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Brain connectivity is often altered in autism spectrum disorder (ASD). However,

there is little consensus on the nature of these alterations, with studies

pointing to either increased or decreased connectivity strength across the

broad autism spectrum. An important confound in the interpretation of these

contradictory results is the lack of information about the directionality of

the tested connections. Here, we aimed at disambiguating these confounds

by measuring differences in directed connectivity using EEG resting-state

recordings in individuals with low and high autistic traits. Brain connectivity

was estimated using temporal Granger Causality applied to cortical signals

reconstructed from EEG. Between-group differences were summarized using

centrality indices taken from graph theory (in degree, out degree, authority,

and hubness). Results demonstrate that individuals with higher autistic

traits exhibited a significant increase in authority and in degree in frontal

regions involved in high-level mechanisms (emotional regulation, decision-

making, and social cognition), suggesting that anterior areas mostly receive

information from more posterior areas. Moreover, the same individuals

exhibited a significant increase in the hubness and out degree over occipital

regions (especially the left and right pericalcarine regions, where the primary

visual cortex is located), suggesting that these areas mostly send information

to more anterior regions. Hubness and authority appeared to be more

sensitive indices than the in degree and out degree. The observed brain

connectivity differences suggest that, in individual with higher autistic traits,

bottom-up signaling overcomes top-down channeled flow. This imbalance

may contribute to some behavioral alterations observed in ASD.

KEYWORDS

autism spectrum disorder, Autistic Quotient, Granger causality, in degree and out
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Introduction

Autism is a complex neurodevelopmental condition
characterized by several behavioral peculiarities, involving
avoidance of social interactions, reduced communication, and
restricted interests [see the American Psychiatric Association
[APA] (2022)]. The biological origin of this condition is a subject
of active research, in an effort to understand its fundamental
neural mechanisms. In this regard, a current perspective is
that autistic traits could be explained by modifications in brain
network characteristics, especially in the connectivity among
brain areas underlying perception, social cognition, language,
and executive functions (Kana et al., 2014).

Indeed, many recent studies have reported that individuals
within the autism spectrum disorder (ASD) exhibit altered
brain connectivity compared to typically developing individuals.
However, literature reports are often inconsistent [see review
papers by Maximo et al. (2014), Mohammad-Rezazadeh et al.
(2016), Carroll et al. (2021)]. The traditional point of view,
predominantly supported by studies using structural and
functional MRI, hypothesizes that autism is characterized by
long-range underconnectivity, potentially combined with local
overconnectivity (Just et al., 2012; Abrams et al., 2013; Delbruck
et al., 2019). Conversely, there have been several studies, using
EEG and MEG, in which the hypoconnectivity hypothesis
could not be confirmed in ASD. Rather, several studies pointed
to hyperconnectivity among specific brain areas, especially
between thalamic and sensory regions (Nair et al., 2013) or
between the extrastriatal cortex, frontal and temporal regions
(Murphy et al., 2012; Uddin et al., 2013; Fu et al., 2019). Finally,
a third line of evidence points towards the existence of a more
subtle mixture of hypo- and hyper-connectivity, suggesting the
presence of multiple mechanisms (Di Martino et al., 2011; Lynch
et al., 2013; Kana et al., 2014; Abbott et al., 2018).

Some of these differences, of course, can derive from
methodological issues. Connectivity is an elusive concept that
can be dramatically affected by the measurement technique
adopted (for instance, fMRI vs. EEG/MEG), by the particular
task involved (vs. resting state analysis), and perhaps more
importantly, by the specific measure employed to estimate the
connection strength (e.g., functional, effective or anatomical
connectivity, directed or undirected measures, bivariate or
multivariate). Indeed, most connectivity measures in literature
are not-directional and hence are inadequate to discover
differences in lateralization or in top-down vs. bottom-up
information processing (O’Reilly et al., 2017).

In particular, it is well-known that cognitive functions
are characterized by a complex balance between integration,
involving the coordination among several brain areas, and
segregation, involving specialized computations in local areas.
According to the predictive coding theory (Clark, 2013),
the brain continually generates models of the world by
integrating data coming from sensory input with information

from memory. Sensory perception is thus the result of a
combination between present data from the external world
(usually carried by feedforward bottom-up connectivity)
and past or prior knowledge (mainly conveyed through
feedback, top-down connections); hence, an equilibrium
between these directional connectivity patterns is necessary
to adaptatively integrate stimuli-driven and internally-driven
representations, preventing their segregation or excessive bias
towards one or the other.

Recent hypotheses (Pellicano and Burr, 2012; Van de
Cruys et al., 2014) assume that ASD individuals exhibit an
impaired predictive coding, characterized by an imbalance
between these two processing streams, i.e., dominant bottom-
up processing and relatively weaker top-down influences
compared with control individuals. This signifies that people
in the autistic spectrum would pose much more emphasis
on present sensory stimuli and somewhat less weight on
contextual information. This imbalance, in turn, may result
in poor social adaptation and insufficient appropriateness to
social requirements (Sinha et al., 2014). Results that support
this point of view include a reduced susceptibility to illusions
and top-down expectations (Skewes et al., 2015; Crespi and
Dinsdale, 2019) and increased local (vs. global) processing in
individuals within the autism spectrum (Mottron et al., 2006;
Cribb et al., 2016) leading to a more stimulus- and detail-driven
perceptual style.

The aforementioned alterations in predictive coding may
be caused by altered brain connectivity, especially concerning
top-down vs. bottom-up circuitry (Tarasi et al., 2022).
Additionally, alterations in connectivity patterns may involve
a different transmission of brain rhythms and an impaired
wave synchronization, which plays a pivotal role in several
cognitive tasks, including attention, information selection,
working memory, and emotion (Basar-Eroglu et al., 2007;
Clayton et al., 2015).

Finally, increasing evidence both at the genetic and
behavioral levels demonstrates that autism does not represent
a dichotomy condition (i.e., one ON/OFF in type) but is best
described as a spectrum of manifestations ranging from clinical
forms to trait-like expressions within the general population
(Baron-Cohen et al., 2001; Cribb et al., 2016; Bralten et al.,
2018) that share a peculiar cognitive style that distinguishes
them from the rest of the clinical and nonclinical population
(Tarasi et al., 2022).

Following these ideas, in a recent paper (Tarasi et al.,
2021), we investigated whether the patterns of brain
connectivity, estimated with Granger causality from EEG
source reconstruction, exhibit differences in two nonclinical
groups classified as low or high on autistic traits. Preliminary
results suggested that connectivity along the fronto-posterior
axis is sensitive to the magnitude of the autistic features and
that a prevalence of ascending connections characterized
participants with higher autistic traits.
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The present study aims to further extend the previous
work on a larger cohort allowing for an improved connectivity
analysis by implementing measures taken from the graph
theory. In particular, new aspects of the present study concern:
(i) the use of a larger data set; (ii) a preliminary analysis at
the lobe level; (iii) the use of more sophisticated indices taken
from the graph theory, such as hubness and authority; (iv) the
use of a more sophisticate statistical analysis (i.e., the use of
sparse connectivity matrices) to better point out differences in
connectivity between the two groups.

Particularly, graph theory represents a powerful tool able
to summarize complex networks consisting of hundreds of
edges, using a few parameters with a clear geometrical meaning.
Recently, this theory has been applied with increasing success
as an integrative approach, able to evaluate the complex
networks that mediate brain cognitive processes (van Wijk
et al., 2010; Wang, 2010; Minati et al., 2013; Farahani et al.,
2019). In particular, since our attention here is primarily
devoted to the presence of differences in the direction of
connections (ascending vs. descending, lateralization, etc.),
we focused our analysis on the in degree and out degree,
defined as the sum of connection strengths entering or leaving
a given node. Furthermore, we also tested whether two
analogous but more specialized measures of centrality, hubness
and authority, can provide additional information to better
characterize directionality. The hub’s index of a node is the
weighted sum of the authority’s indices of all its successors;
hence, this measure summarizes the capacity of a node to
send information to other critical, authoritative nodes. The
authority’s index of a node is the weighted sum of the hub’s

indices of all its predecessors and summarizes the capacity
of a node to receive essential information from hubs. Here,
we investigate whether differences in these measures, and
the pattern of out and in connections from the dominant
nodes, can reveal a difference in the network’s topology,
and alterations in information processing, as a function of
the autistic trait.

Materials and methods

Participants

Forty participants (23 female; age range 21–30, mean
age = 24.1, SD = 2.4), with no neurocognitive or psychiatric
disorders, took part in the study. All participants signed a
written informed consent before taking part in the study,
conducted according to the Declaration of Helsinki and
approved by the Bioethics Committee of the University of
Bologna. All participants completed the Autism-Spectrum
Quotient test (AQ) (Baron-Cohen et al., 2001). The mean AQ
score was 16.1 ± 6.6. The AQ is a self-report widely used to
measure autistic traits in the general population. It provides
a global score, with higher values indicating higher levels of
autistic traits. We used the original scoring methods converting
each item into a dichotomous response (agree/disagree) and
assigning the response a binary code (0/1). In the present study,
the total score of the AQ was considered, and the Italian version
of the AQ was adopted (Ruta et al., 2012). The participants were

TABLE 1 The approximate mapping of the “Desikan-Killiany” ROIs to the lobes.

ROI Label Lobe ROI Label Lobe

Banks of Sup. Temp. Sulcus BK Temporal Parahippocampal PH Temporal

Caudal anterior cingulate cAC Frontal Pars opercularis pOP Frontal

Caudal middle frontal cMF Frontal Pars orbitalis pOR Frontal

Cuneus CU Occipital Pars triangularis pTR Frontal

Entorhinal EN Temporal Pericalcarine PCL Occipital

Frontal pole FP Frontal Postcentral POC Parietal

Fusiform FU Temporal Posterior cingulate PCG Parietal

Inferior parietal IP Parietal Precentral PRC Frontal

Inferior temporal IT Temporal Precuneus PCU Parietal

Insula IN Parietal Rostral anterior cingulate rAC Frontal

Isthmus cingulate IST Parietal Rostral middle frontal rMF Frontal

Lateral occipital LO Occipital Superior frontal SF Frontal

Lateral orbitofrontal lOF Frontal Superior parietal SP Parietal

Lingual LG Occipital Superior temporal ST Temporal

Medial orbitofrontal mOF Frontal Supramarginal SMG Parietal

Middle temporal MT Temporal Temporal pole TP Temporal

Paracentral PAC Frontal Transverse temporal TT Temporal

The Desikan–Killiany atlas comprises 34 ROIs in each hemisphere. The mapping proposed by FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation) was used as a
reference. The only difference between our mapping and the reference resides in the mapping of the insula, which was not ascribed to any lobe in FreeSurfer. We assigned the insula to
the parietal lobe.
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divided into two groups, depending on their AQ score being
below or above a given cutoff, with the cutoff set to 17, since this
value corresponds to the average AQ score in the non-clinical
population (Ruzich et al., 2015). In the following, we will refer to
the two groups of participants as Low AQ score Group (N = 21)
and High AQ score Group (N = 19).

EEG acquisition and preprocessing

Participants comfortably sat in a room with dimmed
lights. Electroencephalographic activity (EEG) was recorded
at rest for 2 min while participants kept their eyes closed.
A set of 64 electrodes was mounted according to the
international 10–10 system. EEG was measured with respect to
a vertex reference (Cz), and all impedances were kept below
10 k�. EEG signals were acquired at a rate of 1000 Hz.
EEG was processed offline with custom MATLAB scripts
(version R2020b) and the EEGLAB toolbox (Delorme and
Makeig, 2004). The EEG recording was filtered offline in the
0.5–70 Hz band. The signals were visually inspected, and
noisy channels were spherically interpolated. An average of
0.05 ± 0.15 channels were interpolated. The recording was
then re-referenced to the average of all electrodes. Subsequently,
we applied the Independent Component Analysis (ICA), an
effective method largely employed to remove EEG artifacts. In
particular, we removed the EEG recording segments corrupted
by noise through visual inspection and then we removed
all the independent components containing artifacts clearly
distinguishable by means of visual inspection from brain-related
components. An average of 3 ± 3.7 independent components
were removed for each participant.

Cortical sources reconstruction and
regions of interest definition

Since we were interested in connectivity analysis, cortical
source activity was reconstructed from pre-processed EEG
signals. To this aim, intracortical current densities were
estimated using the Matlab toolbox Brainstorm (Tadel et al.,
2011). Firstly, to solve the forward problem, a template
head model based on realistic anatomical information (ICBM
152 MNI template) was used. The model consists of three
layers representing the scalp, the outer skull surface, and the
inner skull surface, and includes the cortical source space
discretized into 15,002 vertices. The forward problem was
solved in OpenMEEG software (Gramfort et al., 2010) via the
Boundary Element Method.

sLORETA (standardized Low-Resolution Electromagnetic
Tomography) algorithm was used for cortical sources
estimation. sLORETA is a functional imaging technique
belonging to the family of linear inverse solutions for 3D
EEG distributed source modeling (Pascual-Marqui, 2002).

Specifically, this method computes a weighted minimum
norm solution, where localization inference is based on
standardized values of the current density estimates. The
solution provided is instantaneous, distributed, discrete, linear
with the property of zero dipole-localization error under
ideal (noise-free) conditions. Constrained dipole orientations
were chosen for sources estimation, modeling each dipole as
oriented perpendicularly to the cortical surface. Hence, for each
participant, we reconstructed the resting-state time series of
standardized current densities at all 15,002 cortical vertices.

Then, the cortical vertices were grouped into cortical regions
according to the Desikan–Killiany atlas (Desikan et al., 2006)
provided in Brainstorm, which defines 68 regions of interest
(ROIs). The activities of all vertices belonging to a particular ROI
were averaged at each time point, obtaining a single time series
representative of the activity of that cortical ROI. It is worth
noticing that, by considering the average behavior at the ROIs
level, it was possible to mitigate some possible inaccuracies in
source reconstruction at single vertex level, due to the use of
a template head model for all participants (instead of subject-
specific head models).

Table 1 lists the 68 Desikan-Killiany ROIs and provides the
mapping of individual ROIs to each lobe.

Granger causality analysis

Once the time waveform in each cortical ROI was estimated
(as described above), for each participant k (k = 1, ..., 40) we
evaluated the connectivity among the ROIs. To this aim, we
adopted Granger Causality (GC) (Granger, 1969; Geweke, 1982;
Ding et al., 2006; Bressler and Seth, 2011; Stokes and Purdon,
2017) which provides directional metrics of connectivity, and
is based on the autoregressive (AR) modeling framework as
described in the following.

Let’s indicate with xk,i[n] and xk,j[n] two temporal series
representing the activity of two distinct cortical ROIs (ROIi and
ROIj) for participant k, where n is the discrete time index. The
Granger Causality quantifies the causal interaction from ROIi

to ROIj as the improvement in predictability of xk,j[n] at time
sample n when using a bivariate AR representation, including
both past values of xk,j and past values of xk,i, compared to
a univariate AR representation, including only past values of
xk,j. Mathematically, the following two equations hold for the
univariate and bivariate AR model, respectively.

xk,j[n] =
p∑

m = 1

ak,j [m]xk,j[n−m] + ηk,j[n] (1)

xk,j[n] =
p∑

m = 1

bk,j [m]xk,j[n−m]

+

p∑
m = 1

ck,ji[m]xk,i[n−m] + εk,j[n] (2)
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Index m represents the time lag (in time samples), and p
(model order) defines the maximum time lag, i.e., the maximum
number of lagged observations included in the models. Thus, in
Eq. 1, the current value of xk,j (at time sample n) is predicted
in terms of its own p past values (at time samples n− 1, n−
2, ..., n− p), while in Eq. 2 prediction is made also in terms
of the p past values of xk,i. a, b, c are the model’s coefficients
(dependent on time lag), and the time series ηk,j[n] and εk,j[n]
represent the prediction error of the univariate and bivariate AR
model, respectively. The prediction error variance quantifies the
model’s prediction capability based on past samples: the lower
the variance, the better the model’s prediction. The GC from
xk,i to xk,j is defined as the logarithm of the ratio between the
variances of the two prediction errors, i.e.,

GCk,ROIi→ROIj = ln
var{ηk,j[n]}
var{εk,j[n]}

(3)

The measure in Eq. 3 is always positive: the larger its value,
the larger the improvement in xk,j[n] prediction when using
information from the past of xk,i together with the past of
xk,j, and this is interpreted as a stronger causal influence from
ROIi to ROIj. Similarly, Granger Causality from xk,j to xk,i,
GCk,ROIj→ROIi , is computed via the same procedure, building
the AR models for the time series xk,i.

For each participant k, we computed the two directed
measures of GC for each pair of ROIs, overall obtaining
68×68 connectivity values (with all auto-loops equal to zero).
In all cases, the order p of the AR models was set equal to
20, corresponding to 20 ms time span at 1000 Hz sampling
rate (as in our data); thus, in this study, the functional
interactions between nodes were evaluated within 20 ms time
delay. This value for parameter p was determined based on a
preliminary analysis where we tested different values for the
order of the model, obtaining that GC results did not change
substantially for p ≥ 20.

Indices derived from graph theory

As previously reported by other authors (Deshpande et al.,
2009; Sporns, 2018) the connectivity between the ROIs of a
brain network can be described as a weighted graph, where the
magnitude of the connectivity between two ROIs is represented
as the weight of an edge, whilst the ROIs connected by
the edge are the nodes of the graph. A most remarkable
consequence of the adoption of this representation for the
brain network is the introduction of several concepts and
measures from Graph Theory, which allows us to achieve
a better understanding of the network’s topology (van Wijk
et al., 2010; Minati et al., 2013; Farahani et al., 2019). For
this study, we focused on centrality indices that take into
account the direction of connections, specifically authority,
hubness, in degree, and out degree centralities. These indices,

which will be detailed in the following, were specifically selected
for their focus on the ROIs’ inputs and outputs, which we
hypothesized could offer confirmatory evidence of connectivity
patterns previously observed in individuals with low and high
autistic traits (Tarasi et al., 2021).

The graph
A graph is the mathematical abstraction of the relationships

between some entities. The entities connected in a relationship
are called “nodes” of the graph and are often represented
graphically in the form of points. These nodes are connected
by edges. While the simplest form of a graph is undirected (i.e.,
the edges do not have orientation), the graph we use to describe
a brain network is a weighted directed graph (or digraph), i.e.,
it has oriented edges, each one with a weight representing the
strength of the connection.

To obtain the graphs, for each participant the connectivity
matrix was normalized so that its elements provided a sum
of 100 (i.e., each connectivity value was divided by the total
sum of connections and multiplied by 100). Furthermore, the
normalized 68×68 matrices (which we will be calling “complete”
matrices for clarity) were turned into 68×68 sparse matrices
by removing (i.e., setting to zero) any connection that was not
significantly different between the High and Low AQ score
Groups. In particular, a two-tailed Monte-Carlo testing was
applied (5,000 permutations) and, based on its results, not
significant connections were defined as having an uncorrected
p-value greater than 0.05.

Forty graphs (one per participant) were obtained both for
the complete normalized and the sparse matrices. For each of
these graphs, centrality indices were then computed. Although
a preliminary investigation was performed on the complete
matrices, our analysis is mainly focused on sparse matrices since
by excluding “similar” connections we expect to better capture
differences in the connectivity patterns and in graph indices
between the two groups.

Centrality indices
Graph theory defines a multitude of indices and coefficients

that allow describing the topology of a network from different
points of view. Centrality indices are part of these. They measure
the importance of a particular node in the network. The four
centrality indices considered in this study (in degree, out degree,
authority, hubness) quantify the importance of a node as a source
or a sink for the edges. In the following, we will first introduce
the in degree and out degree centralities; then, authority and
hubness will be described, stressing on how they differ from in
degree and out degree.

In the following, A will always indicate a generic adjacency
matrix (i.e., a matrix containing all edges’ weights). In particular,
the element Ai,j of the matrix will represent the weight of the
edge connecting node i to node j.
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In degree is the sum of the weights of the edges entering into
a node.

In degreei =
∑

j

Aj,i (4)

Out degree is the sum of the weights of the edges exiting from
a node.

Out degreei =
∑

j

Ai,j (5)

As a result of their direct dependence on the strength
of input and output connections, in degree and out degree
provide an immediate description of the nodes most
involved in the transmission (out degree) and reception
(in degree) of information.

Authority and hubness centralities include a more refined
concept compared with in degree and out degree centralities
and have a distinctive feature of strict interdependence. Their
mathematical formulation is the following one.

Authority (xi) is proportional to the sum of the weights of
edges entering a node, multiplied by the hubness of the node the
edge originates from.

xi = α
∑

j

Aj,iyj (6)

Hubness (yi) is proportional to the sum of the weights of edges
exiting from a node, multiplied by the authority of the node the
edge points to.

yi = β
∑

j

Ai,jxj (7)

These indices were computed using the function provided
by the Matlab’s libraries contained in the Category “Graph
and network algorithms” (Matlab R2021a), particularly the
command “digraph/centrality.” This function sets both α and
β equal to 1 and calculates authority and hubness via an
iterative procedure.

Similar to in degree and out degree, hubness and
authority provide a measure about which nodes of the
network are primarily involved in the transmission (hubness)
and reception (authority) of information, but they also
mutually account for the centrality of the receiving and
sending nodes. In particular, since these two centrality
indices point to each other (i.e., to compute authority,
we use hubness, and vice versa), they imply that strong
connections exist between nodes with high authority and
nodes with high hubness, and these indices may be useful
to further emphasize any existing directionality in the
connectivity pattern.

Connectivity analysis
For each participant, starting from either the

complete normalized or the sparse 68×68 matrix, the
four centrality indices were computed at each of the 68
ROIs. Additionally, we computed the average complete

and sparse connectivity matrix in the Low AQ score
Group and in the High AQ score Group, and then
their difference.

Initially, we performed an analysis at the level of macro
regions (englobing several ROIs) rather than at single ROI
level. To this aim, we considered 8 regions corresponding to
brain lobes (frontal, parietal, temporal, and occipital lobes, both
left and right). Specifically, for each participant, the 68×68
connectivity matrix was transformed into an 8×8 connectivity
matrix; the elements of the 8×8 matrix were filled in with
the sum of all the connections going from one lobe to
another. The elements of the 8×8 matrices were subsequently
tested for statistical significance across the two groups of
participants, by applying a two-tailed t-test (significance level
0.05, no correction), resulting in 64 comparisons. Furthermore,
the 8×8 difference matrix was computed, by subtracting the
8×8 mean connectivity matrix of the Low AQ score Group
from the 8×8 mean connectivity matrix of the High AQ
score Group. Thus, the elements of the difference matrix
greater than 0 represented stronger connectivity for the
High AQ score Group, while elements of the difference
matrix less than 0 represented stronger connectivity for the
Low AQ score Group.

Then, a more detailed analysis was performed at the
level of each ROI.

A first analysis was performed on the complete normalized
connectivity matrix to understand the Granger flow in some
key regions. Normalization of the connectivity matrix was
necessary to avoid the presence of a few individuals with higher
connectivity strongly affects the final results.

In particular, we computed the authority and the hubness
of each ROI in each individual subject, and evaluated the
correlation between these centrality indices and the AQ
score. In this way, we identified the ROIs which exhibit
a significant correlation between the centrality indices (in
particular authority and hubness) and the AQ score. The
p-value is computed by transforming the correlation to create
a t-statistic having N-2 degrees of freedom, where N is the
number of data points.

In the case of the sparse matrix, for each centrality
index, we identified the ROIs that exhibited a significant
statistical difference between the two groups. ROI’s
significance was defined as a Bonferroni-corrected p-value
less or equal to 0.05 where the p-value was obtained via
Monte-Carlo testing.

Then, both in case of the complete and sparse matrix,
once the significant ROIs were identified for each index, the
connectivity differences between the Low and High AQ Score
Group were plotted for the significant ROIs only, separately
for each index (in particular in case of the authority index and
hubness index); this serves to evidence differences between the
two groups in the pattern of connections entering into authority
nodes and exiting from hub nodes.
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Results

Analysis of the complete connectivity
matrix

Lobes’ analysis
Using the complete connectivity matrix, the connection

difference between the two groups does not reach a
significativity level. Hence the following results can only
be considered just as a preliminary exploratory analysis, and
connection differences can be only regarded as indicative of a
main flow pattern in the two groups. The results are illustrated
in Figure 1, where we show only the connection differences
with |t| > 1 (which corresponds to a p < 0.15 in the case of a
one-tailed student t-test). Higher blue lines denote connectivity
higher in the Low AQ score Group (left panel), and red lines
connectivity higher in the High AQ score Group (right panel).
Results show that left to right connections (i.e., entering into the
right temporal lobe) were higher in the Low AQ score Group;
conversely, connectivity was mainly bottom-up (i.e., entering
into the frontal lobes) in the High AQ Score Group.

Analysis on the individual regions of interests
For what concerns authority, seven regions (EN r, IST l, IST

r, LO r, PH r, ST r, and SMG l) exhibited a significant correlation
between the AQ score and authority (see Figure 2, upper
panels). It is worth-noting that, in all these ROIs, correlation
was negative signifying that authority increased in subjects with
smaller autistic traits.

For what concerns hubness, only two regions (PCL l
and ST r) exhibited a significant correlation between the AQ
score and hubness; in both cases, the correlation was positive,
signifying that hubness increased with the autistic traits (see
Figure 2 bottom panels).

The left panel in Figure 3 shows the main connections
differences entering into the seven regions (EN r, IST l, IST r,
LO r, PH r, ST r, and SMG l) whose authority was significantly
correlated with the AQ score. The right panel shows the main
connection differences exiting from the two regions (PCL l
and ST r) whose hubness was significantly correlated with
AQ score. Blue lines denote higher connectivity for the Low
AQ score Group, red lines higher connectivity for the High
AQ score Group. Since we are working with a complete
connection matrix, only connection differences above a given
threshold (threshold = 0.015) are plotted to simplify the figure.
In particular, since all connectivity matrices are normalized
to 100, and we have a total number of 68×67 connections,
the average value of each connection is 0.021. The previous
threshold approximately corresponds to the difference between
one connection increased 33% above the mean value, and
another connection reduced by 33% below the mean value (i.e.,
66% of the mean).

The figure shows that the majority of connections entering
the authority regions were stronger in the Low AQ score Group
(as expected from the previous analysis), and these connections
were mainly top-down in type (especially entering into the LO
r) and left to right (especially entering into the EN r and the
ST r). Conversely, the majority of connections exiting from the

FIGURE 1

Patterns of the main connection differences linking the four lobes (Frontal left and right, Fl and Fr, Temporal left and right, Tl and Tr, Parietal left
and right, Pl and Pr, Occipital left and right, Ol and Or). The left panel (A) describes connections differences which are higher in the Low AQ
score Group, while the right panel (B) describes connections differences which are higher in the High AQ score Group. Only connections
differences with |t| > 1 (student t-test) are plotted.
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FIGURE 2

Correlation between the authority and the AQ score [upper panel (A)] and correlation between the hubness and the autistic score [bottom panel
(B)] for all ROIs which exhibit a significant p-value (uncorrected) for the correlation. These correlations have been computed on the complete
normalized connectivity matrix. It is worth noting that the correlation is negative for the authority, denoting a more significant input flow in the
Low AQ score Group, while correlation is positive for the hubness, denoting a more significant output flow for the High AQ score Group.

FIGURE 3

Patterns of the main connection difference which exit from the ROIs with a significant correlation between authority and the AQ score [left
panel (A)] and which enters into the ROIs with a significant correlation between the hubness and the AQ score [right panel (B)]. Blue lines
denote correlation differences that are higher in the Low AQ score group, and red lines connections which are higher in the High AQ score
group. Only connection differences higher than 0.015 on the complete connectivity matrix have been plotted. Three levels of thickness are
adopted, with a larger thickness indicating a larger connectivity difference.
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two hubs, PCL l and ST r, were stronger in the High AQ score
Group (as expected from the previous analysis), with a bottom-
up connectivity, especially emerging from the PCL l, and right-
to left from ST r. These results are coherent with those at lobe
level displayed in Figure 1.

Analysis on the sparse connectivity
matrix

The previous analysis, accomplished on the overall
normalized connectivity matrix, pointed out the presence
of some authority nodes especially involved in top-down
and left-to-right connectivity for the low-autistic trait
population, and some hubness nodes characterized by
bottom-up and right-to-left connectivity for the high-autistic
trait population. The difficulty in the use of a complete

connectivity matrix, however, derives from the presence
of many connections with no clear statistical difference
between the two groups. This is reflected in the poor statistical
significance of the connection difference and, for what
concerns the correlation, in a p-value that, although significant,
cannot survive the statistical correction. This means that
the previous results can be considered as a mere hypothesis
generated from data, requiring further more complete
validation.

For this reason, in order to better unmask differences,
in the following a different analysis is presented, by focusing
attention only on the connections which exhibited a significant
statistical difference in the two groups. Hence, as described
in the Section “Materials and methods,” we consider sparse
connectivity matrices. This kind of analysis has the benefit of
revealing a greater number of regions with statistical differences
in connection flow.

FIGURE 4

Bar plots representing the centrality indices [in degree: panel (A), out degree: panel (B), authority: panel (C), hubness: panel (D)] for the four
lobes of the brain, i.e., Frontal (Fr), Parietal (Par), Temporal (Temp), and Occipital (Occ) in each group of participants (red bars for the High AQ
score Group, blue bars for the Low AQ score Group). Each bar shows the index value (mean ± SEM) for the specific area in the specific group of
participants. As per definition, the sum of the authority values and the sum of the hubness values across all areas provide a total of 1, while the
sum of the in degree values and the sum of out degree values across all areas is equal to 100. The asterisks indicate the presence of a
statistically significant difference between the two groups (p < 0.05, uncorrected).
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Lobes’ analysis
Figure 4 shows the centrality indices (in degree, out degree,

authority, hubness) computed at the level of the four lobes
(frontal, parietal, temporal, and occipital) from the sparse
matrix. The asterisks denote statistically significant differences
between the two groups. As it is evident from the left panels,
High AQ score individuals exhibited a statistically significant
increase in the connections entering into the frontal regions, and
this difference was even more marked if authority was used as

a centrality measure instead of the in degree. Conversely, Low
AQ score individuals exhibited more significant connections
entering into the temporal regions; even in this case, the
significance increased if the authority measure was used. For
what concerns the connections emerging from regions (right
panels), High AQ score individuals exhibited more significant
connections emerging from the occipital regions, whereas Low
AQ score individuals showed a higher significance in the
parietal regions. For both emerging connection outcomes, the

FIGURE 5

Representation of the connections linking the eight lobes of the brain, Frontal (F), Parietal (P), Temporal (T), and Occipital (O), considering
separately the right (r) and left (l) hemispheres. Only the connections that exhibited a statistically significant difference between the two groups
(p ≤ 0.05, uncorrected) are represented. The upper panel (A) shows the p-values of the significantly different connections. The lower panels (B)
represent the differences in connectivity strength: the blue diagram (Low > High) shows the connection differences for those connections that
resulted significantly stronger in the Low AQ score Group compared to the High AQ score Group; the red diagram (High > Low) shows the
connection differences for those connections that resulted significantly stronger in the High AQ score Group compared to the Low AQ score
Group. The thickness of each link varies according to the value of the connection difference. Three levels of thickness are adopted, with a larger
thickness indicating a larger connectivity difference.
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FIGURE 6

Positions of the ROIs which exhibited a significant difference in the in degree index [upper panels (A)] or in the authority index [lower panels (B)]
between the two groups (p-value < 0.05, Bonferroni corrected). The left panels in blue (Low > High) display the ROIs having significantly higher
centrality index in the Low AQ score Group compared to the High AQ score Group. The right panels in red (High > Low) display the ROIs having
significantly higher centrality index in the High AQ score Group compared to the Low AQ score Group. The significant ROIs are shown as
simple dots and represent regions to which important information enters. Three levels of dots’ size have been adopted: the larger the dot size,
the more significant the centrality difference. For the panels where no dot appears over the brain map (i.e., in degree for Low > High), the
constraint of significance was not satisfied by any of the 68 ROIs.

significance was more evident if hubness, instead of the out
degree measure, was used.

In order to further investigate the results arising from
the above histograms, Figure 5 represents the statistically

significant connections (i.e., those which exhibited significant
differences between the two groups) linking the eight lobes of
the brain; in this case, the homologous regions in the left and
right hemisphere were considered separately. The upper panel
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displays the p-value of all significant connections using a color
scale, while the bottom panel shows the connection differences
(in red the connections which were significantly stronger in
High AQ score individuals, in blue the connections significantly
stronger in Low AQ score individuals). The results confirm
those reported in Figure 4, showing that, in the High AQ score
Group, significantly stronger connections were mainly directed
from the occipital toward the frontal regions. The pattern in the
Low AQ score Group showed significantly stronger connections
emerging from the left parietal lobe, directed toward the right
parietal, left temporal and left occipital regions.

Analysis of the individual regions of interest
Figure 6 shows the positions of the ROIs which exhibited

a significant difference (Bonferroni corrected) in the in degree
(upper panels) and in the authority (bottom panels) indices
between the two groups. The right upper panel evidences
that in the High AQ score Group the in degree index was
significantly higher (compared to the other group) especially in
the frontal ROIs. This pattern was even more evident if authority
index was used (bottom right panel). Conversely, the Low AQ
score Group did not exhibit any appreciable increase in the in
degree index, while some regions in the temporal, parietal and
frontal lobes exhibited an increased authority without a clear
topological organization.

In order to gain a deeper understanding of the previous
patterns (limited to authority only), Figure 7 shows the
connection differences entering into all ROIs with significantly
higher authority in either group. In the High AQ score Group,
these connections mainly linked the two occipital regions PCL
(right and left) toward frontal regions: particularly evident were
the connections entering the two lOF (left and right), and the
right rMF. Thus, a clear bottom-up pattern of connections
emerged, supporting the results in Figure 5. Conversely, in
Low AQ score individuals the pattern of connections entering
into nodes with higher authority was less structured, showing
connections directed to frontal (PAC r), right temporal (ST r)
and left temporal (FU l) regions.

Figure 8 shows the positions of the cortical ROIs that
exhibited a significant difference (Bonferroni corrected) in the
out degree (upper panels) and hubness (bottom panels) indices
between the two groups. As shown in the right panels, in the
High AQ score Group, both the above-mentioned centrality
measures were significantly higher (compared to the other
group) in the occipital PCL regions of both hemispheres
and in the occipital left LG region. Moreover, some frontal
regions also exhibited increased hubness, a result apparently in
contradiction with previous figures. However, as will be clarified
when discussing Figure 9 below, connections originating from
these hubs were less significant than those originating from
the occipital regions. The Low AQ score Group exhibited an

FIGURE 7

Representation of the connection differences entering into the ROIs which exhibited significant differences of authority between the two
groups. The left panel in blue [Low > High, panel (A)] displays the connection differences entering into the “Low > High” authority ROIs (the
ROIs shown in the left lower panel in Figure 6), for connections higher in the Low compared to the High AQ score Group. The right panel in red
[High > Low, panel (B)] displays the connection differences entering into the “High > Low” authority ROIs (the ROIs shown in the right lower
panel in Figure 6), for connections higher in the High compared to the Low AQ score Group. The plotted connections run from a generic
output ROI (marked with a cross) toward the ROIs with significantly different authorities (marked with a dot). The thickness of each link varies
according to the value of the connection difference. Three levels of thickness are adopted, with a higher thickness indicating a larger
connectivity difference.
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FIGURE 8

Positions of the ROIs which exhibited a significant difference in the out degree index [upper panels (A)] or in the hubness index [lower panels
(B)] between the two groups (p-value < 0.05, Bonferroni corrected). The left panels in blue (Low > High) display the ROIs having significantly
higher centrality index in the Low AQ score Group compared to the High AQ score Group. The right panels in red (High > Low) display the ROIs
having significantly higher centrality index in the High AQ score Group compared to the Low AQ score Group. The significant ROIs are shown
as simple dots and represent regions from which important information originates. Three levels of dots’ size have been adopted: the larger the
dot size, the more significant the centrality difference. For the panels where no dot appears over the brain map (i.e., out degree for Low > High),
the constraint of significance was not satisfied by any of the 68 ROIs.

appreciable increase in the hubness of parietal and temporal
regions, especially in the left hemisphere, whereas no significant
increase emerged from the out degree index. It is interesting to
note that also an occipital region (the CU right) exhibited an
increased hubness in the Low AQ score Group.

The results illustrated in Figure 8 are further clarified in
Figure 9, which shows the connection differences exiting from
the nodes with significant higher hubness in either group. Once
again, a clear bottom-up pattern is evident in the High AQ score
Group. It is worth noting that, in this group of individuals, the
front-parietal regions with increased hubness (i.e., the SF l, FP r,

pOP r, and IN l) generated only weak output connections (when
compared to the other group). These were sufficient to make
the hubness of these ROIs significantly higher, without altering
the general bottom-up pattern of the overall circuitry. In fact,
much stronger connections exited from the two PCL regions,
defining a clear bottom-up trend. The pattern of connections
originating from significant hubs in the Low AQ score Group
were mainly directed from temporal and parietal left regions to
the right ones, with some connections also directed downwards
to the occipital nodes. As anticipated above, also the right CU
exhibited a clear bottom-up function in this group, while, in
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FIGURE 9

Representation of the connection differences exiting from the ROIs which exhibited significant differences of hubness between the two groups.
The left panel in blue [Low > High (A)] displays the connection differences exiting from the “Low > High” hubness ROIs (the ROIs shown in the
left lower panel in Figure 8), for connections higher in the Low compared to the High AQ score Group. The right panel in red [High > Low (B)]
displays the connection differences exiting from the “High > Low” hubness ROIs (the ROIs shown in the right lower panel in Figure 8), for
connections higher in the High compared to the Low AQ score Group. The plotted connections run from the ROIs with significant hubness
(marked with a dot) toward generic input ROIs (marked with a cross). The thickness of each link varies according to the value of the connection
difference. Three levels of thickness are adopted, with a higher thickness indicating a larger connectivity difference.

agreement with Figure 7, the right temporal regions received
most of the significant connectivity originating from the hubs.
It is worth noting that connections toward frontal regions were
less significant in this group.

Discussion

The present paper analyzes the differences in brain
connectivity between two groups of non-clinical individuals
who differ in the degree of autistic traits (low vs. high), as
classified based on the Autistic Quotient (Baron-Cohen et al.,
2001) score. Results have two main important aspects of
interest. First, we confirm that autistic traits can be observed
within a wide spectrum encompassing both clinical and non-
clinical populations. Specifically, the degree of autistic traits
clearly differs in the non-clinical population between low
and high AQ scores. Second, we show that these differences
can be quantified as alterations in brain connectivity. In
particular, we show that Granger Causality, computed from
neuroelectric signals reconstructed in the cortex (Deshpande
and Hu, 2012; Stokes and Purdon, 2017; Cekic et al., 2018),
together with indices taken from the Graph Theory (van Wijk
et al., 2010; Minati et al., 2013; Farahani et al., 2019), can
represent a valuable tool to characterize differences in brain
networks and deepen our analysis of the neurobiological bases
of brain disorders. Further, we confirm a previous hypothesis

(Tarasi et al., 2021, 2022) that individuals with higher autistic
traits are characterized by more evident bottom-up mechanisms
for processing sensory information.

A critical point may be the selection of the threshold used
to discriminate between the two classes. Despite the inherent
arbitrariness of the choice, we used as a discriminative threshold
the average AQ score obtained in a nonclinical population from
the large-sample work of Ruzich et al. (2015), and this seems
the most natural choice. Moreover, using this value, the present
population of 40 subjects is subdivided in 19 and 21 subjects,
i.e., the threshold we chose is quite proximal to the median
of the considered population. It is worth noting that similar
approaches of partitioning the sample around a threshold have
been used previously in the literature (Alink and Charest, 2020).

In the following, we will first analyze methodological issues,
then the neurophysiological significance of the obtained results
will be explored. Finally, limitations of the present study
will be analyzed.

Granger causality

In this work, we have chosen temporal Granger causality as
a tool to reconstruct brain connectivity from EEG data. This
measure mathematically represents the impact that knowledge
of an upstream signal can have on the prediction of a
downstream temporal signal. Thus, it represents a causal
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directed index of connectivity. Indeed, Granger Causality is
widely employed in neuroscience today (Deshpande and Hu,
2012; Seth et al., 2015; Stokes and Purdon, 2017; Cekic
et al., 2018). Moreover, in a recent paper, using artificial
signals produced by a neurocomputational model as ground
truth, we demonstrated that the Granger Causality overcame
other functional connectivity estimators in terms of accuracy
and reproducibility (Ricci et al., 2021). This method has
evident computational advantages compared with other suitable
methods [such as Transfer Entropy, see Ursino et al. (2020)].

The analysis was initially performed (see Section
“Analysis of the complete connectivity matrix”) on the
complete normalized connectivity matrix, to show the main
characteristics of the Granger flow in the two groups. Then,
to improve the significance of the results, we considered only
connections which exhibited a significant statistical difference
between the two populations, thus working with a sparse matrix
(i.e., all connections which did not show statistically significant
differences between the two groups were set at zero). In other
terms, the graphs in Section “Analysis on the sparse connectivity
matrix” do not represent the overall connectivity patterns, but
rather highlight the differences between the two populations.

The connectivity matrices so obtained were then used to
compute some indices taken from Graph Theory.

Graph theory

Several studies using Graph Theory in ASD have appeared in
recent years: most of them suggest that ASD individuals exhibit
alterations in modularity (i.e., densely connected modules that
are more segregated), in global efficiency (i.e., average path
length required to go from one node to another), in betweenness
(the capacity of a node to connect to other nodes) or in
connection density (Rudie et al., 2012; Redcay et al., 2013; You
et al., 2013; Keown et al., 2017; Chen et al., 2021). EEG and
MEG connectivity studies using graph analysis generally report
autism to be associated with sub-optimal network properties
(less clustering, larger characteristic path, and architecture less
typical of small-world networks) (Barttfeld et al., 2011; Tsiaras
et al., 2011; Boersma et al., 2013; Peters et al., 2013; Leung et al.,
2014; Takahashi et al., 2017; Soma et al., 2021). This, in turn,
results in a less optimal balance between local specialization
(segregation) and global integration (Sporns and Zwi, 2004).
Although of particular significance, we think that these indices
do not consider the fundamental problem of directionality in the
processing pathway and the different importance that bottom-
up and top-down connectivity plays in several brain processing.

Accordingly, an essential novelty of the present study
concerns the use of some specific centrality indices (in degree,
out degree, and above all, hubness and authority) to characterize
group differences in network directionality. The basic idea is
that the directionality of the processing streams plays a major

role in determining group differences (at least for what concerns
autistic traits), rather than other indices like betweenness,
path length, or clustering, more frequently adopted in the
characterization of brain networks. In particular, by considering
macro-regions and sparse connectivity matrices, these indices
provided highly significant statistical differences and provided a
precise scenario to distinguish the two groups.

Connectivity among macro-areas
(lobes)

The connectivity analysis was performed at two levels. First,
we concentrated on the connectivity among macro-regions
(lobes) of the cortex, the frontal, parietal, temporal, and occipital
zones, to discover the main traits of connectivity differences.

This analysis confirms the result of a previous preliminary
study (Tarasi et al., 2021), i.e., individuals with higher autistic
traits exhibit stronger outgoing connections from the occipital
regions and stronger incoming connections toward frontal areas
(i.e., bottom-up) compared with those observed in individuals
with lower autistic traits. In addition to confirming the results
of our previous study, as a new significant result of the
present study we propose that two other centrality measures,
i.e., hubness and authority, allow for a finer discrimination of
connectivity directionality. The reason for this improvement
will be critically analyzed in the next section. If these two
measures are used, significant statistical differences can be
observed to characterize the directionality of the connections in
High AQ score vs. the Low AQ score individuals. In particular,
using sparse matrices statistically significant differences were
evident between the hubness of the occipital regions in the two
classes, with much stronger hubness for individuals with high
autistic traits. Looking at authority, a significant increase in the
authority of the frontal region was observed in the group with
higher autistic traits.

The same patterns were confirmed by computing (from
the sparse matrices) the connectivity among the macro-
regions and plotting only those which exhibited a significant
statistical difference. As shown in Figure 5, increased bottom-
up connectivity from occipital to frontal regions was evident in
individuals with high autistic traits.

Connectivity among individual regions
of interests

Besides connectivity analysis at lobe level, we performed
connectivity analysis at single ROI level. To this aim, centrality
indices were computed by considering all the 68 ROIs in
the Desikan–Killiany atlas. It is interesting that the results
obtained on the overall connectivity matrix and on the sparse
matrix provide similar indications, emphasizing the presence
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of bottom-up connections in the high-score group and left-
right connections in the low-score group. However, analysis
performed on the overall connectivity matrix did not reach a
significant level, whereas a greater significance was obtained
from sparse matrices. For this reason, in the following we will
mainly refer to the results of sparse matrix.

An important result of our study is that hubness and
authority provided more significant differences compared with
in degree and out degree, respectively; hence we suggest that
these indices should be used to characterize the flow in a network
of multiple ROIs. In particular, by comparing in degree vs.
authority in Figure 6 we can observe that the results are quite
similar for what concerns the High AQ score Group (authority
produces just one more significant frontal node compared with
in degree), whereas significant differences can be observed in
the Low AQ score Group (no significant node is evident if
in degree is used, compared with five nodes using authority).
Consequently, authority allowed the detection of a clear left
to right connectivity in the Low AQ score Group. Similarly,
only moderate differences can be observed using hubness vs.
out degree in the High AQ score Group (Figure 8, hubness
detects two additional regions in the frontal cortex, allowing
a better analysis of top-down influences). Also in this case,
hubness provided a significant improvement compared with
the out degree in the Low AQ score Group (nine significant
ROIs are detected by hubness, mainly located in left and medial
parietal and temporal regions, vs. no significant region by the
out degree). These differences suggest that the overall graph
is more complex in the Low AQ score Group compared with
the High AQ score one, requiring more sophisticate indices for
detecting the flow of transmitted information.

To understand why authority and hubness are more
powerful compared with in degree and out degree, we remind
that authority does not only take into account the number
and strength of the connections entering a node but also
weights these connections by the hubness of the upstream
nodes. Similarly, hubness does not only take into account
the number and strength of connections exiting from a node
but also weights these connections by the authority of the
downstream nodes. Of course, these measures need to be
computed together via recursive formulas, as illustrated in
Eqs 6, 7. Briefly, the importance of the information exiting
from a node (or the importance of the information entering
into a node) is not simply the sum of its output connections
(or the sum of the input connections), but also depends on
the role played by the sending nodes (or by the receiving
nodes). For instance, a connectivity of value 0.04 reaching an
almost completely isolated node (one which does not send
information to others nodes in the network) can be scarcely
important compared with a connection of value 0.02, which
reaches a crucial node. Hubness is able to quantify this difference
compared with a simple sum of outgoing connectivity. Similarly,
authority is more able to summarize the effective significance

of the incoming flow compared with the simple sum of
entering connections.

Using these indices, we then mapped the stronger
connections that exited from ROIs with higher hubness and
entered into the ROIs with greater authority. These results
computed on each ROI extend the lobe analysis to several
aspects: (i) The main hubs for High AQ score individuals were
located in the left and right PCL regions. A pattern of bottom-up
connections emerging from these two regions seems to be the
dominant feature that characterizes this group. Left and right
PCL are the ROIs in which the primary visual cortex is located.
These areas handle the transmission of incoming visual inputs
from the thalamus to higher-order processing regions. The
enhanced bottom-up signaling arising from this site resembles
the pattern observed in individuals with clinical form of autism
characterized by hyper-engagement of sensory regions (Jao
Keehn et al., 2017, 2019) that could underpin the sensory and
visuospatial peculiarities typically observed in ASD (Mottron
et al., 2006; Samson et al., 2012). (ii) The leading authorities
for High AQ score individuals were located in the frontal
and prefrontal regions, particularly in the left and right lOF.
These two ROIs encapsulate frontal sites involved in high-level
mechanisms such as emotional regulation, decision-making and
social cognition (Rolls, 2004). Crucially, these domains tend to
be altered in ASD individuals. Excessive information inflow in
brain areas related to emotional and social processing could be
implicated in the difficulty to manage complex and multifaceted
social interactions typically observed in this spectrum. This
could also explain why ASD individuals tend to prefer less
social-demanding environments as they are linked to a lower
risk of over-stimulation. (iii) The previous connections were
distributed bilaterally, from both PCLs to both homolateral and
contralateral frontal hemispheres. (iv) Conversely, the pattern
of connectivity in Low AQ score individuals exhibited a broader
and less defined distribution, involving several connections in
the temporal, parietal, and occipital lobes, with hubs mainly
located in the left hemisphere and a direction from left to right.
This suggests that the pattern of inter-areas communication
in low-AQ individuals is more distributed and varied and not
rigidly channeled into narrow pathways.

We remind, however, that these connectivity patterns reflect
differences between the two groups, hence a relative role in
one population vs. the other, not the absolute impact that
connections have on the overall brain network. In other words,
it is possible that some strong connections did not appear in
our graph since they were equally relevant in both populations,
hence without significant difference (this is the reason why
the overall connectivity matrix provides less significant results).
Moreover, we remind that trials were performed at rest. Thus,
the examined connectivity reflects differences in a resting state.

In general, the present results support the findings obtained
in our previous study on a smaller population (Tarasi et al.,
2021), even though the exact position of the ROIs representing
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the increased bottom-up connectivity is not identical. In
our previous study, we observed increased connectivity from
the right PCL and the left LG (instead of the left PCL as
found here). Still, these differences can be explained based on
minor variances in source reconstruction and grouping among
proximal voxels. Moreover, in our previous study, the bottom-
up connectivity in High-AQ score individuals was especially
evident in the right hemisphere (particularly toward the right
rMF, a region that still plays e significant role among the
authorities in the present study). In contrast, this connectivity
seems to be more bilaterally distributed in the current results.

These results support the idea that the brain network in
individuals with higher autistic traits vs. individuals with lower
autistic traits is not characterized by a general reduction in
connectivity (as hypothesized in some theorizations) but rather
that mixed patterns of under- and over-connectivity can be
appreciated. Over-connectivity is evident in the fronto-posterior
axis, involving bottom-up influences, whereas hypoconnectivity
involves many tempo-parietal regions, especially in the
left hemisphere.

Neurophysiological meaning

Several hypotheses on brain connectivity in ASD have
been formulated in past years, with apparently contradictory
outcomes: while some authors hypothesized more robust
connectivity in ASD, others reported reduced connectivity (see
Section “Introduction”). These contradictions, however, can be
reconciled by thinking that differences between control and
individuals within the autistic spectrum can especially reflect a
directionality in the connections rather than the number and
total strength of edges in the overall network. Furthermore, a
mixed pattern of increased connectivity among some regions
and decreased among others probably characterizes the autistic
brain. Directionality in the connectivity patterns, in turn, may
reflect a hierarchical organization of the processing stream,
with bottom-up connections (especially from the occipital
towards the frontal lobes) involved in sensory processing
and top-down connections reflecting context modulation, and
prior knowledge, planning, and attention. This connectivity
organization agrees with the so-called predictive coding theory,
which assumes that environmental and internal signals are
joined together to form a unified model of reality. In particular,
the predictive coding theory of ASD (Van de Cruys et al.,
2014; Tarasi et al., 2022) hypothesizes that ASD people do
not form accurate predictions of the external environment
since sensory information supersedes the internal expectation.
Our results support this theory, showing that differences in
bottom-up connectivity (hence, in the impact that sensory
input can have on the global internal model) are stronger in
individuals with higher autistic traits, even within a population
of healthy individuals.

Limitations of the present study

A limitation of the present study may be the limited sample
size (19 vs. 21 participants). Actually, this number is in line
with (and in many cases higher than) the sample employed in
published works that use similar experimental procedures and
investigate similar phenomena [see Carter Leno et al. (2018) and
Harris et al. (2021)]. However, the complexity of the analysis
performed and, in particular, the study accomplished on the
complete connectivity matrix, reveal the necessity of a larger
number of participants to achieve statistically more solid results.
Hence, future studies on a large cohort can allow a more detailed
comprehension of the problem.

In this study, we did not include participants with a
diagnosis of ASD, hence we cannot be confident that the
present results would stand up also in a clinical population.
However, the results obtained go exactly in the direction
hypothesized by theoretical and empirical work on connectivity
features in clinical ASD. Moreover, substantial behavioral
(Alink and Charest, 2020), genetic (Bralten et al., 2018), and
neural (Massullo et al., 2020) evidence suggests that ASD is
a continuum of conditions ranging from trait-like expression
to the diagnosed clinical form of autism. Of course, additional
studies on a clinical population are required to definitely support
the present initial results and definitely validate the hypothesis of
a continuous spectrum ranging from normality to ASD.

An interesting point concerns the relationship between the
Granger connectivity, evaluated in this study, and the structural
connectivity (i.e., the physical traits that connect brain regions,
generally estimated by diffusion-weighted imaging). Some
studies (e.g., Hermundstad et al., 2013) have shown that there
is significant overlap between neuroanatomical connections
and correlations of functional brain signals. Conversely, other
recent studies of our group, using neural mass models as a
ground-truth, showed that in some conditions the two aspects
may differ, as a consequence of non-linear phenomena (Ursino
et al., 2020, 2021; Ricci et al., 2021). Hence, it is still unclear
how the brain network interacts during specific tasks or at
rest, accounting for all structural and functional aspects in
terms of causality, given the many nonlinear dynamics that
characterize brain functioning. Moreover, the present results
show some connections crossing the midline. Regarding this
point, although the connections traveling through the corpus
callosum typically connect homotypic areas, a substantial
number of traits connecting heterotypic areas in the two cerebral
hemispheres have been observed (e.g., De Benedictis et al.,
2016). Of course, without structural data, it remains difficult
for the current study to formulate more precise hypotheses
about this issue.

Finally, in the present study we have observed differences
in bottom-up and top-down connectivity in the two groups.
Works in the literature emphasize that these connections can
be implicated in sensory processing, especially in multisensory

Frontiers in Systems Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fnsys.2022.932128
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-932128 August 10, 2022 Time: 8:18 # 18

Ursino et al. 10.3389/fnsys.2022.932128

conditions (Choi et al., 2018) or after sensory deprivation
(Yusuf et al., 2022). Furthermore, several studies suggest
that atypical sensory processing is a common characteristic
of ASD and that sensory traits have important implications
in the developmental phase of this pathology (Marco et al.,
2011; Robertson and Baron-Cohen, 2017). The present
experiments were performed in a resting condition, so
it would be difficult to make strong inferences about
sensory processing from the current data. Further studies,
examining the response to sensory stimuli, are required to
test whether these neural signatures of autistic traits (more
bottom-up processing in high AQ score, more top-down
processing in low AQ score) have an impact at the behavioral
level, for example to explain the observed differences in
sensory profile.
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