
10 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Martello S., Monaci M. (2020). Algorithmic approaches to the multiple knapsack assignment problem.
OMEGA, 90, 1-11 [10.1016/j.omega.2018.11.013].

Published Version:

Algorithmic approaches to the multiple knapsack assignment problem

Published:
DOI: http://doi.org/10.1016/j.omega.2018.11.013

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/899477 since: 2024-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.omega.2018.11.013
https://hdl.handle.net/11585/899477

Algorithmic Approaches to the
Multiple Knapsack Assignment Problem

Silvano Martello, Michele Monaci

1DEI “Guglielmo Marconi”, Università di Bologna, Viale Risorgimento 2, I-40136 Bologna,
Italy

{silvano.martello, michele.monaci}@unibo.it

Abstract

We consider a variant of the multiple knapsack problem in which some assignment-
type side constraints have to be satisfied. The problem finds applications in logistics
sectors related, e.g., to transportation and maritime shipping. We derive upper bounds
from Lagrangian and surrogate relaxations of a mathematical model of the problem.
We introduce a constructive heuristic and a metaheuristic refinement. We study the
computational complexity of the proposed methods and evaluate their practical perfor-
mance through extensive computational experiments on benchmarks from the literature
and on new sets of randomly generated instances.
Key words: multiple knapsack problem, assignment problem, relaxations, heuristic
algorithms, computational experiments.

1. Introduction

We consider a combinatorial optimization problem that can be seen as a variant of the mul-
tiple knapsack problem in which some assignment-type side constraints have to be satisfied.

The 0-1 Multiple Knapsack Problem (MKP) has been intensively studied in the combina-
torial optimization literature. We are given n items, each having an associated profit pj and
weight wj (j = 1, . . . , n), and m knapsacks, each having a capacity ci (i = 1, . . . ,m). The
problem is to select m disjoint subsets of items such that the total profit of the selected items
is a maximum, and each subset can be packed into a different knapsack having a capacity
at least equal to the total weight of the items in the subset. The MKP has been shown
to be strongly NP-hard by transformation from 3-partition (see, e.g., Martello and Toth
[18], Section 1.3). For extensive reviews on properties and algorithms for the MKP and its
variants, we refer the reader to the corresponding chapters in the books by Martello and
Toth [18] and Kellerer, Pferschy, and Pisinger [12]. Additional contributions to the MKP,
that appeared after the publication of [12], have been presented by Chekuri and Khanna
[2], Fukunaga and Korf [9], Fukunaga [7, 8], Jansen [10], Yamada and Takeoka [20], Lalami,
Elkihel, Baz, and Boyer [14], and Balbal, Laalaoui, and Benyettou [1]. When m = 1, this
problem reduces to the famous (single) Knapsack Problem (KP).

The MKP variant considered in this paper has been recently introduced by Kataoka
and Yamada [11]. In the Multiple Knapsack Assignment Problem (MKAP) the input still
consists of m knapsacks and n items, but the items are partitioned into r subsets (classes)
Sk (k = 1, . . . , r): an additional constraint imposes that a knapsack can only contain items

1

of the same class. The problem is thus to assign a set of knapsacks to each class Sk, in such
a way that the sum of the solution values of the r resulting MKPs is a maximum. Note that
it is possible that a knapsack is not assigned to any class (i.e., it is not used in the solution)
or, conversely, that a class has no knapsack assigned (i.e., none of its items belongs to the
solution). In [11] the authors proposed upper and lower bounds for the MKAP. The upper
bound is based on a Lagrangian relaxation, that is shown to be equivalent to the continuous
relaxation of a mathematical model of the problem, while the lower bound is obtained from
a greedy heuristic combined with local search. The approach was computationally tested on
benchmark sets of small and large randomly generated instances. More recently, Lalla-Ruiz
and Voß [15] proposed a genetic algorithm for the MKAP and showed, through computational
experiments, that it obtains a better approximation on a set of small difficult instances
extracted from the benchmarks introduced in [11].

As observed in [11], the special case of the MKAP in which r = 1 coincides with the
MKP: it follows that the MKAP is strongly NP-hard.

This paper presents algorithms for the computation of upper and lower bounds for the
MKAP. In the next section we discuss how real-life problems have been modeled as an
MKAP or similar MKP variants. In Section 1.2 we examine a mathematical formulation of
the MKAP. Section 2 presents preprocessing and reduction techniques. Section 3 deals with
Lagrangian and surrogate relaxations. Heuristic algorithms are then introduced in Section
4. In Section 5 we show, through extensive computational experiments, that the proposed
algorithms provide better or faster (or both) solutions than state-of-the-art heuristics for the
MKAP. Conclusions follow in Section 6.

1.1 Real-world applications

Problem MKAP has managerial applications in transportation logistics. Indeed it models
problems arising when m vehicles of given capacities ci, located at the same depot, have to
be used to serve r customers. Each customer has an associated set of goods, each having a
profit and a weight: the problem is to decide which goods have to be transported by each
vehicle so that each vehicle visits at most one customer and the total profit of the selected
goods is maximized. Note that a customer can be fully or partially served, or not visited at
all.

The MKAP is the core problem in the maritime shipping application recently addressed
by Zhen, Wang, Wang, and Qu [21]. They considered a hinterland barge transport system
in which barges are not self-propelled and need to be assigned to tugs. The specific problem,
originated by an application at the Port of Shanghai, included additional side constraints
coming from the connection of the river’s inland ports to the worldwide maritime transporta-
tion network. The authors developed a mixed-integer programming model that optimizes
the assignment of barges to tugs and the time schedule of the tugs departures.

Special cases of the MKAP arising in emergency relocation problems have been investi-
gated by Dimitrov, Solow, Szmerekovsky, and Guo [6]. They considered a problem arising,
in an emergency situation, when people at different locations must be moved to a safe place.
In such context, a group of persons at the same location defines a class, and all items (the
individuals) are identical, i.e., they share the same profit and weight. The problem calls for
maximizing the number of persons that are moved to a safe location, using a given set of

2

trucks (the knapsacks). The need for a quick intervention imposes that any truck can only
pick up people at a single location. It is shown in [6] that the problem can be solved in
polynomial time if all trucks are identical, while a heuristic is proposed for the case of an
heterogenous fleet of vehicles.

Other combinations of the MKP with assignment-type constraints have been addressed
in the literature. Dawande, Kalagnanam, Keskinocak, Salman, and Ravi [4] considered a
problem coming from applications in the steel industry: Given a set of orders, production
planning requires to assign them to a given set of production units in such a way that the
throughput is maximized and the compatibility of orders and production units is taken into
account. In this case the profit and weight of each item (order) is the same. A generalization
of the problem, in which profits and weights are different, was studied by Dahl and Foldnes
[3] in the context of wireless telecommunication: Each of a given set of mobile phone users
must be assigned to a base station covering her location so that the total communication flow
is maximized and the capacity of no base station is exceeded. Production planning problems
with machine failures have also been modeled as MKPs with additional assignment-like
constraints (see, e.g., Laalaoui and M’Hallah [13] and Diaz, Handl, and Xu [5]).

1.2 Problem formulation

In the following we will assume that all item weights are positive. It follows that we can also
assume, without loss of generality, that all input data are positive integers. In addition, it
can be assumed that n ≥ m as otherwise the smallest m−n knapsacks could be eliminated.

In order to formally define the problem at hand, we report in the following an Integer
Linear Programming (ILP) model from the literature. Let N = {1, 2, . . . , n} denote the set of
items, M = {1, 2, . . . ,m} the set of knapsacks, and K = {1, 2, . . . , r} the set of item classes.
For each knapsack i ∈ M and item j ∈ N , let xij be a binary variable taking the value one
if and only if item j is inserted (packed) into knapsack i. Similarly, for each knapsack i ∈M
and class k ∈ K, let yik be a binary variable taking the value one if and only if knapsack i
is assigned to class k. The MKAP can then be formally described by the ILP (see [11])

max
∑
j∈N

pj
∑
i∈M

xij (1)∑
i∈M

xij ≤ 1 j ∈ N (2)∑
k∈K

yik ≤ 1 i ∈M (3)∑
j∈Sk

wj xij ≤ ci yik i ∈M, k ∈ K (4)

xij ∈ {0, 1} i ∈M, j ∈ N (5)

yik ∈ {0, 1} i ∈M, k ∈ K. (6)

The objective function (1) maximizes the sum of the profits of the selected items. Constraints
(2) impose that each item is packed into at most one knapsack, while constraints (3) impose
that each knapsack is assigned to at most one class. For each knapsack i, the associated

3

constraints (4) impose that: (i) only items of the class assigned to knapsack i (if any) can
be inserted into it, and (ii) the capacity of the knapsack is not exceeded. Model (1)-(6) has
mn+mr binary variables and n+m+mr constraints, i.e., O(mn) variables and constraints.

Observe that, if an optimal solution has some knapsack i with no class assigned, we can
define an equivalent solution by assigning i to an arbitrarily chosen class. It follows that, in
(3) we could impose equality instead of inequality.

Also note that, when K = {1}, i.e., S1 ≡ N , constraints (3) become redundant and yi1
can be set to 1 for all i ∈ M : the resulting ILP simplifies then to the classical MKP model
(see [18]). If in addition m = 1, constraints (2) become redundant too, and the model further
simplifies to a KP.

2. Preprocessing and reduction procedures

Some immediate considerations, frequently used for reducing packing problems (see, e.g.,
[18]), can be adapted to the MKAP:

• remove all knapsacks i ∈M for which ci < min
j∈N
{wj};

• remove all items j ∈ N for which wj > max
i∈M
{ci}.

This simple reduction clearly takes linear time O(n).

2.1 Linear time reduction

A stronger reduction can be obtained, with a small increase of the computational effort, by
determining the contents of a subset of knapsacks in an optimal solution:

Procedure Reduction:

sort the elements of knapsack set M by increasing capacity, and let OM(i) be the i-th ele-
ment in the ordering;

sort the elements of item set N by increasing class number, breaking ties by decreasing
weight, and let ON(j) be the j-th element in the ordering;

for d := 1 to m do

J := {j ∈ N : wj ≤ cOM(d)} and let OJ be the corresponding ordering;

execute procedure NFpack;

if NFpack returns a feasible packing of all items of J in the smallest d knapsacks

then pack such items into such knapsacks and remove items and knapsacks

end for.

Observation. Due to preliminary sorting, for a given value of d, the items of J are the only
ones that can be packed in the smallest d knapsacks. Hence, if there exists a feasible packing
of all the items of J into such knapsacks, this is optimal for the original instance: items and
knapsacks can then be removed from the instance, and the process can be iterated.

The core of Reduction is procedure NFpack, i.e., the search for a feasible packing, which
can be seen as a feasibility check for a variant of the Variable Size Bin Packing Problem

4

(VSBPP). Given a set of n items of weight w1, . . . , wn and a set of d bins of size c1, . . . , cd,
the VSBPP asks for an assignment of every item to a bin so that the total weight assigned
to any bin does not exceed its size. In our case the packing must also satisfy the additional
condition that all the items assigned to a bin belong to the same class. We solved the result-
ing problem through an adaptation of the Next-Fit Decreasing heuristic for the classical Bin
Packing Problem (a VSBPP in which all bins have the same size). Procedure NFpack below
considers a class at a time and packs all items of the current class (by decreasing weight)
into consecutive bins (by decreasing capacity). A new knapsack is opened when either the
next item does not fit into the current knapsack or a new class is considered. The procedure
prematurely terminates when no feasible packing is found:

Procedure NFpack:

assign the first item, OJ(1), to knapsack OM(d) and set s := d, c := cOM(d) − wOJ(1);
for j := 2 to |J | do

if wOJ(j) ≤ c and the class of OJ(j) is the same as that of OJ(j − 1) then

assign item OJ(j) to knapsack OM(s) and set c := c− wOJ(j);
else

begin

s := s− 1;

if s = 0 or wOJ(j) > cOM(s) then return false

else assign item OJ(j) to knapsack OM(s) and set c := cOM(s) − wOJ(j);
end

end for

return the feasible packing found.

The performance of this heuristic reduction is affected by the sorting of items which, in
turn, is affected by the numbering of classes. Preliminary computational experiments showed
that the use of different numberings produces similar results.

As |J | is bounded by n, procedure NFpack requires O(n) time. Procedure Reduction
needs O(n log n) time for the preliminary sorting of knapsacks and items. At each iteration,
before invoking NFpack, the ordering OJ can be built in O(n) time by scanning the ordering
ON . As there are m iterations, the overall time complexity of our preprocessing is O(n log n+
nm). It is interesting to observe that the time complexity of NFpack (O(n), plus the time
for the preliminary sorting) is the same as that of the classical next-fit decreasing algorithm
for the original (simpler) bin packing problem.

2.2 Pseudo-polynomial time reduction

An additional preprocessing, that however requires a pseudo-polynomial time, is possible.
For any knapsack i, we can compute, for every class k, the maximum feasible knapsack filling
cik that can be obtained with item set Sk. Let ci = maxk∈K{cik}: If ci < ci then we know
that ci − ci capacity units will never be used. Hence we can set ci = ci, thus making the
formulation more tight.

Determining each cik value amounts to solving a Subset Sum Problem (SSP), i.e., a special

5

knapsack problem with n items, in which pj = wj for j = 1, . . . , n. The SSP is known to be
(weakly) NP-hard and solvable, through dynamic programming, in pseudo-polynomial time
O(nci). A naive implementation would then require mr such solutions (one per knapsack
and class), i.e., O(

∑
k∈K

∑
i∈M |Sk|ci) = O(

∑
k∈K |Sk|

∑
i∈M ci) = O(n

∑
i∈M ci) time in total.

Recall however that, due to the knapsack sorting, cmax = cOM(m) is the largest capacity. It
follows that, for every class k, the dynamic programming list of the SSP induced by the
largest knapsack contains all states induced by the other (smaller) knapsacks. We can thus
perform a single computation per class and hence preprocess the whole instance in O(ncmax)
time.

3. Relaxations

Kataoka and Yamada [11] have studied the Lagrangian relaxation of capacity constraints (4)
of model (1)-(6) with multipliers λik. They also investigated the Lagrangian dual problem,
i.e., the problem of determining the multipliers producing the best (minimum) upper bound
value. Indeed, it is shown in [11] that: (i) an optimal solution to the Lagrangian dual
exists, in which all multipliers have the same value; (ii) the resulting upper bound has the
same value as that of the continuous relaxation of the model. Such properties generalize
analogous results obtained by Martello and Toth [18] for the Lagrangian relaxation of the
capacity constraints of the MKP.

An alternative method for computing upper bounds can be obtained by replacing, for
each knapsack i, the associated r constraints (4) with their surrogate relaxation. We obtain:∑

k∈K

πik
∑
j∈Sk

wj xij ≤
∑
k∈K

πikci yik i ∈M (7)

where π ∈ Rm×r
+ is an array of non-negative multipliers. As to the surrogate dual problem,

Martello and Toth [16] proved that, for the MKP, an optimal dual solution assigns an identical
positive value to all multipliers. We next show that the same property extends to the MKAP.

Property 1 The optimal dual solution to the surrogate relaxation of the MKAP, defined by
(1)-(3) and (5)-(7), is πik = α (α any positive constant value) for i = 1, . . . ,m, k = 1, . . . , r.

Proof. First observe that the optimal dual solution must have, for any i ∈M , at least one
πik > 0 as otherwise its value would provide the trivial upper bound

∑
j∈N pj (corresponding

to packing all items into a knapsack having all null multipliers). Consider any knapsack
i ∈ M and let k∗(i) be a class k associated with the highest πik value. An optimal solution
to the surrogate relaxation will associate to each knapsack i the largest possible capacity,
i.e., it will have yik∗(i) = 1 and yik = 0 for k 6= k∗(i) (i ∈ M). Hence, the right-hand side of
(7) can be written as πik∗(i)ci (i ∈ M). By dividing the resulting constraints by πik∗(i), we
get ∑

k∈K

πik
πik∗(i)

∑
j∈Sk

wj xij ≤ ci i ∈M. (8)

For any knapsack i we have πik/πik∗(i) ≤ 1 for all k. It follows that an optimal set of mul-
tipliers (i.e., such that the lowest surrogate solution value is attained) consists in having

6

identical positive πik values for all i and k. �

An optimal set of multipliers is thus πik = 1 ∀ i, k. With such choice, and given that in
(3) we can impose equality, the surrogate constraint (7) becomes∑

j∈N

wj xij ≤ ci i ∈M (9)

By observing that variables yik no longer play any role, the resulting MKP-based relaxation
is given by (1), (2), (9), and (5). Intuitively, this corresponds to allowing each knapsack
to contain items of different classes, i.e., to solve a classical MKP without the additional
class restriction. The resulting problem remains however strongly NP-hard, i.e., it can be
expected to only be practically computable for small instances.

A computationally more tractable relaxation can be obtained from the previous one by
further relaxing, in a surrogate fashion, constraints (9) with m unit multipliers, i.e., by
replacing the m capacity constraints (9) with a unique constraint∑

i∈M

∑
j∈N

wj xij ≤
∑
i∈M

ci. (10)

By introducing new variables ξj =
∑

i∈M xij, we obtain our final KP-based relaxation:

max
∑
j∈N

pjξj (11)∑
j∈N

wj ξj ≤
∑
i∈M

ci (12)

ξj ∈ {0, 1} j ∈ N, (13)

which disregards the item classes and defines a single knapsack problem with capacity equal
to the sum of the given knapsack capacities. This problem is known to be weakly NP-hard
and solvable in pseudo-polynomial time O(n

∑
i∈M ci) through dynamic programming.

4. Heuristic algorithms

We present in this section a heuristic approach for the MKAP, consisting of two phases: a
constructive heuristic and a metaheuristic post-optimization procedure.

4.1 Constructive heuristic

The constructive algorithm decomposes the MKAP into two separate problems:

• assign a different set of knapsacks to each class;

• find a feasible packing of a subset of items into the knapsacks assigned to the corre-
sponding classes.

7

The following procedure heuristically determines an assignment of a disjoint subset of knap-
sacks, Mk, to each class k ∈ K, trying to mimic a given optimal solution ξ of the KP-based
relaxation (11)-(13):

Procedure Assign:

for each class k ∈ K do

Pk :=
∑

j∈Sk
pjξj;

Wk :=
∑

j∈Sk
wjξj

end for;

sort the classes according to decreasing Pk/Wk ratios and let OK(k) be the k-th element in
the ordering;

M := M ;

for k := 1 to r do

k := OK(k);

determine, if any, a subset M̂ ⊆M such that
∑

i∈M̂ ci is closest to, and not below, Wk;

if such a set exists then

Mk := M̂ , M := M \Mk

else

Mk := M , M := ∅;
for k′ := k + 1 to r do MOK(k′) := ∅;
break

end if

end for.

The procedure starts by computing the total profit Pk and weight Wk assigned to each
class k in the solution of the relaxed problem. A class k at a time is then considered: if
possible, a subset of unassigned knapsacks of total capacity not lower than Wk is determined
and assigned to the class. When the total residual knapsack capacity is below the threshold,
all free knapsacks are assigned to the current class, and no knapsack is assigned to the
remaining classes.

Given an optimal solution to the KP-based relaxation, the procedure needs O(n+ r log r)
time for pricing and sorting the r classes. The second loop performs r iterations, each
requiring the exact solution of an SSP in minimization form, in which the capacity is Wk,
items correspond to knapsacks and weights to knapsack capacities. The solution to such
problem can be obtained, through dynamic programming, in O(mWk) time. By observing
that

∑
k∈KWk ≤

∑
i∈M ci, the overall time complexity for the second loop is O(m

∑
i∈M ci).

It turns out that the overall time complexity for the assignment of a different set of knapsacks
to each class is given by that of the preceding phases (preprocessing followed by the solution
of the relaxed problem), i.e., it is bounded by O(n log n + nm + n

∑
i∈M ci) = O(n log n +

n
∑

i∈M ci).
The second problem (find a feasible item packing into the knapsacks) can solved by

separately determining, for each class, a feasible packing of a subset of its items to the

8

assigned knapsacks. For each class, the induced problem can then be solved as an MKP,
namely:
Procedure MKpack:

for each class k do

solve the MKP instance induced by item set Sk and knapsack set Mk;

let Ni be the set of items assigned to knapsack i (i ∈Mk)

end for;

define the MKAP solution that allocates item set Ni to each knapsack i ∈M ;

return the feasible packing found.

The MKP is strongly NP-hard, and hence the procedure would require, in the worst
case, an exponential time if implemented with an exact algorithm. We adopted instead the
polynomial-time heuristic algorithm MTHM by Martello and Toth [17] (Fortran implementa-
tion available at http://www.or.deis.unibo.it/knapsack.html), whose time complexity
is O(n2). This gives a time complexity O(n2 + n

∑
i∈M ci) for the sequence [Preprocessing

(Section 2) → KP-based relaxation (Section 3) → Constructive heuristic].

4.2 Metaheuristic refinement

Once a feasible solution has been obtained, a randomized metaheuristic approach is per-
formed to improve it. Define a dummy class S0, and assign it a knapsack set M0 containing
all knapsacks left empty by MKpack. The method iteratively explores three neighborhoods:

Neghborhood 1: assign an empty knapsack of M0 to a class;

Neghborhood 2: re-assign a non-empty knapsack;

Neghborhood 3: interchange two non-empty knapsacks.

The algorithm initially defines the incumbent solution as the one returned by MKpack.
It operates on a current solution (initially, the incumbent), making use of three user defined
parameters τ1, τ2, and τ3. At each iteration, τ1, τ2, and τ3 solutions in the corresponding
neighborhoods of the current solution are randomly selected and evaluated by running an
MKP heuristic for each class involved in the move. As soon as a solution improving on the
incumbent is obtained, the incumbent is updated and the process is re-started with the new
incumbent. When, at the end of an iteration, none of the three neighbors has improved
on the incumbent, the best solution obtained in the iteration becomes the current solution.
The following function receives as input a pair (item set S ′,knapsack set M ′) and possibly
a second (non empty) pair (S ′′, M ′′), and solves the MKP instance(s) associated with the
pair(s): it returns the value true if the incumbent solution (and the corresponding knapsack
partition) has been improved, and the value false otherwise.

9

Function Improve(S ′,M ′, S ′′,M ′′):

solve the MKP instance induced by item set S ′ and knapsack set M ′;

if S ′′ 6= ∅ then

let M0 ⊆M ′ be the resulting set of empty knapsacks;

solve the MKP instance induced by item set S ′′ and knapsack set M ′′ ∪M0;

endif

if the overall resulting solution improves on the incumbent then

update the incumbent solution and partition M0,M1, . . . ,Mr and return true

else return false

The following metaheuristic procedure iteratively invokes Improve to explore the neighbor-
hoods:

Procedure Refine:

define the current knapsack partition M0,M1, . . . ,Mr as in the incumbent solution;

while a stopping condition does not hold do

for τ := 1 to τ1 do (comment: explore Neighborhood 1)

if M0 6= ∅ then randomly select a class k 6= 0 else break;

impr := Improve
(
Sk, Mk ∪M0, ∅, ∅

)
;

if impr = true then break

end for;

if impr = true then continue;

for τ := 1 to τ2 do (comment: explore Neighborhood 2)

randomly select a non-empty knapsack i′ 6∈M0;

let k′ be the class associated with i′ and randomly select a class k 6= k′;

impr := Improve
(
Sk′ , (Mk′ \ {i′}) ∪M0, Sk, Mk ∪ {i′}

)
;

if impr = true then break

end for;

if impr = true then continue;

for τ := 1 to τ3 do (comment: explore Neighborhood 3)

randomly select two non-empty knapsacks i′ and i′′ associated with different classes;

let k′ (resp. k′′) be the class associated with i′ (resp. i′′);

impr := Improve
(
Sk′ , (Mk′ \ {i′}) ∪ {i′′} ∪M0, Sk′′ , (Mk′′ \ {i′′}) ∪ {i′}

)
;

if impr = true then break

end for;

end while

return the incumbent solution.

A metaheuristic process is typically non-polynomial, and hence we control the execution

10

through a stopping condition that halts the algorithm when either the value of the incumbent
solution equals that of the KP-based relaxation (Section 3) or a limit on the number of
iterations is reached. The MKP instances are heuristically solved through the branch-and-
bound algorithm MULKNAP by Pisinger [19], halted after the root node. Although this
takes pseudo-polynomial time, it frequently produces better solutions than those obtained
by the polynomial-time algorithm MTHM [17] that was adopted for MKpack.

5. Computational experiments

The procedures of Sections 3 and 4 were implemented in C language and executed on an
Intel Xeon E5649 running at 2.53 GHz on literature instances and on new instances. On the
basis of preliminary computational experiments, (i) procedure Refine was executed with
τ1 = 3, τ2 = τ3 = 10, with a maximum number of iterations set to n ∗m ∗ r/10; (ii) in order
to keep the CPU time low, the time-consuming reduction procedure of Section 2.2 was only
executed for small instances (see below).

To the best of our knowledge, the only available benchmark for the MKAP was proposed
by Kataoka and Yamada [11], who obtained them by uniformly randomly generating the
weight wj of each item j in [1, R] (R being a prefixed parameter). All instances were generated
with R = 1000, except those in Table 6, which evaluates the effect of different values of R.
Different families of instances were then produced by generating each profit pj (j ∈ N) as
follows:

• pj uniformly random integer in [1, R] (uncorrelated instances, UNC in the tables);

• pj = b0.6wjc+ϑj, with ϑj a uniformly distributed random integer in [1, b0.4Rc] (weakly
correlated instances, WEA in the tables);

• pj = wj + b0.2Rc (strongly correlated instances, STR in the tables).

The capacity of each knapsack i was always set to

ci = b ρϕi
∑
j∈N

wjc, (14)

with ρ ∈ {0.25, 0.50, 0.75} and the ϕi being random reals in [0, 1] such that
∑

i∈M ϕi = 1.
Instances of different size were generated:

• small instances: n ∈ {20, 40, 60}, r ∈ {2, 5}, and m ∈ {10, 20};

• large instances: n ∈ {4000, 8000}, r ∈ {50, 100}, and m ∈ {200, 400, 800}.

For each instance, every class k contained |Sk| = n/r consecutively generated items. Kataoka
and Yamada kindly provided us the computer code they used for generating the instances
studied in [11], allowing us to test our algorithms on the same benchmark (10 instances for
each of parameters combination).

11

5.1 Small instances

The first set of experiments was performed on small instances. As in [11], the purpose was
to evaluate the performance of the various heuristic approaches and that of an ILP solver.
We considered both the instances from [11] and new instances.

Literature instances

Table 1 refers to the test bed introduced in [11], consisting of 360 instances obtained by
generating 10 instances for each quadruplet (Family, r, m, n). Lalla-Ruiz and Voß [15]
compared their genetic algorithm (LV in the tables) with the heuristic of Kataoka and
Yamada (KY in the tables) only on the 120 small instances of family STRONG. The table
compares our algorithm (denoted as MM) with both previous approaches on the whole
benchmark.

Each row refers to the 10 instances generated for the quadruplet (Family, r, m, n).
Columns ‘GRB (1200s)’ report the average solution values z∗ and the number of provably
optimal solutions obtained, from model (1)-(6), by ILP solver Gurobi (Version 7.5.2) with a
time limit of 1200 seconds.

Columns ‘KY’ give the average solution values z and the average percentage error with
respect to the best solution produced by Gurobi in 1200 seconds, computed as

%Err = 100
z∗ − z
z∗

. (15)

Having obtained the original computer code from the authors, we tested it on our machine.
The average CPU times of KY are negligible: “far less than a second” according [11], and
even below 0.01 second on our machine, and hence they are not reported.

Columns ‘LV’ give, for the strongly correlated instances only, the average solution values
z and CPU times (taken from [15], where they were obtained on an Intel 3.16 GHz), and the
average percentage error, computed according to (15). The same information is reported,
for all instances, in columns ‘MM’ for what concerns the proposed algorithm and in columns
‘GRB(1s)’ for what concerns the execution of Gurobi with a time limit of 1 second. For
each family of instances, an additional row reports the average values over the 120 tested
instances, while the final row gives the overall average values over the whole benchmark.

The results show that these instances are relatively easy to solve, both for the three
heuristics and for GRB(1s). GRB(1200s) exactly solved 307 out of 360 instances, the strongly
correlated ones being somehow more challenging (as frequently observed in the knapsack
literature). One can observe that the solution values z∗ for the instances with r = 2 are very
close to their counterparts for r = 5, and that the latter appear to be much easier (Gurobi
found a proven optimal solution in over 92% of the cases).

The constructive heuristic KY is the fastest approach. As could be expected, LV and
MM, which include metaheuristic improvements, take higher CPU times (although still far
below a second), but also produce much better approximations. For the strongly correlated
instances, the average percentage error of KY is 7.15. It is improved to 0.22 by LV (in 0.25
seconds on average), and further reduced to 0.12 (in 0.15 seconds on average, on a slower
machine) by MM. For the other two families of instances, MM produced small average errors,
about 25 times smaller than those produced by KY. When its time limit is decreased to 1

12

Instances GRB (1200s) KY (< 0.1s) LV MM GRB (1s)
Fam r m n z∗ #opt z %Err z CPU %Err z CPU %Err z %Err

UNC 2 10 20 7438.8 10 6991.6 6.01 7438.8 0.01 0.00 7438.80 0.00
40 16,291.4 10 15,893.7 2.44 16,257.4 0.08 0.21 16,146.10 0.89
60 24,710.9 6 24,568.8 0.58 24,712.8 0.09 −0.01 24,463.00 1.00

20 20 4685.8 10 4436.5 5.32 4685.8 0.00 0.00 4685.80 0.00
40 15,455.9 10 14,798.2 4.26 15,351.4 0.13 0.68 15,436.00 0.13
60 24,588.1 7 23,911.9 2.75 24,518.0 0.31 0.29 24,279.90 1.25

5 10 20 7314.7 10 5847.6 20.06 7252.4 0.01 0.85 7314.70 0.00
40 16,041.0 10 15,089.0 5.93 16,021.3 0.03 0.12 16,000.30 0.25
60 24,489.4 10 23,846.1 2.63 24,456.9 0.10 0.13 24,004.10 1.98

20 20 4685.8 10 3830.2 18.26 4685.8 0.00 0.00 4685.80 0.00
40 15,379.7 10 13,356.5 13.16 15,273.5 0.08 0.69 15,379.70 0.00
60 24,445.7 10 22,944.2 6.14 24,311.2 0.20 0.55 24,208.80 0.97

Avg 15,460.6 9.4 14,626.2 7.29 15,413.8 0.09 0.29 15,336.92 0.54
WEA 2 10 20 5559.0 10 5061.2 8.95 5523.2 0.01 0.64 5559.00 0.00

40 12,319.9 10 11,933.6 3.14 12,273.3 0.08 0.38 12,174.90 1.18
60 18,707.2 0 18,659.0 0.26 18,735.7 0.12 −0.15 18,457.20 1.34

20 20 2957.0 10 2835.5 4.11 2957.0 0.00 0.00 2957.00 0.00
40 11,612.7 10 10,911.7 6.04 11,531.7 0.12 0.70 11,611.30 0.01
60 18,597.6 6 18,032.3 3.04 18,501.7 0.36 0.52 18,459.60 0.74

5 10 20 5430.4 10 4385.9 19.23 5292.6 0.01 2.54 5430.40 0.00
40 12,061.4 10 11,135.5 7.68 12,032.8 0.04 0.24 12,058.40 0.02
60 18,540.4 10 18,090.3 2.43 18,519.5 0.10 0.11 18,147.00 2.12

20 20 2957.0 10 2483.6 16.01 2957.0 0.00 0.00 2957.00 0.00
40 11,498.7 10 9659.3 16.00 11,473.6 0.09 0.22 11,498.70 0.00
60 18,447.8 10 16,859.6 8.61 18,357.5 0.24 0.49 18,265.50 0.99

Avg 11,557.4 8.8 10,837.3 7.96 11,513.0 0.10 0.47 11,464.67 0.53
STR 2 10 20 7134.4 10 6596.9 7.53 7134.4 0.05 0.00 7132.8 0.01 0.02 7134.40 0.00

40 15,378.7 7 15,062.8 2.05 15,375.3 0.02 0.02 15,372.4 0.10 0.04 15,197.80 1.18
60 23,156.0 0 23,018.8 0.59 23,194.0 0.14 −0.16 23,193.8 0.26 −0.16 22,904.50 1.09

20 20 4150.3 10 3799.6 8.45 4150.3 0.06 0.00 4150.3 0.00 0.00 4150.30 0.00
40 14,891.9 10 14,252.2 4.30 14,849.6 0.29 0.28 14,825.4 0.15 0.45 14,885.20 0.04
60 23,100.7 4 22,478.1 2.70 23,054.9 0.29 0.20 23,033.6 0.70 0.29 22,656.90 1.92

5 10 20 6978.5 10 5766.4 17.37 6977.6 0.14 0.01 6977.6 0.01 0.01 6978.50 0.00
40 15,146.6 10 14,273.6 5.76 15,083.0 0.42 0.42 15,118.7 0.04 0.18 15,066.60 0.53
60 22,996.4 1 22,483.5 2.23 22,949.9 0.23 0.20 22,993.6 0.15 0.01 22,574.80 1.83

20 20 4150.3 10 3579.8 13.75 4150.3 0.10 0.00 4150.3 0.00 0.00 4150.30 0.00
40 14,781.3 10 12,677.4 14.23 14,643.1 0.93 0.93 14,733.1 0.10 0.33 14,781.30 0.00
60 22,932.3 5 21,369.3 6.82 22,754.2 0.30 0.78 22,861.2 0.27 0.31 22,708.20 0.98

Avg 14,566.5 7.3 13,779.9 7.15 14,526.4 0.25 0.22 14,545.2 0.15 0.12 14,432.40 0.63
Overall Avg 13,861.5 8.5 13,081.1 7.47 13,824.0 0.11 0.30 13,744.66 0.57

Table 1: Small instances from the literature: Average solution values and percentage errors
with respect to ILP solver Gurobi (1200 seconds).

second, Gurobi (column ‘GRB(1s)’) produces reasonably good solutions, but it is dominated,
on average, by MM, which obtains half of its error in one tenth of its time.

The efficiency of MM mostly comes from the metaheuristic refinement, while the con-
structive heuristic is extremely fast but produces much worse approximation. For the three

13

families of Table 1 the average percentage errors of the initial solution are 6.98, 8.02, and
7.90, respectively, i.e., over one order of magnitude larger than the final errors. (A similar
behavior was observed for the remaining tables.)

New instances

Considering instances in which all classes contain the same number of items (as those in Table
1) appears to be quite restrictive. In addition, the classical benchmarks for the MKP (see,
e.g., [18] and [12]) usually adopt two kinds of knapsack capacities: similar and dissimilar.
Those in [11], see (14), belong to the latter kind, so we refer to them as SAME/DISS. We
obtained three new benchmarks by generating, from each small instance of [11], three new
instances having the same values of n, r, and m, the same item set, but, respectively:

1. classes of different cardinality (benchmark DIFF/DISS);

2. knapsacks with similar capacities (benchmark SAME/SIMI);

3. classes of different cardinality and knapsacks with similar capacities (benchmark DIFF/SIMI).

Classes of different cardinality (benchmarks DIFF/*) were obtained by: (i) setting

|Sk| = bϕk nc, (k = 1, . . . , r − 1); (16)

|Sr| = n−
r−1∑
k=1

|Sk|, (17)

the ϕk values being random reals in [0, 1] such that
∑

k∈K ϕk = 1; and (ii) randomly assigning
the original items to the generated classes.

Knapsacks with similar capacities (benchmarks */SIMI) were obtained by uniformly ran-
domly generating, for i = 1, . . . ,m− 1, capacity ci in the interval[⌊

0.4

∑
j∈N wj

m

⌋
,

⌊
0.6

∑
j∈N wj

m

⌋]
, (18)

and setting cm = b0.5
∑

j∈N wj/mc −
∑m−1

i=1 ci.
Table 2 reports the outcome of computational experiments on these instances and pro-

vides, in a synthetic way, the same information as Table 1. In particular, we don’t report
the results for the instances with five classes (r = 5): As already observed for Table 1, these
instances are very similar but easier than their counterparts for r = 2 (and the same holds
for the three new benchmarks). Also, we don’t provide the solution value z of the heuristic
algorithm, as it can be derived from the percentage error. The results confirm the outcome
of Table 1: The constructive heuristic KY is very fast, but its average percentage errors
are one order of magnitude larger than those produced by MM. Concerning Gurobi, these
instances are slightly more challenging than those of Table 1, especially for what concerns
their optimal solution: the solver could not obtain, in 1200 seconds, a provably optimal
solution in one quarter of the cases. It produces however, in one second, good approximate
solutions, although worse (average percentage error 0.48 versus 0.36) than those obtained by
MM in 0.15 seconds on average.

14

D
IF

F
/D

IS
S

S
A

M
E

/
S

IM
I

D
IF

F
/
S

IM
I

In
st

an
ce

s
G

R
B

(1
20

0s
)

K
Y

M
M

G
R

B
(1

s)
G

R
B

(1
2
0
0
s)

K
Y

M
M

G
R

B
(1

s)
G

R
B

(1
2
0
0
s)

K
Y

M
M

G
R

B
(1

s)
F

am
r
m

n
z
∗

#
op

t
%

E
rr

%
E

rr
C

P
U

%
E

rr
z
∗

#
o
p

t
%

E
rr

%
E

rr
C

P
U

%
E

rr
z
∗

#
o
p

t
%

E
rr

%
E

rr
C

P
U

%
E

rr
U

N
C

2
10

20
74

46
.0

10
7.

70
0.

10
0
.0

1
0
.0

0
6
0
6
3
.1

1
0

7
.0

7
0
.0

0
0
.0

0
0
.0

0
6
0
8
7
.8

1
0

2
.5

5
0
.0

0
0
.0

0
0
.0

0
40

16
,2

70
.2

9
3.

50
1.

03
0
.0

6
0
.3

6
1
6
,3

2
9
.6

9
3
.5

3
0
.3

0
0
.0

7
0
.6

4
1
6
,2

2
0
.9

1
0

4
.4

2
1
.6

0
0
.0

6
0
.7

3
60

24
,6

87
.8

5
0.

74
0.

01
0
.1

2
0
.5

6
2
4
,6

7
1
.0

2
0
.9

4
−

0
.2

0
0
.0

9
1
.0

8
2
4
,6

6
0
.7

4
0
.5

1
−

0
.0

9
0
.1

1
0
.9

5
20

20
46

85
.8

10
6.

00
0.

00
0
.0

0
0
.0

0
3
3
7
4
.1

1
0

5
.5

6
0
.0

0
0
.0

0
0
.0

0
3
2
1
5
.5

1
0

1
.6

9
0
.0

0
0
.0

0
0
.0

0
40

15
,4

50
.6

10
4.

49
1.

14
0
.1

3
0
.0

0
1
2
,4

9
7
.9

1
0

4
.9

1
0
.0

0
0
.0

2
0
.0

0
1
2
,4

5
0
.3

1
0

3
.3

6
0
.0

0
0
.0

1
0
.0

0
60

24
,6

01
.5

7
3.

33
0.

66
0
.3

0
1
.3

1
2
4
,0

3
7
.0

6
4
.6

8
0
.6

7
0
.3

2
1
.0

0
2
4
,1

0
7
.0

5
4
.3

5
1
.0

7
0
.3

2
0
.9

9
A

v
g

15
,5

23
.7

8.
5

4.
29

0.
49

0
.1

0
0
.3

7
1
4
,4

9
5
.5

7
.8

4
.4

5
0
.1

3
0
.0

8
0
.4

5
1
4
,4

5
7
.0

8
.2

2
.8

2
0
.4

3
0
.0

8
0
.4

4
W

E
A

2
10

20
55

47
.5

10
9.

81
0.

47
0
.0

1
0
.0

0
4
5
0
2
.8

1
0

4
.9

1
0
.0

0
0
.0

0
0
.0

0
4
4
4
8
.6

1
0

8
.2

4
0
.4

3
0
.0

0
0
.0

0
40

12
,3

13
.5

7
1.

59
0.

98
0
.0

6
0
.6

1
1
2
,3

5
9
.2

1
0

3
.8

3
0
.5

5
0
.1

0
0
.8

7
1
2
,2

8
0
.8

8
3
.5

0
2
.0

0
0
.1

1
1
.1

0
60

18
,6

80
.0

1
1.

61
−

0.
06

0
.1

4
1
.0

9
1
8
,6

9
5
.1

0
0
.9

2
−

0
.1

8
0
.1

6
1
.3

4
1
8
,6

9
2
.8

1
0
.7

1
−

0
.0

8
0
.1

7
1
.0

7
20

20
29

57
.0

10
12

.1
0

0.
00

0
.0

0
0
.0

0
1
8
1
1
.5

1
0

1
7
.0

0
0
.0

0
0
.0

0
0
.0

0
1
8
3
4
.9

1
0

1
1
.2

3
0
.0

0
0
.0

0
0
.0

0
40

11
,6

28
.7

10
5.

76
1.

40
0
.1

5
0
.0

7
9
2
4
5
.5

1
0

5
.1

2
0
.0

0
0
.0

1
0
.0

0
9
0
7
2
.7

1
0

4
.0

2
0
.0

0
0
.0

1
0
.0

0
60

18
,5

93
.7

6
6.

26
0.

72
0
.3

5
0
.7

0
1
8
,4

5
6
.3

3
5
.4

4
0
.6

4
0
.4

4
0
.8

1
1
8
,4

3
4
.1

5
6
.8

4
1
.4

7
0
.4

0
1
.0

3
A

v
g

11
,6

20
.1

7.
3

6.
19

0.
59

0
.1

2
0
.4

1
1
0
,8

4
5
.1

7
.2

6
.2

0
0
.1

7
0
.1

2
0
.5

0
1
0
,7

9
4
.0

7
.3

5
.7

6
0
.6

4
0
.1

1
0
.5

3
S

T
R

2
10

20
71

59
.6

10
5.

45
0.

02
0
.0

1
0
.0

0
5
9
2
4
.2

1
0

8
.8

8
0
.0

0
0
.0

0
0
.0

0
6
2
5
5
.3

1
0

1
2
.2

5
0
.0

0
0
.0

0
0
.0

0
40

15
,3

74
.1

6
2.

00
0.

08
0
.1

8
0
.5

6
1
5
,4

3
2
.9

9
3
.4

4
0
.4

1
0
.1

0
1
.1

2
1
5
,4

1
7
.6

2
1
.8

9
0
.9

4
0
.1

7
0
.9

5
60

23
,1

44
.5

1
1.

39
−

0.
07

0
.5

2
0
.7

9
2
3
,1

5
6
.3

0
0
.3

1
−

0
.2

9
0
.2

5
0
.7

8
2
3
,1

6
4
.4

0
0
.8

7
−

0
.1

4
0
.4

4
0
.9

7
20

20
41

50
.3

10
7.

98
0.

00
0
.0

0
0
.0

0
2
6
4
7
.1

1
0

7
.6

5
0
.0

0
0
.0

0
0
.0

0
2
4
8
7
.2

1
0

4
.1

3
0
.0

0
0
.0

0
0
.0

0
40

14
,9

89
.1

10
5.

03
1.

16
0
.3

0
0
.0

6
1
1
,4

6
4
.6

1
0

4
.0

3
0
.3

3
0
.0

3
0
.0

0
1
1
,7

1
5
.1

1
0

1
.1

3
0
.0

0
0
.0

0
0
.0

0
60

23
,1

06
.7

4
4.

18
0.

46
0
.9

6
1
.5

1
2
3
,1

1
1
.2

3
5
.0

4
0
.8

7
0
.5

8
1
.5

3
2
3
,1

1
7
.7

1
4
.8

6
1
.5

2
0
.8

1
1
.6

7
A

v
g

14
,6

54
.1

6.
8

4.
34

0.
27

0
.3

3
0
.4

9
1
3
,6

2
2
.7

7
.0

4
.8

9
0
.2

2
0
.1

6
0
.5

7
1
3
,6

9
2
.9

5
.5

4
.1

9
0
.3

9
0
.2

4
0
.6

0
O

ve
ra

ll
A

v
g

13
,9

32
.6

7.
6

4.
94

0.
45

0
.1

8
0
.4

2
1
2
,9

8
7
.7

7
.3

5
.1

8
0
.1

7
0
.1

2
0
.5

1
1
2
,9

8
1
.3

7
.0

4
.2

5
0
.4

8
0
.1

5
0
.5

3

T
ab

le
2:

R
es

u
lt

s
on

n
ew

sm
al

l
in

st
an

ce
s:

A
ve

ra
ge

p
er

ce
n
ta

ge
er

ro
rs

w
it

h
re

sp
ec

t
to

IL
P

so
lv

er
G

u
ro

b
i

(1
20

0
se

co
n
d
s)

.

15

5.2 Large instances

The results of the previous section show that small-size instances are relatively easy to solve.
A general purpose ILP solver can obtain, in about 75% of the cases, a provably optimal
solution within a reasonable time limit (20 minutes). It also produces good approximate
solutions within one second, although the proposed heuristic, MM, finds better solutions
within a fraction of a second. In this section we thus evaluate the various algorithms on
larger instances from the literature.

Preliminary computational experiments showed that, for large-size instances, Gurobi is
generally unable to find optimal (and even near optimal) solutions within 1200 seconds. It
was thus decided to avoid such time-consuming runs, and to evaluate the quality of the
solutions obtained by the heuristic algorithms as the percentage gap with respect to the
upper bound UB provided by the KP-based relaxation of Section 3, computed as

%Gap = 100
UB − z
UB

. (19)

We examine in Table 3 the behavior of the algorithms when the number of items increases.
For different combinations of r and m, and for ρ = 0.5, the table reports, for n increasing

UNC WEA STR
Instances KY MM GRB(1s) KY MM GRB(1s) KY MM GRB(1s)
r m n %Gap %Gap CPU %Gap %Gap %Gap CPU %Gap %Gap %Gap CPU %Gap
2 10 20 8.14 2.27 0.01 2.27 13.46 5.56 0.01 4.95 10.89 3.66 0.01 3.63

40 3.04 0.82 0.07 1.50 3.69 0.95 0.06 1.74 2.32 0.31 0.08 1.44
60 0.65 0.06 0.09 1.07 0.45 0.04 0.12 1.52 0.86 0.10 0.26 1.35
80 0.21 0.04 0.08 0.75 0.25 0.03 0.12 0.89 0.48 0.07 0.41 0.81

100 0.20 0.02 0.12 0.64 0.15 0.06 0.25 0.79 0.33 0.00 0.22 0.65
200 0.08 0.01 0.15 0.32 0.06 0.01 0.54 0.33 0.16 0.00 0.17 0.45
400 0.03 0.01 0.81 0.29 0.02 0.01 1.01 0.27 0.04 0.00 0.29 0.28
600 0.01 0.01 1.01 0.17 0.01 0.01 1.01 0.28 0.04 0.01 0.36 0.43
800 0.01 0.00 0.92 1.05 0.01 0.00 1.02 1.23 0.03 0.02 0.54 0.39

1000 0.01 0.00 1.01 2.83 0.00 0.00 1.01 1.18 0.03 0.02 0.89 0.81
Avg 1.24 0.32 0.43 1.09 1.81 0.67 0.52 1.32 1.52 0.42 0.32 1.02

5 20 20 18.26 0.00 0.00 0.00 16.01 0.00 0.00 0.00 13.75 0.00 0.00 0.00
40 15.64 3.53 0.07 2.86 19.11 3.92 0.07 3.71 16.90 3.42 0.10 3.10
60 7.06 1.52 0.21 1.86 9.88 1.87 0.24 2.36 7.71 1.27 0.26 1.93
80 3.48 0.74 0.46 3.34 4.94 0.90 0.48 3.44 4.43 0.58 0.61 2.98

100 2.48 0.38 0.69 2.87 2.41 0.56 0.77 2.97 1.72 0.24 1.01 2.51
200 0.40 0.11 1.01 1.49 0.36 0.11 1.01 1.51 0.61 0.16 1.02 1.37
400 0.18 0.05 1.01 1.57 0.14 0.05 1.01 1.03 0.29 0.08 0.95 1.14
600 0.10 0.04 1.01 2.70 0.06 0.03 1.01 1.30 0.18 0.04 1.02 0.92
800 0.06 0.03 1.01 1.77 0.04 0.02 1.01 1.81 0.14 0.04 1.09 1.23

1000 0.04 0.02 1.01 3.61 0.03 0.02 1.01 1.70 0.12 0.05 1.18 1.06
Avg 4.77 0.64 0.65 2.21 5.30 0.75 0.66 1.98 4.58 0.59 0.72 1.62

Overall Avg 3.00 0.48 0.54 1.65 3.55 0.71 0.59 1.65 3.05 0.50 0.52 1.32

Table 3: Results for increasing n values (with ρ = 0.5): Average percentage gaps with respect
to the KP-based relaxation.

16

from 20 to 1000, the average percentage gaps obtained by KY, MM, and Gurobi (all with a
time limit of one second). The results for the three families of instances (UNC, WEA, and
STR) are reported in different groups of columns. Each entry refers to 10 instances. The
average CPU time of KY was negligible, the one of MM was around half a second. The
average gaps produced by MM are less than one half of those produced by Gurobi, which
in turn are one half of those produced by KY. As could be expected, the average gaps of
both KY and MM clearly decrease when n grows. The same phenomenon is less evident for
Gurobi. For the instances with r = 5 and m = 20, the existing algorithms perform poorly
while MM performs quite well: its average percentage error (0.66) is one third of that of
Gurobi (1.94) and one seventh of that of KY (4.89).

Tables 4 and 5 examine the behavior of KY and MM on very large instances with r ∈
{50, 100}, m ∈ {200, 400, 800}, and n ∈ {4000, 8000}. For instances of this size, Gurobi
(with a time limit of one second) could never solve the LP relaxation at the root node and
it always failed to even produce a feasible solution. Increasing the time limit to 30 seconds
produced a feasible solution for less than 5% of the instances. For this reason, in all the
remaining tables we don’t report the results for Gurobi. KY and MM were always executed
with a time limit of one second.

The three groups of columns in Table 4 provide the average percentage gaps (over 10
instances) for uncorrelated instances with different values of ρ ∈ {0.25, 0.50, 0.75}, while
those in the companion Table 5 refer to the three families of instances (uncorrelated, weakly
correlated, and strongly correlated) for fixed ρ = 0.50. It is worth observing that, in both
sets of instances, the average CPU time of KY is no longer irrelevant: it is about one quarter
of a second, while that of MM (not reported) was almost always equal to the one second
time limit. The average percentage gap of KY is about one and a half times that of MM.
Among the instances of Table 4, those with ρ = 0.25 appear to be more challenging for
both heuristics: this could be partially due to the fact that relaxing all capacities to a single

ρ = 0.25 ρ = 0.50 ρ = 0.75
Instances KY MM KY MM KY MM
r m n %Gap CPU %Gap %Gap CPU %Gap %Gap CPU %Gap

50 200 4000 0.20 0.02 0.18 0.13 0.02 0.13 0.08 0.02 0.11
8000 0.07 0.02 0.07 0.04 0.02 0.06 0.03 0.03 0.06

400 4000 0.26 0.08 0.17 0.11 0.09 0.11 0.07 0.10 0.08
8000 0.05 0.09 0.06 0.03 0.11 0.04 0.02 0.09 0.04

800 4000 1.69 0.22 0.97 0.42 0.27 0.21 0.09 0.27 0.08
8000 0.05 0.26 0.06 0.03 0.27 0.04 0.02 0.30 0.03

100 200 4000 0.69 0.08 0.60 0.44 0.06 0.45 0.57 0.08 0.39
8000 0.27 0.07 0.27 0.30 0.07 0.21 0.47 0.05 0.22

400 4000 1.07 0.28 0.54 0.38 0.31 0.33 0.23 0.25 0.25
8000 0.18 0.30 0.19 0.11 0.24 0.15 0.08 0.27 0.13

800 4000 3.39 0.64 1.37 1.23 0.86 0.49 0.40 0.82 0.22
8000 0.24 0.84 0.19 0.10 0.83 0.12 0.07 0.87 0.15
Avg 0.68 0.24 0.39 0.28 0.26 0.20 0.18 0.26 0.15

Table 4: Results on large, uncorrelated instances with different ρ values: Average percentage
gaps with respect to the KP-based relaxation.

17

UNC WEA STR
Instances KY MM KY MM KY MM

r m n %Gap CPU %Gap %Gap CPU %Gap %Gap CPU %Gap
50 200 4000 0.13 0.02 0.13 0.10 0.02 0.10 0.31 0.05 0.19

8000 0.04 0.03 0.06 0.04 0.03 0.04 0.16 0.10 0.09
400 4000 0.11 0.09 0.11 0.08 0.09 0.09 0.29 0.11 0.20

8000 0.03 0.11 0.04 0.03 0.09 0.03 0.14 0.17 0.14
800 4000 0.42 0.27 0.21 0.36 0.27 0.20 0.47 0.28 0.31

8000 0.03 0.28 0.04 0.02 0.30 0.03 0.14 0.35 0.12
100 200 4000 0.44 0.06 0.45 0.35 0.06 0.35 0.62 0.07 0.40

8000 0.30 0.07 0.21 0.19 0.06 0.15 0.35 0.12 0.30
400 4000 0.38 0.31 0.33 0.30 0.29 0.27 0.64 0.26 0.34

8000 0.11 0.24 0.15 0.09 0.25 0.10 0.32 0.30 0.21
800 4000 1.23 0.87 0.49 1.15 0.68 0.49 1.21 0.79 0.49

8000 0.10 0.83 0.12 0.08 1.09 0.09 0.31 1.10 0.22
Avg 0.28 0.27 0.20 0.23 0.27 0.16 0.41 0.31 0.25

Table 5: Results on large instances of different families with ρ = 0.5: Average percentage
gaps with respect to the KP-based relaxation.

knapsack weakens the upper bound when the instance includes small capacities, as happens
for small values of ρ. Table 5 shows that strongly correlated instances are most difficult to
solve, as usually happens for classical knapsack problems.

All instances addressed so far were generated with R = 1000, R being the maximum value
of profits and weights. The complexity of knapsack problems is known to be dependent on
the magnitude of the input. In particular, the time complexity of the constructive heuristic
of Section 4.1 is a function of the knapsack capacities. Table 6 examines the performance
of the heuristics for large instances of the three families generated with different values of
R ∈ {100, 1000, 10000}. We don’t report the CPU times of the two heuristics as they were
much the same as for Tables 4 and 5. The results show no remarkable difference between the
two approaches: both produce high quality solutions, MM being slightly better for R ≤ 1000,
KY for R = 10, 000. These are the three values of R tested by Kataoka and Yamada [11].
Limited additional experiments with larger values of R showed that KY generally performs
better than MM also for larger R values (although for R ≥ 25, 000 both algorithms fail due
to integer overflow).

Finally, following what has been done in Kataoka and Yamada [11], we tested whether
a smaller number of possible objective function values has an effect on the performance of
the algorithms. To this end, we considered an additional family of instances obtained by
generating weights and capacities as in the other families (with R = 1000) but profits

• pj = 1 or 100 with equal probability (binary instances).

In Table 7 we evaluate large binary instances against the corresponding uncorrelated
instances, for different values of ρ ∈ {0.25, 0.50, 0.75}. As already observed in [11], binary
instances with smaller ρ values, i.e., with smaller capacities, are much harder than their
uncorrelated counterparts as only a fraction of high profit items can be accommodated into
small knapsacks. For such instances (ρ ≤ 0.5), the average percentage gap of both heuristics

18

U
N
C

W
E
A

S
T
R

In
st
a
n
ce
s

R
=

1
0
2

R
=

1
0
3

R
=

1
0
4

R
=

1
0
2

R
=

1
0
3

R
=

1
0
4

R
=

1
0
2

R
=

1
0
3

R
=

1
0
4

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

r
m

n
%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

5
0

2
0
0

4
0
0
0

0
.1
2

0
.1
2

0
.1
3

0
.1
3

0
.1
3

0
.2
2

0
.1
0

0
.0
8

0
.1
0

0
.1
0

0
.1
0

0
.1
6

0
.2
9

0
.1
3

0
.3
1

0
.1
9

0
.3
3

0
.3
8

8
0
0
0

0
.0
5

0
.0
5

0
.0
4

0
.0
6

0
.0
4

0
.0
8

0
.0
4

0
.0
3

0
.0
4

0
.0
4

0
.0
4

0
.0
5

0
.1
5

0
.0
7

0
.1
6

0
.0
9

0
.1
7

0
.3
3

4
0
0

4
0
0
0

0
.0
9

0
.0
9

0
.1
1

0
.1
1

0
.1
3

0
.1
5

0
.0
8

0
.0
6

0
.0
8

0
.0
8

0
.1
1

0
.1
2

0
.2
6

0
.1
2

0
.2
9

0
.2
0

0
.3
5

0
.3
6

8
0
0
0

0
.0
4

0
.0
4

0
.0
3

0
.0
4

0
.0
3

0
.3
1

0
.0
3

0
.0
2

0
.0
3

0
.0
3

0
.0
3

0
.2
6

0
.1
4

0
.0
7

0
.1
4

0
.1
4

0
.1
5

0
.3
1

8
0
0

4
0
0
0

0
.0
9

0
.0
9

0
.4
2

0
.2
1

0
.6
7

0
.4
4

0
.0
7

0
.0
7

0
.3
6

0
.2
0

0
.6
1

0
.4
6

0
.2
1

0
.1
5

0
.4
7

0
.3
1

0
.6
9

0
.6
3

8
0
0
0

0
.0
3

0
.0
4

0
.0
3

0
.0
4

0
.0
4

0
.0
7

0
.0
3

0
.0
2

0
.0
2

0
.0
3

0
.0
3

0
.0
5

0
.1
3

0
.0
7

0
.1
4

0
.1
2

0
.1
9

0
.2
8

1
0
0

2
0
0

4
0
0
0

0
.4
0

0
.4
3

0
.4
4

0
.4
5

0
.4
6

0
.5
2

0
.3
4

0
.3
1

0
.3
5

0
.3
5

0
.3
6

0
.4
0

0
.6
0

0
.3
5

0
.6
2

0
.4
0

0
.6
4

0
.5
0

8
0
0
0

0
.2
9

0
.2
0

0
.3
0

0
.2
1

0
.3
0

0
.2
3

0
.1
7

0
.1
3

0
.1
9

0
.1
5

0
.1
9

0
.1
6

0
.3
4

0
.2
1

0
.3
5

0
.3
0

0
.3
4

0
.8
5

4
0
0

4
0
0
0

0
.3
2

0
.3
1

0
.3
8

0
.3
3

0
.4
2

1
.4
4

0
.2
5

0
.2
3

0
.3
0

0
.2
7

0
.3
3

0
.9
9

0
.5
6

0
.2
7

0
.6
4

0
.3
5

0
.7
5

1
.1
2

8
0
0
0

0
.1
2

0
.1
3

0
.1
1

0
.1
5

0
.1
2

0
.9
0

0
.1
0

0
.0
9

0
.0
9

0
.1
0

0
.1
0

0
.7
7

0
.2
8

0
.1
3

0
.3
2

0
.2
1

0
.3
5

0
.7
5

8
0
0

4
0
0
0

0
.4
7

0
.2
8

1
.2
3

0
.4
9

1
.3
3

0
.5
8

0
.4
1

0
.2
4

1
.1
5

0
.4
9

1
.3
1

0
.6
5

0
.5
9

0
.2
8

1
.2
1

0
.4
9

1
.4
4

0
.7
5

8
0
0
0

0
.1
0

0
.1
0

0
.1
0

0
.1
2

0
.1
2

0
.1
9

0
.0
7

0
.0
7

0
.0
8

0
.0
9

0
.0
9

0
.1
5

0
.2
6

0
.1
4

0
.3
1

0
.2
2

0
.3
6

0
.4
3

A
v
g

0
.1
8

0
.1
6

0
.2
8

0
.2
0

0
.3
2

0
.4
3

0
.1
4

0
.1
1

0
.2
3

0
.1
6

0
.2
7

0
.3
5

0
.3
2

0
.1
7

0
.4
1

0
.2
5

0
.4
8

0
.5
6

T
ab

le
6:

R
es

u
lt

s
on

la
rg

e
in

st
an

ce
s

of
d
iff

er
en

t
fa

m
il
ie

s
an

d
d
iff

er
en

t
va

lu
es

of
R

:
A

ve
ra

ge
p

er
ce

n
ta

ge
ga

p
s

w
it

h
re

sp
ec

t
to

th
e

K
P

-b
as

ed
re

la
xa

ti
on

.

B
in
a
ry

U
n
co

rr
el
a
te
d

ρ
=

0
.2
5

ρ
=

0
.5
0

ρ
=

0
.7
5

ρ
=

0
.2
5

ρ
=

0
.5
0

ρ
=

0
.7
5

In
st
a
n
ce
s

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

K
Y

M
M

r
m

n
%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

%
G
a
p

5
0

2
0
0

4
0
0
0

1
.5
7

0
.6
3

0
.5
8

0
.6
1

0
.0
1

0
.0
1

0
.2
0

0
.1
8

0
.1
3

0
.1
3

0
.0
8

0
.1
1

8
0
0
0

0
.6
5

0
.3
5

0
.2
9

0
.4
5

0
.0
1

0
.0
0

0
.0
7

0
.0
7

0
.0
4

0
.0
6

0
.0
3

0
.0
6

4
0
0

4
0
0
0

2
.5
8

0
.7
8

0
.6
6

0
.5
0

0
.0
1

0
.0
1

0
.2
6

0
.1
7

0
.1
1

0
.1
1

0
.0
7

0
.0
8

8
0
0
0

0
.5
6

0
.3
1

0
.1
8

0
.3
3

0
.0
1

0
.0
0

0
.0
5

0
.0
6

0
.0
3

0
.0
4

0
.0
2

0
.0
4

8
0
0

4
0
0
0

6
.1
0

3
.4
7

2
.4
7

1
.4
4

0
.0
1

0
.0
1

1
.6
9

0
.9
7

0
.4
2

0
.2
1

0
.0
9

0
.0
8

8
0
0
0

0
.9
4

0
.4
8

0
.2
0

0
.2
8

0
.0
1

0
.0
0

0
.0
5

0
.0
6

0
.0
3

0
.0
4

0
.0
2

0
.0
3

1
0
0

2
0
0

4
0
0
0

3
.2
6

1
.5
8

1
.5
9

1
.5
8

0
.0
4

0
.0
2

0
.6
9

0
.6
0

0
.4
4

0
.4
5

0
.5
7

0
.3
9

8
0
0
0

1
.4
5

0
.8
5

1
.1
4

1
.1
6

0
.0
2

0
.0
1

0
.2
7

0
.2
7

0
.3
0

0
.2
1

0
.4
7

0
.2
2

4
0
0

4
0
0
0

5
.7
8

1
.6
2

1
.8
8

1
.2
4

0
.0
2

0
.0
1

1
.0
7

0
.5
3

0
.3
8

0
.3
3

0
.2
3

0
.2
5

8
0
0
0

1
.4
0

0
.7
0

0
.5
5

0
.7
4

0
.0
1

0
.0
1

0
.1
8

0
.1
9

0
.1
1

0
.1
5

0
.0
8

0
.1
3

8
0
0

4
0
0
0

8
.6
3

4
.0
2

4
.5
2

2
.0
5

0
.0
3

0
.0
1

3
.3
9

1
.3
7

1
.2
3

0
.4
9

0
.4
0

0
.2
2

8
0
0
0

2
.6
0

0
.8
9

0
.6
9

0
.6
6

0
.0
1

0
.0
1

0
.2
4

0
.1
9

0
.1
0

0
.1
2

0
.0
7

0
.1
5

A
v
g

2
.9
6

1
.3
1

1
.2
3

0
.9
2

0
.0
2

0
.0
1

0
.6
8

0
.3
9

0
.2
8

0
.2
0

0
.1
8

0
.1
5

T
ab

le
7:

R
es

u
lt

s
on

la
rg

e
b
in

ar
y

an
d

u
n
co

rr
el

at
ed

in
st

an
ce

s
w

it
h

d
iff

er
en

t
ρ

va
lu

es
:

A
ve

ra
ge

p
er

ce
n
ta

ge
ga

p
s

w
it

h
re

sp
ec

t
to

th
e

K
P

-b
as

ed
re

la
xa

ti
on

.

19

is about five times larger than for uncorrelated instances. Among the two algorithms, the
average percentage gap of MM is about one half that of KY.

The overall outcome of our computational experiments can be summarized as follows:

• Small instances. MM is the best approach for strongly correlated instances and for
all benchmarks with classes of the same cardinality. Gurobi prevails for uncorrelated
and weakly correlated instances of classes with different cardinalities. KY is always
extremely fast, but it never gives the best solutions.

• Large instances. MM is the best method for instances generated with R ≤ 10, 000,
while KY wins for larger R values. Gurobi is never competitive.

6. Conclusions

We have considered a variant of the multiple knapsack problem in which some assignment-
type side constraints have to be satisfied. The input consists of m knapsacks and n items,
which are partitioned into r classes: A knapsack can only contain items of the same class.
The problem is to assign a class and a set of items to each knapsack, in such a way that no
knapsack is assigned a set of items exceeding its capacity and the total profit of the assigned
items is maximized. The problem finds applications in a number of logistics sectors. We have
presented algorithms for the computation of upper and lower bounds. The upper bounds have
been derived from the solution to Lagrangian and surrogate relaxations of a mathematical
model of the problem. Lower bounds have been obtained through preprocessing techniques
and a constructive heuristic coupled with a metaheuristic refinement. We have examined the
computational complexity of the proposed methods as well as their practical performance
through extensive computational experiments, showing that they are more effective than
state-of-the-art methods, outclassing them on some benchmarks from the literature.

Acknowledgements

This research was supported by Air Force Office of Scientific Research (under award number
FA9550-17-1-0067). We are indebted to Seiji Kataoka and Takeo Yamada for making avail-
able their upper and lower bounding computer codes and for providing assistance for their
practical use. We thank two referees for useful comments.

References

[1] S. Balbal, Y. Laalaoui, and M. Benyettou. Local search heuristic for multiple knapsack
problem. International Journal of Intelligent Information Systems, 4:35–39, 2015.

[2] C. Chekuri and S. Khanna. A polynomial time approximation scheme for the multiple
knapsack problem. SIAM Journal on Computing, 35:713–728, 2006.

20

[3] G. Dahl and N. Foldnes. LP based heuristics for the multiple knapsack problem with
assignment restrictions. Annals of Operations Research, 146:91–104, 2006.

[4] M. Dawande, J. Kalagnanam, P. Keskinocak, F.S. Salman, and R. Ravi. Approximation
algorithms for the multiple knapsack problem with assignment restrictions. Journal of
Combinatorial Optimization, 4:171–186, 2000.

[5] J.E. Diaz, J. Handl, and D.-L. Xu. Integrating meta-heuristics, simulation and exact
techniques for production planning of a failure-prone manufacturing system. European
Journal of Operational Research, 266:976–989, 2018.

[6] N.B. Dimitrov, D. Solow, J. Szmerekovsky, and J. Guo. Emergency relocation of items
using single trips: Special cases of the multiple knapsack assignment problem. European
Journal of Operational Research, 258:938–942, 2017.

[7] A. Fukunaga. Integrating symmetry, dominance, and bound-and-bound in a multiple
knapsack solver. In L. Perron and M.A. Trick, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems: 5th
International Conference, CPAIOR 2008 Paris, France, May 20-23, 2008 Proceedings,
pages 82–96, Berlin, Heidelberg, 2008. Springer.

[8] A. Fukunaga. A branch-and-bound algorithm for hard multiple knapsack problems.
Annals of Operations Research, 184:97–119, 2011.

[9] A. Fukunaga and R. Korf. Bin completion algorithms for multicontainer packing, knap-
sack, and covering problems. Journal of Artificial Intelligence Research, 28:393–427,
2007.

[10] K. Jansen. Parameterized approximation scheme for the multiple knapsack problem.
SIAM Journal on Computing, 39:1392–1412, 2009.

[11] S. Kataoka and T. Yamada. Upper and lower bounding procedures for the multiple
knapsack assignment problem. European Journal of Operational Research, 237:440–447,
2014.

[12] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, 2004.

[13] Y. Laalaoui and R. M’Hallah. A binary multiple knapsack model for single machine
scheduling with machine unavailability. Computers & Operations Research, 72:71–82,
2016.

[14] M.E. Lalami, M. Elkihel, D.E. Baz, and V. Boyer. A procedure-based heuristic for
0-1 multiple knapsack problems. International Journal of Mathematics in Operational
Research, 4:214–224, 2012.

[15] E. Lalla-Ruiz and S. Voß. A Biased Random-Key Genetic Algorithm for the Multi-
ple Knapsack Assignment Problem, pages 218–222. Springer International Publishing,
Cham, 2015.

21

[16] S. Martello and P. Toth. A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics, 3:275–288, 1981.

[17] S. Martello and P. Toth. A heuristic algorithm for the multiple knapsack problem.
Computing, 27:93–112, 1981.

[18] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Chichester, 1990.

[19] D. Pisinger. An exact algorithm for large multiple knapsack problems. European Journal
of Operational Research, 114:528–541, 1999.

[20] T. Yamada and T. Takeoka. An exact algorithm for the fixed-charge multiple knapsack
problem. European Journal of Operational Research, 192:700–705, 2009.

[21] L. Zhen, K. Wang, S. Wang, and X. Qu. Tug scheduling for hinterland barge transport:
A branch-and-price approach. European Journal of Operational Research, 265:119–132,
2018.

22

