An iterated local search
heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics,
19, 201–232.

Poikonen, S., & Golden, B. (2019). The mothership and drone routing problem.
INFORMS Journal on Computing, 32, 249–262.

RojasViloria, D., Solano-Charris, E. L., Muñoz-Villamizar, A., &Montoya-Torres, J. R.
(2021). Unmanned aerial vehicles/drones in vehicle routing problems: a literature
review. International Transactions in Operational Research, 28, 1626–1657.

Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood
search metaheuristic for the vehicle routing problem with drones. Transportation
Research Part C: Emerging Technologies, 102, 289–315. doi:https://doi.org/
10.1016/j.trc.2019.02.018.

Schermer, D. (2019). Integration of drones in last-mile delivery: the vehicle routing
problem with drones. In Operations Research Proceedings (GOR (Gesellschaft für
Operations Research e.V.)) (pp. 17–22). Springer.

29

http://dx.doi.org/https://doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/https://doi.org/10.1016/j.trc.2020.102762
http://dx.doi.org/10.1016/j.ejor.2021.07.008
http://dx.doi.org/https://doi.org/10.1016/j.trc.2019.02.018
http://dx.doi.org/https://doi.org/10.1016/j.trc.2019.02.018

Schermer, D., Moeini, M., & Wendt, O. (2018a). Algorithms for solving the vehicle
routing problem with drones. In N. T. Nguyen, D. H. Hoang, T.-P. Hong, H. Pham,
& B. Trawiński (Eds.), Intelligent Information and Database Systems (pp. 352–361).
Springer.

Schermer, D., Moeini, M., & Wendt, O. (2018b). A variable neighborhood search
algorithm for solving the vehicle routing problem with drones. Technical Report
Technische Universität Kaiserslautern.

Schermer, D., Moeini, M., &Wendt, O. (2019a). A hybrid vns/tabu search algorithm for
solving the vehicle routing problem with drones and en route operations. Computers
& Operations Research, 109, 134–158.

Schermer, D., Moeini, M., &Wendt, O. (2019b). A matheuristic for the vehicle routing
problem with drones and its variants. Transportation Research Part C: Emerging
Technologies, 106, 166–204.

Schermer, D., Moeini, M., & Wendt, O. (2019c). The traveling salesman drone station
location problem. In H. A. Le Thi, H. M. Le, & T. PhamDinh (Eds.),Optimization of
Complex Systems: Theory, Models, Algorithms and Applications (pp. 1129–1138).
Springer.

Schermer, D., Moeini, M., & Wendt, O. (2020). The drone-assisted traveling sales-
man problem with robot stations. In Proceedings of the 53rd Hawaii International
Conference on System Sciences (pp. 1308–1317).

Subramanian, A., Uchoa, E., & Satoru, L. O. (2013). A hybrid algorithm for a class of
vehicle routing problems. Computers & Operations Research, 40, 2519–2531.

Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the
vehicle-routing problem. Informs Journal on computing, 15, 333–346.

Toth, P., & Vigo, D. (2014). Vehicle routing: problems, methods, and applications.
SIAM.

Volkswagen (2018). Volkswagen Commercial Vehicles electrifies the Crafter: e-Crafter
zero-emission van goes online. URL: https://www.vwpress.co.uk/en-gb/
releases/3461 accessed 19 May 2021.

Vu, L., Vu, D. M., Hà, M. H., & Nguyen, V.-P. (2021). The two-echelon routing
problem with truck and drones. International Transactions in Operational Research,
. doi:10.1111/itor.13052.

Wang, X., Poikonen, S., &Golden, B. (2017). The vehicle routing problemwith drones:
several worst-case results. Optimization Letters, 11, 679–697.

Zhang, J., Campbell, J. F., Sweeney II, D. C., & Hupman, A. C. (2021). Energy
consumption models for delivery drones: a comparison and assessment. Trans-
portation Research Part D: Transport and Environment, 90, 102668. doi:https:
//doi.org/10.1016/j.trd.2020.102668.

30

https://www.vwpress.co.uk/en-gb/releases/3461
https://www.vwpress.co.uk/en-gb/releases/3461
http://dx.doi.org/10.1111/itor.13052
http://dx.doi.org/https://doi.org/10.1016/j.trd.2020.102668
http://dx.doi.org/https://doi.org/10.1016/j.trd.2020.102668

	Introduction
	Drones and drone stations in last-mile delivery
	The multiple traveling salesman problem with drone stations
	Problem definition
	MILP formulation of the mTSP-DS

	Matheuristics for solving the mTSP-DS
	A decomposition-based matheuristic
	Local DASP
	Local DASP with limited truck rerouting

	A two-phase matheuristic

	Computational experiments and their numerical results
	Instance generation and experiment parameters
	Results
	Energy consumption

	Conclusion

