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A B S T R A C T

We consider a stochastic version of the 0–1 Knapsack Problem in which, in addition to profit and weight,
each item is associated with a probability of exploding and destroying all the contents of the knapsack.
The objective is to maximise the expected profit of the selected items. The resulting problem, denoted as
0–1 Time-Bomb Knapsack Problem (01-TB-KP), has applications in logistics and cloud computing scheduling.
We introduce a nonlinear mathematical formulation of the problem, study its computational complexity,
and propose techniques to derive upper and lower bounds using convex optimisation and integer linear
programming. We present three exact approaches based on enumeration, branch and bound, and dynamic
programming, and computationally evaluate their performance on a large set of benchmark instances. The
computational analysis shows that the proposed methods outperform the direct application of nonlinear solvers
on the mathematical model, and provide high quality solutions in a limited amount of time.
1. Introduction

The 0–1 Knapsack Problem (01-KP) is one of the most famous
problems in combinatorial optimisation. In this problem, a planner is
given a set of items, each associated with a positive profit and weight,
and a knapsack with limited capacity. The objective is to select a subset
of items whose total weight does not exceed the knapsack capacity and
whose total profit is maximal. This problem has been widely studied
in the literature because of its practical and theoretical relevance, and
because it arises as a subproblem in more complex problems. It is
known that the 01-KP is -hard, although it can be solved in pseudo-
polynomial time by dynamic programming (see, e.g., Martello and Toth
(1990) and Kellerer et al. (2004)).

In this paper we introduce a stochastic variant of the 0–1 Knapsack
Problem, in which some items are time-bombs: they can explode with
a given probability (i.e., following a Bernoulli distribution). If an item
explodes, the whole content of the knapsack is lost. The objective is
then to maximise the expected profit of the packed items. We call
this problem the 0–1 Time-Bomb Knapsack Problem (01-TB-KP). The
interest in studying time-bomb versions of the 01-KP and its variants
stems from practical applications in transporting hazardous material
and in the management of data centres.

For the first application, consider a freight forwarder who has to
send goods using a vehicle of fixed capacity. The forwarder can choose
which deliveries to accept to maximise the total profit earned from
customers without exceeding the vehicle capacity. When some of the

∗ Corresponding author.
E-mail addresses: michele.monaci@unibo.it (M. Monaci), c.pikeburke@imperial.ac.uk (C. Pike-Burke), alberto.santini@upf.edu (A. Santini).

goods to send are hazardous, this problem can be modelled as a 01-
TB-KP. This may happen, for example, for lithium-ion batteries that
can catch fire under unexpected mechanic stress (Farrington, 2001;
Lisbona and Snee, 2011), destroying the whole content of the vehicle
transporting them. In the general case, the forwarder might have an
entire fleet of vehicles available; their objective is then to balance the
cost of using an additional vehicle with the profits earned from addi-
tional shipments. The deterministic version of this problem, in which
each vehicle corresponds to a knapsack, is known in the literature as
the Fixed-Charge Multiple Knapsack Problem (FC-MKP) (Yamada and
Takeoka, 2009). When considering the time-bomb version, the 01-TB-
KP can be used as a subproblem to generate packings for the individual
vehicles.

Similarly, a real-life application of the 01-TB-KP arises in the man-
agement of data centres (see, e.g., Srikantaiah et al. (2008), Cambazard
et al. (2015) for related problems). In this case, packing items into
a knapsack corresponds to allocating virtual machines to a server or
applications to a container. Each customer application running on a
container earns a profit, but if known vulnerabilities affect some of the
applications, there is a probability that an attacker can exploit them
and take over the entire container. Similar to the logistic application
mentioned above, one can consider FC-MKP generalisations in which
a planner must balance profits with the fixed costs incurred when
spawning new containers (or buying new servers). The corresponding
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time-bomb variants can use the 01-TB-KP as a subproblem to allocate
applications to the individual containers.

The paper is organised as follows. In the next section we give a
formal definition of the problem and discuss similar stochastic prob-
lems related to the knapsack problem that have been considered in
the literature. Section 3 introduces two relaxations of the problem
that can be used to compute upper bounds on the optimal solution
value, and a mathematical model that produces a heuristic solution.
Section 4 presents alternative methods for computing the exact solution
of the problem, including a naive enumeration approach, a branch-and-
bound algorithm, and a Dynamic Programming (DP) scheme. Finally,
these algorithms are computationally evaluated in Section 5 on a
large benchmark of instances, comparing their performance with those
of state-of-the-art solvers for Mixed Integer Non Linear Programming
(MINLP).

The main contributions of the paper are the following:

• We introduce the 01-TB-KP, a stochastic variant of the classic 0–
1 Knapsack Problem, that has relevant applications in logistics
and data centre design. To the best of our knowledge, this is
the first stochastic variant of the Knapsack Problem in which
the total payoff is governed by a discrete Bernoulli distribution
whose parameters depend multiplicatively on the properties of
the individual items in the solution, thus filling a gap in the
literature (see Section 2.1).

• We introduce a mathematical formulation for the 01-TB-KP,
which uses a polynomial number of variables and constraints. We
prove that the problem is weakly -complete and introduce
alternative exact algorithms to solve it.

• We introduce a large benchmark set of instances derived from
hard 01-KP instances from the literature, and use it to compare
the performance of alternative methods for solving the problem.
We make both the instances and the solvers available under an
open source licence (Santini, 2020).

2. Problem definition

In the 01-TB-KP we are given a knapsack with capacity 𝑐 ∈ N and
𝑛 ∈ N items. Each item 𝑗 has a weight 𝑤𝑗 ∈ N, a profit 𝑝𝑗 ∈ N, and
a probability 𝑞𝑗 ∈ [0, 1) of exploding. As in the 01-KP, the problem
requires us to determine a subset of items to pack in the knapsack
whose total weight does not exceed the given capacity. However, since
each item has a given probability of exploding and whenever a selected
item explodes the entire content of the knapsack is lost, the objective
of the problem is to maximise the total expected profit.

To simplify the notation we introduce, for each item 𝑗, the proba-
bility 𝜋𝑗 = 1 − 𝑞𝑗 that item 𝑗 does not explode, and denote by 𝑇 =

{

𝑗 ∈
{1,… , 𝑛} ∶ 𝜋𝑗 < 1

}

the set of time-bomb items.
The problem can be modelled using a non-linear formulation in

hich each binary variable 𝑥𝑗 takes value 1 if and only if item 𝑗 is
selected. In addition, for notation convenience, we introduce variables
𝛼𝑗 = 1−𝑞𝑗𝑥𝑗 (for 𝑗 ∈ 𝑇 ) which have the following convenient property:
𝛼𝑗 = 1 − 𝑞𝑗 = 𝜋𝑗 if item 𝑗 is selected (i.e., 𝑥𝑗 = 1) and 𝛼𝑗 = 1 otherwise
i.e., 𝑥𝑗 = 0).

A model for the 01-TB-KP is thus:

ax

( 𝑛
∑

𝑗=1
𝑝𝑗𝑥𝑗

)(

∏

𝑗∈𝑇
𝛼𝑗

)

(1)

s.t.
𝑛
∑

𝑗=1
𝑤𝑗𝑥𝑗 ≤ 𝑐 (2)

𝛼𝑗 = 1 − 𝑞𝑗𝑥𝑗 𝑗 ∈ 𝑇 (3)

𝑥𝑗 ∈ {0, 1} 𝑗 ∈ {1,… , 𝑛} (4)

𝛼𝑗 ∈ {1 − 𝑞𝑗 , 1} 𝑗 ∈ 𝑇 (5)
2

he objective function (1), which is a polynomial of degree at most
𝑇 | + 1, maximises the expected profit of packed items (in the first
art) taking into account that if even one of the packed items explodes,
he whole profit is lost (in the second part). The knapsack capacity
onstraint is imposed by (2), while Eq. (3) links variables 𝑥 and 𝛼, and
onstraints (4) and (5) define the domain of the variables.

.1. Related problems

Stochastic Knapsack Problems (SKP) first appeared in the literature
n the late 1970’s (Steinberg and Parks, 1979). Typically, the term
tochastic knapsack is used to define a variant of the 01-KP that incor-
orates some elements of stochasticity. Since there are many alternative
ays of handling uncertainty, different problems have been introduced

n the literature and, thus, it is difficult to give a unique definition of
he stochastic knapsack problem.

In many problems, the set of items is known in advance, but uncer-
ainty affects some of their characteristics, i.e., the weight (Steinberg
nd Parks, 1979; Morton and Wood, 1998) or the profit (Dean et al.,
008; Bhalgat et al., 2011). Most commonly, the weight is allowed to
e uncertain, while the profit is either fixed or set to be a multiple of
he weight. Indeed, uncertainty in the objective function can be dealt
ith by transforming the problem into an equivalent one in which
ncertainty affects the constraints only.

In Henig (1990) the objective is to maximise the probability that
he profit of the packed items exceeds a given minimum profit. In
ainville-Cohn and Barnhart (1998) a two-stage optimisation approach
ith recourse was used. In the first stage, items are packed without

onstraints, whereas in the second stage the actual weights become
nown, all items are collected, and a penalty is incurred for each unit
f overfull capacity. The model was later extended in Merzifonluoğlu
t al. (2012) to allow for earning a profit for each unit of unused
apacity. In Bertsimas and Sim (2003) the robust knapsack problem is
odelled using an Integer Linear Programming (ILP) formulation under

he assumption that the weight of at most a given number of items
an differ from the nominal value. Later, Monaci and Pferschy (2013)
nalyse the maximum deviation of the solution value from the optimal
alue of the deterministic problem in some relevant situations.

Klopfenstein and Nace (2008) consider the chance-constrained (CC)
version of the problem, in which the capacity constraint has to be satis-
fied with at least a given probability. Goyal and Ravi (2010) proposed
a polynomial-time approximation scheme for the CC SKP solving a
linear programming reformulation of the problem, which provides tight
lower bounds on the collected profit. Song et al. (2014) further expand
on this, and consider both the CC knapsack and the CC set-packing
problem, while Cheng et al. (2014) study the CC quadratic knapsack
problem. For both the recourse and the chance-constrained SKP, Kosuch
and Lisser (2010) derive upper bounds from a linear relaxation and use
them in a branch and bound algorithm.

Kosuch and Lisser (2011) present a two-stage, chance-constrained
SKP. In this problem, in the first stage, the planner packs the knapsack
under a chance-constraint on the capacity inequality. In the second
stage, once the actual weights are revealed, the planner can remove
items until the capacity constraint is satisfied. Range et al. (2018)
introduce a similar problem, with the difference that in the second stage
the planner can accept solutions that violate the capacity constraint
at the expense of a penalty that is monotonically increasing with the
excess capacity.

Dean et al. (2008) consider a version of the problem in which the
real weight of an item becomes known as soon as it is packed. In this
problem, the planner packs items one-by-one and looks for a policy
that, given the current status of the knapsack, suggests which item to
attempt to pack next. If the weight of the selected item is larger than
the remaining capacity, the policy terminates. Assuming access to a

simulator, Pike-Burke and Grünewälder (2017) give a policy for the



Computers and Operations Research 145 (2022) 105848M. Monaci et al.

p

SKP of (Dean et al., 2008) which is 𝜖-optimal with high probability
and allows for both stochastic weights and profits.

Finally, we mention that there exists a large body of literature about
knapsack problems in which uncertainty is related to a temporal factor.
For example, the item set can vary over time and the planner can select
an item only when it materialises (see, e.g., Ross and Tsang (1989),
Ross and Yao (1990), Kleywegt and Papastavrou (1998), Papastavrou
et al. (1996), Kleywegt and Papastavrou (2001)), or the capacity of the
knapsack can change with time (see, e.g., (He et al., 2016, 2017)). As
these problems appear to be quite different from the 01-TB-KP, we do
not discuss them here.

3. Upper and lower bounds for 01-TB-KP

In this section we introduce upper and lower bounds on the objec-
tive value of the 01-TB-KP. We will use these bounds when devising a
branch-and-bound algorithm in Section 4.

3.1. Combinatorial upper bound

Consider a deterministic 01-KP instance in which the profit of
each item 𝑗 is set to 𝑝𝑗𝜋𝑗 . This problem has the same feasible set as
the original problem, while its objective function overestimates the
original one for each feasible solution. In particular, this objective is
the expected profit when a time-bomb which explodes only causes the
loss of profit for that item, while the total profit of the remaining items
is unchanged. Thus, this deterministic problem is a relaxation of the
01-TB-KP, and its optimal solution value provides an upper bound 𝑧̄1,
as formally shown in the following theorem.

Theorem 3.1. The optimal objective value 𝑧̄1 of the following deterministic
01-KP

𝑧̄1 = max
𝑛
∑

𝑗=1
𝑝𝑗𝜋𝑗𝑥𝑗 (6)

s.t.
𝑛
∑

𝑗=1
𝑤𝑗𝑥𝑗 ≤ 𝑐 (7)

𝑥𝑗 ∈ {0, 1} 𝑗 ∈ {1,… , 𝑛} (8)

is an upper bound for the 01-TB-KP.

Proof. As already observed, any feasible solution (𝑥, 𝛼) of model (1)–
(5) defines a solution 𝑥 that is feasible for (6)–(8). We have to show
that, for this solution, function (6) bounds (1) from above. Indeed:
( 𝑛
∑

𝑗=1
𝑝𝑗𝑥𝑗

)(

∏

𝑗∈𝑇
𝛼𝑗

)

=
∑

𝑗∉𝑇

(

𝑝𝑗𝑥𝑗
∏

𝑗′∈𝑇
𝛼𝑗′

)

+
∑

𝑗∈𝑇

(

𝑝𝑗𝑥𝑗
∏

𝑗′∈𝑇
𝛼𝑗′

)

≤ (9)

≤
∑

𝑗∉𝑇
𝑝𝑗𝑥𝑗 +

∑

𝑗∈𝑇

(

𝑝𝑗𝑥𝑗
∏

𝑗′∈𝑇
𝛼𝑗′

)

≤ (10)

≤
∑

𝑗∉𝑇
𝑝𝑗𝑥𝑗 +

∑

𝑗∈𝑇
𝑝𝑗𝑥𝑗𝛼𝑗 =

∑

𝑗∉𝑇
𝑝𝑗𝑥𝑗 +

∑

𝑗∈𝑇
𝑝𝑗𝑥𝑗

(

1 − 𝑞𝑗𝑥𝑗
)

= (11)

=
∑

𝑗∉𝑇
𝑝𝑗
(

1 − 𝑞𝑗
)

𝑥𝑗 +
∑

𝑗∈𝑇
𝑝𝑗
(

1 − 𝑞𝑗𝑥𝑗
)

𝑥𝑗 = (12)

=
∑

𝑗∉𝑇
𝑝𝑗
(

1 − 𝑞𝑗
)

𝑥𝑗 +
∑

𝑗∈𝑇
𝑝𝑗
(

1 − 𝑞𝑗
)

𝑥𝑗 = (13)

=
𝑛
∑

𝑗=1
𝑝𝑗
(

1 − 𝑞𝑗
)

𝑥𝑗 , (14)

where we pass from (10) to (11) because ∏

𝑗′∈𝑇 𝛼𝑗′ ≤ 1, from (11) to
(12) because ∏

𝑗′∈𝑇 𝛼𝑗′ ≤ 𝛼𝑗 for all 𝑗 ∈ 𝑇 , from (12) to (13) because
1 − 𝑞𝑗 = 1 for 𝑗 ∉ 𝑇 and, finally, from (13) to (14) due to 𝑥𝑗 = 𝑥2𝑗 .
By the definition of 𝜋𝑗 = 1 − 𝑞𝑗 , the last term is equal to objective
3

function (6). □
3.2. Upper bound from the continuous relaxation

Dropping the integrality requirement (4) in model (1)–(5) yields
another relaxation of the 01-TB-KP. Using the definition 𝛼𝑗 = 1 − 𝑞𝑗𝑥𝑗 ,
we formulate the resulting relaxed problem in terms of the 𝑥 variables
only as

max
{

𝑓 (𝑥) s.t. 𝑥 ∈ 𝑃
}

,

where 𝑓 (𝑥) =
(
∑𝑛

𝑗=1 𝑝𝑗𝑥𝑗
) (

∏

𝑗∈𝑇 (1 − 𝑞𝑗𝑥𝑗 )
)

is the objective function,
and 𝑃 = {𝑥 ∈ [0, 1]𝑛 ∶

∑𝑛
𝑗=1 𝑤𝑗𝑥𝑗 ≤ 𝑐} is the set of feasible solutions. In

the following we will denote by 𝑧̄2 the optimal solution value of this
relaxation.

Observe that 𝑃 is a convex set and that the objective function (to
be maximised) is concave, as 𝑓 (𝑥) is the product of a linear function
and some non-negative affine functions (Lobo et al., 1998). Thus, we
can obtain an optimal solution for this relaxation using the Frank-
Wolf algorithm (Frank and Wolfe, 1956). This approach is an iterative
method that starts with an initial feasible solution and, at each iter-
ation, determines an improving solution until it reaches optimality.
In particular, denoting by 𝑥̄ the current solution, one can obtain an
improving direction (say 𝑦̄) by solving the auxiliary problem

𝑦̄ = argmax
{

∇𝑓 (𝑥̄)⊺𝑦 s.t. 𝑦 ∈ 𝑃
}

. (15)

If ∇𝑓 (𝑥̄)⊺(𝑦̄ − 𝑥̄) ≤ 0 then the current solution is a local (and, hence,
global) optimum. Otherwise, the next feasible solution is obtained by
maximising the objective function over the segment [𝑥̄, 𝑦̄]. By definition,
this ensures that the new solution improves over the current one,
i.e., the method converges to an optimum. Observe that maximising
𝑓 over a segment is a one-dimensional optimisation problem that can
be solved using a line search approach.

In our implementation, the initial solution corresponds to the solu-
tion in which we take no items. Given 𝑥̄, the auxiliary problem (15)
corresponds to the continuous relaxation of a (deterministic) 01-KP
problem in which each item 𝑗 has profit 𝜕𝑓 (𝑥̄)

𝜕𝑥𝑗
. As such, one can use the

well-known Dantzig’s algorithm to find the critical item in linear time
(see Balas (1980)). If the resulting solution is not optimal, our algorithm
determines the next 𝑥̄ using the line search mentioned above.

Observation. While the continuous relaxation of the deterministic 01-
KP has the nice property that it includes at most one fractional item,
the same does not apply for the continuous relaxation of the 01-TB-
KP. Indeed, we can devise instances in which all items are selected
at a fractional value. Consider, e.g., an instance with an even number
𝑛 > 4 of identical items, each having profit 𝑝𝑗 = 1, weight 𝑤𝑗 = 1, and
robability 𝜋𝑗 = 1

2 , and let 𝑐 ≥ 𝑛 be the knapsack capacity. It is easy
to show that the continuous relaxation of this instance has a unique
optimal solution in which 𝑥𝑗 =

1
2 for all 𝑗.

We conclude this section with another negative property of the
continuous relaxation of the 01-TB-KP. Denoting by 𝑧∗ the value of an
optimal 01-TB-KP integer solution, we can prove that the ratio 𝑧̄2∕𝑧∗ is
arbitrarily large, i.e., the upper bound provided by the relaxation can
be arbitrarily bad in terms of approximation.

Theorem 3.2. The continuous relaxation of the 01-TB-KP can be
arbitrarily bad.

Proof. Consider an instance with 𝑛 identical items, with 𝑝𝑗 = 1, 𝑤𝑗 = 1,
and 𝑞𝑗 = 𝑞 for all 𝑗 ∈ {1,… , 𝑛}. Assume that the knapsack capacity
is sufficiently large, i.e., 𝑐 ≥ 𝑛; finally, assume that 𝑞 > 1

2 . It is easy
to see that the integer optimal solution consists in taking exactly one
item and that the associated optimal value is 𝑧∗ = 1 − 𝑞. Denote by
𝑓𝑛,𝑞(𝑥) =

(
∑𝑛

𝑗=1 𝑥𝑗
)
∏𝑛

𝑗=1
(

1−𝑞𝑥𝑗
)

the objective function of the problem.
Dropping the integrality requirement for variables 𝑥, function 𝑓𝑛,𝑞 is
a multi-variate continuous function, whose maximum can be derived
analytically.
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We first observe that, for any 𝑖 ∈ {1,… , 𝑛}, the objective function
an be rewritten as follows:

𝑛,𝑞(𝑥) =
( 𝑛
∑

𝑗=1
𝑥𝑗

) 𝑛
∏

𝑗=1

(

1 − 𝑞𝑥𝑗
)

= 𝑥𝑖
𝑛
∏

𝑗=1

(

1 − 𝑞𝑥𝑗
)

+
(

∑

𝑗≠𝑖
𝑥𝑗

) 𝑛
∏

𝑗=1

(

1 − 𝑞𝑥𝑗
)

=

= 𝑥𝑖(1 − 𝑞𝑥𝑖)
∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

+
(

∑

𝑗≠𝑖
𝑥𝑗

)

(1 − 𝑞𝑥𝑖)
∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

=

= 𝑥𝑖
∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

− 𝑞𝑥2𝑖
∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

+
(

∑

𝑗≠𝑖
𝑥𝑗

)

∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

− 𝑞𝑥𝑖

(

∑

𝑗≠𝑖
𝑥𝑗

)

∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

.

Once 𝑓𝑛,𝑞 is written in this form, we can easily compute its first partial
derivatives:
𝜕𝑓
𝜕𝑥𝑖

(𝑥) =
∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

− 2𝑞𝑥𝑖
∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

− 𝑞
(

∑

𝑗≠𝑖
𝑥𝑗

)

∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

=

=
(

1 − 𝑞
∑

𝑗≠𝑖
𝑥𝑗 − 2𝑞𝑥𝑖

)

∏

𝑗≠𝑖

(

1 − 𝑞𝑥𝑗
)

.

For 𝜕𝑓
𝜕𝑥𝑖

to vanish, either a term
(

1 − 𝑞𝑥𝑗
)

or the term
(

1 − 𝑞
∑

𝑗≠𝑖 𝑥𝑗 −
𝑞𝑥𝑖

)

must be zero. The former case would imply that 𝑓𝑛,𝑞 also vanishes
nd, thus, cannot correspond to a maximum. To find a candidate
aximum, then, we must have

− 𝑞
∑

𝑗≠𝑖
𝑥𝑗 − 2𝑞𝑥𝑖 = 0 ∀𝑖 ∈ {1,… , 𝑛}. (16)

This gives a linear system with 𝑛 equations and 𝑛 variables, with the
nique solution 𝑥𝑖 =

1
𝑞(𝑛+1) for all 𝑖 ∈ {1,… , 𝑛}. This solution is feasible

hen 𝑞 > 1
𝑛+1 and has value

𝑧̄2 =
(

𝑛 1
𝑞(𝑛 + 1)

)(

1 − 1
𝑛 + 1

)𝑛
= 1

𝑞

(

𝑛
𝑛 + 1

)𝑛+1
.

et us denote with 𝑅𝑛,𝑞 the ratio between this value and the optimal
alue 𝑧∗ = 1 − 𝑞:

𝑛,𝑞 =
𝑧̄2
𝑧∗

= 1
𝑞(1 − 𝑞)

(

𝑛
𝑛 + 1

)𝑛+1
,

nd denote with 𝑅𝑞 its value when 𝑛 grows to infinity:

𝑞 = lim
𝑛→∞

1
𝑞(1 − 𝑞)

(

𝑛
𝑛 + 1

)𝑛+1
= 1

𝑞(1 − 𝑞)
𝑒−1.

We obtain the desired result taking the limit of 𝑅𝑞 when 𝑞 approaches
from the left:

lim
→1−

1
𝑞(1 − 𝑞)

𝑒−1 = +∞. □

.3. Lower bounds

As already mentioned, the combinatorial relaxation introduced in
ection 3.1 has the same feasible set as the original problem. Therefore,
ny feasible solution to the relaxation is also feasible for the original
roblem. In particular, given an optimal solution of the relaxation, we
an evaluate the expected profit of the associated set of items and
erive a lower bound for the 01-TB-KP. Denoting by 𝑥̂ the optimal
olution of the relaxation, this lower bound has value

̄ 1
=

(

∑

𝑗∶𝑥̂𝑗=1
𝑝𝑗

)(

∏

𝑗∶𝑥̂𝑗=1
𝜋𝑗

)

. (17)

In the following, we call bound
̄
𝑧1 the combinatorial lower bound.

An alternative way to get a lower bound is by solving a binary
quadratic problem derived by applying Boole’s inequality to the objec-
tive function. The following theorem formalises this bound, which we
call the Boole lower bound, and proves its validity.
4

Theorem 3.3. The optimal objective value of the following binary
quadratic problem is a lower bound for the 01-TB-KP defined by (1)–(5).

max

( 𝑛
∑

𝑗=1
𝑝𝑗𝑥𝑗

)(

1 −
∑

𝑗∈𝑇
𝑞𝑗𝑥𝑗

)

(18)

s.t.
𝑛
∑

𝑗=1
𝑤𝑗𝑥𝑗 ≤ 𝑐 (19)

𝑥𝑗 ∈ {0, 1} 𝑗 ∈ {1,… , 𝑛} (20)

Proof. The fact that (18) bounds (1) from below derives from the
following application of Boole’s inequality:
∏

𝑗∈𝑇
𝛼𝑗 = P

[

no packed TB item explodes
]

= 1 − P
[

some packed TB item explode
]

=

= 1 − P

[

⋃

𝑗∈𝑇

(

packed TB item 𝑗 explodes
)

]

≥ 1 −
∑

𝑗∈𝑇
P
[

packed TB item 𝑗 explodes
]

=

= 1 −
∑

𝑗∈𝑇
𝑞𝑗𝑥𝑗 . □

We can linearise model (18)–(20) introducing variables 𝑧𝑗𝑘 ∈ {0, 1}
to define the product of the 𝑥 variables (𝑧𝑗𝑘 = 𝑥𝑗𝑥𝑘). Thus, we obtain
the following ILP formulation:

max
𝑛
∑

𝑗=1
𝑝𝑗𝑥𝑗 −

𝑛
∑

𝑗=1

𝑛
∑

𝑘=1
𝑝𝑗𝑞𝑘𝑧𝑗𝑘 (21)

s.t.
𝑛
∑

𝑗=1
𝑤𝑗𝑥𝑗 ≤ 𝑐 (22)

𝑧𝑗𝑘 ≥ 𝑥𝑗 + 𝑥𝑘 − 1 𝑗, 𝑘 ∈ {1,… , 𝑛} (23)

𝑥𝑗 ∈ {0, 1} 𝑗 ∈ {1,… , 𝑛} (24)

𝑧𝑗𝑘 ∈ {0, 1} 𝑗, 𝑘 ∈ {1,… , 𝑛} (25)

Note that constraints (23) ensure that each variable 𝑧𝑗𝑘 takes the correct
values: if both 𝑥𝑗 and 𝑥𝑘 take value 1, then (23) forces 𝑧𝑗𝑘 = 1, while
for the other cases the objective function ensures that 𝑧𝑗𝑘 takes value
0. While objective function (1) is a polynomial of degree |𝑇 | + 1, the
new function (21) is linear, although the model requires the definition
of (𝑛2) additional binary variables.

Theorem 3.3 states that, for any feasible solution, the value com-
puted according to (18) underestimates the solution value. Thus, given
an optimal solution to (21)–(25), we can compute a lower bound
plugging the solution vector into objective function (1). The resulting
solution value will be denoted as

̄
𝑧2.

4. Exact algorithms

In this section we describe three alternative exact approaches for
solving the 01-TB-KP: the first one is based on subset enumeration, the
second one adopts a branch-and-bound approach, and the third one is
a dynamic programming algorithm. All the three schemes assume that
an oracle is available for solving the deterministic 01-KP instances.

4.1. Subset enumeration

Our first algorithm is based on the observation that the 01-TB-KP
reduces to a deterministic 01-KP in case the set of time-bomb items
to pack is given. Indeed, in this case, the best course of action is to
maximise the profit from the non-time-bomb items (henceforth, the
deterministic items) packed.
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This suggests a solution approach that computes an optimal 01-
TB-KP solution through the solution of a sequence of 01-KP instances.
The scheme, reported in Algorithm 1, is as follows. For each subset of
time-bomb items 𝑆 ⊆ 𝑇 , such that ∑

𝑗∈𝑆 𝑤𝑗 ≤ 𝑐, consider the solution
btained by (i) forcing in the solution all items in the current set 𝑆;

(ii) forbidding all remaining time-bomb items (i.e., those in set 𝑇 ⧵ 𝑆);
and (iii) completing the solution using some deterministic items. In
particular, in the last step, we solve a deterministic 01-KP instance
defined by the deterministic items and a capacity equal to 𝑐−

∑

𝑗∈𝑆 𝑤𝑗 .
Then, an optimal solution for the 01-TB-KP is obtained taking the best
among all these solutions.

The subset enumeration approach requires the complete enumera-
tion of all 2|𝑇 | subsets of time-bomb items. For this reason, it can be
extremely time consuming for instances in which |𝑇 | is large. In any
case, this approach shows that items in set 𝑇 play a more prominent
role than the deterministic items, a consideration that we will use in
the branch-and-bound (B&B) algorithm described in the next section.

4.2. Branch-and-bound

The B&B algorithm adopts a search strategy in which branching is
always associated with the inclusion or exclusion of time-bomb items.
Once the subset of time-bomb items to be included in the solution has
been determined, an optimal selection of the problem is obtained by
solving a deterministic 01-KP instance, as in the subset enumeration
scheme. According to this strategy, at each node of the branching tree, a
time-bomb item can be either forced into the solution (𝑥𝑗 = 1), excluded
from the solution (𝑥𝑗 = 0), or left unfixed (𝑥𝑗 ∈ {0, 1}); leaf nodes have
no unfixed time-bomb items. Algorithm 2 reports pseudo-code for this
algorithm.

At each node, the algorithm computes the upper and lower bounds
described in Section 3. The upper bound is used to possibly prune the
node, in case this value is not better than the current best solution. The
lower bound value corresponds to a heuristic solution, and can be used
to update the best known solution, if this gives an improvement.

If all time-bomb items are fixed (either forced or excluded), we
can obtain an optimal solution value at the node by solving a 01-KP
instance, in which items correspond to deterministic items only and

Algorithm 1 Subset enumeration algorithm.

1: function 01KP(𝑤⃗, 𝑝, 𝑐) ⊳ An oracle solving the deterministic 01-KP
2: return max

{

𝑝 ⊺𝑥⃗ | 𝑤⃗⊺𝑥⃗ ≤ 𝑐, 𝑥⃗ ∈ {0, 1}|𝑥⃗|
}

3: end function

4: function TBEnum(𝑛, 𝑤⃗, 𝑝, 𝜋, 𝑐)
5: 𝑇 ←

{

𝑗 ∈ {1,… , 𝑛} | 𝜋𝑗 < 1
}

⊳ Time-bomb items
6: 𝑇 ′ ← {1,… , 𝑛} ⧵ 𝑇 ⊳ Deterministic items
7: 𝑧∗ ← 0 ⊳ Best solution value so far

8: for 𝑆 ⊆ 𝑇 do ⊳ Enumerate all time-bomb item subsets
9: if ∑𝑗∈𝑆 𝑤𝑗 ≤ 𝑐 then ⊳ Discard trivial cases

10: 𝑑 ← 01KP
(

𝑤⃗|𝑇 ′, 𝑝 |𝑇 ′, 𝑐 −
∑

𝑗∈𝑆 𝑤𝑗
)

11: 𝑧 ←

(

𝑑 +
∑

𝑗∈𝑆 𝑝𝑗

)(

∏

𝑗∈𝑆 𝜋𝑗

)

12: if 𝑧 > 𝑧∗ then
13: 𝑧∗ ← 𝑧 ⊳ Update the best solution value
14: end if
15: end if
16: end for

17: return 𝑧∗

18: end function
5

Algorithm 2 Branch & Bound algorithm for the 01-TB-KP.

1: function TBBranchBound(𝑛, 𝑤⃗, 𝑝, 𝜋, 𝑐)
2: 𝑇 ←

{

𝑗 ∈ {1,… , 𝑛} | 𝜋𝑗 < 1
}

⊳ Time-bomb items
3: 𝑇 ′ ← {1,… , 𝑛} ⧵ 𝑇 ⊳ deterministic items
4: 𝑆 ← ∅ ⊳ Time-bomb items forced in the solution
5: 𝑆̄ ← ∅ ⊳ Time-bomb items excluded from the solution
6: 𝑧∗ ← 0 ⊳ Value of the current best feasible solution

7: ExploreNode(𝑇 , 𝑆, 𝑆̄, 𝑧∗)
8: return 𝑧∗

9: end function

0: procedure ExploreNode(𝑇 , 𝑆, 𝑆̄, 𝑧∗)
1: Compute lower

̄
𝑧 and upper 𝑧̄ bounds for the residual instance

with:
2: item set {1,… , 𝑛} ⧵ (𝑆 ∪ 𝑆̄) ⊳ Unfixed items
3: knapsack capacity 𝑐 −

∑

𝑗∈𝑆 𝑤𝑗 ⊳ Residual capacity

4: if
̄
𝑧 > 𝑧∗ then

5: 𝑧∗ ←
̄
𝑧 ⊳ Update the best solution value

6: end if
7: if 𝑧̄ ≤ 𝑧∗ then
8: Prune the node
9: end if

0: if 𝑇 ⧵ (𝑆 ∪ 𝑆̄) = ∅ then ⊳ All time-bomb items fixed
1: 𝑑 ← 01KP

(

𝑤⃗|𝑇 ′, 𝑝 |𝑇 ′, 𝑐 −
∑

𝑗∈𝑆 𝑤𝑗
)

2: 𝑧 ←

(

𝑑 +
∑

𝑗∈𝑆 𝑝𝑗

)(

∏

𝑗∈𝑆 𝜋𝑗

)

3: if 𝑧 > 𝑧∗ then
4: 𝑧∗ ← 𝑧 ⊳ Update the best solution value
5: end if
6: else
7: Choose a time-bomb item 𝑗∗ ∈ 𝑇 ⧵ (𝑆 ∪ 𝑆̄) fitting in the

residual capacity ⊳ Branching
8: ExploreNode(𝑆 ∪ {𝑗∗}, 𝑆̄, 𝑧∗) ⊳ Force 𝑗∗

29: ExploreNode(𝑆, 𝑆̄ ∪ {𝑗∗}, 𝑧∗) ⊳ Exclude 𝑗∗

30: end if
31: end procedure

the capacity is obtained by removing the weight of the fixed time-bomb
items from the original knapsack capacity. This may lead to an update
of the current best solution. We then mark the node as fully explored
and backtrack to the next open node. Otherwise, if there is at least
one unfixed time-bomb item, we proceed with branching. To this end,
we select the unfixed time-bomb item, say 𝑗∗, with the largest 𝑝𝑗∕𝑤𝑗
ratio and which fits in the residual capacity. The two children nodes
correspond to either forcing or excluding 𝑗∗ from the solution.

In the rest of this section, we first explain how to compute the
upper and lower bounds at intermediate nodes when we must enforce
branching constraints. Then, we introduce two improvements aimed
at avoiding the generation of decision nodes that cannot improve the
current solution and to early update the incumbent, respectively.

4.2.1. Bounding
We now discuss how to compute local lower and upper bounds at

each node of the branch-and-bound tree, i.e., when branching con-
ditions force or forbid some time-bomb items in the solution. In the
following, we denote as 𝑆 ⊆ 𝑇 and 𝑆̄ ⊆ 𝑇 , respectively, the set of
time-bomb items forced (𝑥𝑗 = 1) or forbidden (𝑥𝑗 = 0) in the solution.
In addition, we denote with 𝐹 = 𝑇 ⧵

(

𝑆 ∪ 𝑆̄
)

the set of time-bomb items

that are free. i.e., not already fixed by branching conditions.
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We start the analysis from the combinatorial upper bound, 𝑧̄1 de-
scribed in Section 3.1. Imposing branching conditions requires to solve
formulation (6)–(8) with additional constraints

𝑥𝑗 = 1 (𝑗 ∈ 𝑆) and 𝑥𝑗 = 0 (𝑗 ∈ 𝑆̄) (26)

his can be done considering a deterministic knapsack instance defined
y time-bomb items in set 𝐹 and by deterministic items, and a reduced
apacity 𝑐𝑆 = 𝑐−

∑

𝑗∈𝑆 𝑤𝑗 . Let us denote by 𝑧̄𝐹1 the value of the resulting
roblem. In addition, let 𝑝𝑆 =

∑

𝑗∈𝑆 𝑝𝑗 and 𝑞𝑆 =
∏

𝑗∈𝑆 (1−𝑞𝑗 ) be the sum
f the profits and the product of the probabilities of not exploding of
he items forced in the knapsack, respectively. We can obtain an upper
ound for our problem as 𝑧̄1 =

(

𝑝𝑆 + 𝑧̄𝐹1
)

𝑞𝑆 , as shown by the following
theorem.

Theorem 4.1. A valid upper bound on the optimal solution value of the
01-TB-KP in which items 𝑆 ⊆ 𝑇 are packed and items 𝑆̄ ⊆ 𝑇 are not packed
s given by

𝑧̄1 =
(

𝑝𝑆 + 𝑧̄𝐹1
)

𝑞𝑆 . (27)

roof. Let 𝑅 be the set of items that do not belong to 𝑆 and are
elected in an optimal solution of formulation (6)–(8) with additional
onstraints (26). Let us denote by 𝑝𝑅 and 𝑞𝑅 the corresponding sum
f profits and product of probabilities, respectively, and denote by

𝑧̄𝑅 = 𝑝𝑅 𝑞𝑅. The objective value of a 01-TB-KP solution composed by
tems 𝑆 ∪ 𝑅 is
𝑆∪𝑅 =

(

𝑝𝑆 + 𝑝𝑅
)

𝑞𝑆 𝑞𝑅.

e have

̄1 =
(

𝑝𝑆 + 𝑧̄𝐹1
)

𝑞𝑆 ≥
≥
(

𝑝𝑆 + 𝑧̄𝑅
)

𝑞𝑆 =

=
(

𝑝𝑆 + 𝑝𝑅 𝑞𝑅
)

𝑞𝑆 =

= 𝑝𝑆 𝑞𝑆 + 𝑝𝑅 𝑞𝑅 𝑞𝑆 ≥
≥ 𝑝𝑆 𝑞𝑆 𝑞𝑅 + 𝑝𝑅 𝑞𝑅 𝑞𝑆 =

=
(

𝑝𝑆 + 𝑝𝑅
)

𝑞𝑆 𝑞𝑅 = 𝑧𝑆∪𝑅,

here the first inequality is due to the definition of 𝑧̄𝐹1 , and the second
ne follows from Theorem 3.1 applied to the instance of the 01-TB-KP
ith time-bomb item set 𝐹 and capacity 𝑐𝑆 . This result shows that 𝑧̄1 is

a valid upper bound on the value of any feasible solution for the current
subproblem. □

We observe that the solution of formulation (6)–(8) with additional
constraints (26) produces a set of items whose total weight is not larger
than the knapsack capacity, i.e., it allows the computation of a valid
lower bound at the node.

The same consideration applies to lower bound
̄
𝑧2, which can be

computed adding branching conditions (26) to formulation (21)–(25),
and plugging the resulting solution into the objective function (1).

Finally, for the continuous relaxation upper bound 𝑧̄2, we observe
that branching conditions can be easily handled by simply adding these
constraints to the definition of the feasible set 𝑃 . As a consequence,
the initial solution consists of the items in 𝑆. In addition, at each
iteration, the improving direction 𝑦̄ to be determined must satisfy
branching conditions (26) as well, i.e., time-bomb items in 𝑆 and 𝑆̄ are
fixed a-priori to 1 and to 0, respectively, when solving the continuous
relaxation of the deterministic knapsack problem required by (15).

4.2.2. Early pruning
In contrast to the deterministic 01-KP, in the 01-TB-KP it may

happen that adding an item to a solution reduces the value of the
objective function. Indeed, the total profit of the selected items is
multiplied by the probabilities of each selected item not to explode;
hence, adding an item with high probability of exploding and low
profit, may produce a decrease of the objective function value. More
formally, we prove the following result.
6

Theorem 4.2. Consider a feasible solution containing item set 𝑆 and let
𝑗 ∉ 𝑆 be an item such that ∑𝑖∈𝑆 𝑤𝑖 +𝑤𝑗 ≤ 𝑐. Then adding item 𝑗 increases
the solution value only if and only if
𝜋𝑗

1 − 𝜋𝑗
𝑝𝑗 >

∑

𝑖∈𝑆
𝑝𝑖. (28)

Proof. Adding item 𝑗 does not increase the solution value if
∑

𝑖∈𝑆
𝑝𝑖

∏

𝑖∈𝑆
𝜋𝑖 ≥

(

∑

𝑖∈𝑆
𝑝𝑖 + 𝑝𝑗

)(

∏

𝑖∈𝑆
𝜋𝑖

)

𝜋𝑗

⟹
∑

𝑖∈𝑆
𝑝𝑖 ≥

(

∑

𝑖∈𝑆
𝑝𝑖 + 𝑝𝑗

)

𝜋𝑗

⟹ (1 − 𝜋𝑗 )
∑

𝑖∈𝑆
𝑝𝑖 ≥ 𝜋𝑗 𝑝𝑗

⟹
∑

𝑖∈𝑆
𝑝𝑖 ≥

𝜋𝑗
1 − 𝜋𝑗

𝑝𝑗

where the last condition derives from the non-negativity of
probabilities. □

The above result provides a condition under which adding an item
to a feasible solution does not lead to an improved solution. Let 𝑆
be the set of time-bomb items fixed in the solution at some node of
the branch-and-bound tree. According to Theorem 4.2, we can prune
all descendant nodes associated with an item 𝑗 that do not satisfy
condition (28), if any. Thus, given such an item 𝑗, we branch generating
a unique descendant node corresponding to excluding the item. It is
worth noting that, if item 𝑗 does not satisfy condition (28) associated
with item set 𝑆, then the same will happen also for the that item 𝑗 and
an enlarged item set 𝑆 ∪ {𝑘} (for each item 𝑘). In other words, as all
the profits are positive, there exists no set of items 𝑆′ ⊃ 𝑆 such that
adding 𝑗 to 𝑆′ improves the solution value.

We can thus use this result to prune a large amount of nodes asso-
ciated with the inclusion of items with high probability of exploding.
Indeed, as one may expect, the closer 𝜋𝑗 to 1, the more likely that
condition (28) holds; conversely, an item with 𝜋𝑗 close to 0, i.e., with
high probability of exploding, has a low probability of being profitable
and improving a given solution. In the special case 𝜋𝑗 = 1∕2, the
condition reduces to 𝑝𝑗 >

∑

𝑖∈𝑇 𝑝𝑖, i.e., the profit of item 𝑗 must be
larger than the sum of the profits of all items included in the current
solution.

4.2.3. Early bounding
The B&B algorithm described in Section 4.2 solves a 01-KP induced

by deterministic items at each leaf node, i.e., whenever all time-bomb
items have been fixed by branching (line 21 to line 25). The scheme
can be improved by computing feasible solutions at intermediate nodes
of the branching tree as well, to increase the probability of finding
high-quality solutions early in the search. Noting that the solution
computed in this way does not change when excluding a time-bomb
item, in our implementation we solve a 01-KP associated with the
deterministic items only at nodes generated by fixing a time-bomb item
in the solution (line 28 in Algorithm 2). Finally, observe that this policy
corresponds to anticipating the computation of the 01-KP solutions, but
does not increase the total number of such computations. However,
the knowledge of a near-optimal solution from the beginning of the
search may considerably reduce the computational effort for solving
an instance to optimality, as shown by the computational experiments
reported in Section 5.

4.3. Dynamic programming

We present here an algorithm to solve the 01-TB-KP based on
Dynamic Programming (DP) recursion. In the following, we assume for
convenience that the time-bomb items are indexed by 𝑇 = {1,… , 𝑡}

and that an upper bound 𝑈 ∈ N on the total profit of time-bomb items
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that fit in the knapsack (disregarding any probability to explode) is
available. Solving a deterministic 01-KP with items in set 𝑇 , capacity 𝑐
nd omitting probabilities 𝜋𝑗 can provide such a bound.

Let us denote with 𝑑 ∈ {0,… , 𝑐} the capacity used by time-bomb
tems in an optimal solution; accordingly, the total weight of the
eterministic items is at most 𝑐 − 𝑑. One can find an optimal solution
o the 01-TB-KP by guessing the value of 𝑑, finding the best subset
f time-bomb items in the ‘‘sub-knapsack’’ of capacity 𝑑, and the best
ubset of deterministic items in the ‘‘sub-knapsack’’ of capacity 𝑐 − 𝑑.
he full algorithm, thus, uses three ingredients: (i) a DP algorithm to
ack time-bomb items; (ii) another DP algorithm to pack deterministic
tems; and (iii) a linear scan to combine the two partial solutions for
ll possible values of 𝑑.

For the first algorithm (packing the time-bomb items), define the
uantity 𝜋̄(𝑑, 𝑣, 𝑗) as the highest probability of not exploding for a
olution using only time-bomb items of total weight at most 𝑑, total
rofit (disregarding the probabilities) at least 𝑣, and using the first 𝑗
tems only (i.e., those indexed by {1,… , 𝑗}). We use the convention

that 𝜋̄(𝑑, 𝑣, 𝑗) = 0 if no such solution exists. The DP recursion is the
following:

̄(𝑑, 𝑣, 𝑗) = max
{

𝜋̄(𝑑, 𝑣, 𝑗 − 1), 𝜋̄(𝑑 −𝑤𝑗 , 𝑣 − 𝑝𝑗 , 𝑗 − 1)𝜋𝑗
}

, (29)

where we assume that entries with negative 𝑑 −𝑤𝑗 or 𝑣− 𝑝𝑗 take value
zero. The first term corresponds to not packing item 𝑗, while the second
term corresponds to packing it. Initial values are 𝜋̄(𝑑, 0, 0) = 1 for all
𝑑 ∈ {0,… , 𝑐}, and 𝜋̄(𝑑, 𝑣, 0) = 0 for all 𝑑 ∈ {0,… , 𝑐} and 𝑣 ≥ 1.

For the second algorithm (packing the deterministic items), we
use the classical recursion of Bellman (1954) and Dantzig (1957). We
denote with 𝑧(𝑐−𝑑) the profit of the optimal solution of the 01-KP over
the deterministic items, with a knapsack of capacity 𝑐 − 𝑑.

Then, solving the 01-TB-KP amounts to finding

𝑧∗ = max
𝑑=0,…,𝑐

max
𝑣=0,…,𝑈

{

[

𝑣 + 𝑧(𝑐 − 𝑑)
]

𝜋̄(𝑑, 𝑣, 𝑡)
}

. (30)

where values 𝑧(𝑐 − 𝑑) are in the DP table of the second problem, and
values 𝜋̄(𝑑, 𝑣, 𝑡) are in the DP table of the first problem.

This algorithm also answers an important question about the com-
plexity of 01-TB-KP, which we formalise in the following theorem.

Theorem 4.3. The 01-TB-KP is weakly -hard.

Proof. It is clear that the 01-TB-KP is  . In addition, it cannot be
solved in polynomial time because it generalises the 01-KP, arising
as a special case when 𝑇 = ∅. To prove that the problem can be
solved in pseudo-polynomial time, we analyse the complexity of the
Dynamic Programming algorithm proposed above. One can compute
all the entries of matrix 𝜋̄ in 𝑂(𝑐 𝑈 𝑡) time. Let 𝑝max = max𝑗∈𝑇 𝑝𝑗
and note that 𝑈 ≤ 𝑛𝑝max. Because 𝑡 ≤ 𝑛, then the complexity of
computing all entries of matrix 𝜋̄ is bounded by 𝑂(𝑛2 𝑐 𝑝max). All the
entries 𝑧(𝑐−𝑑) can be computed in time 𝑂(𝑛 𝑐), while the final scan (30)
takes (𝑐 + 1) (𝑈 + 1) = 𝑂(𝑐 𝑛 𝑝max) evaluations. Thus, the complexity for
calculating the entries of matrix 𝜋̄ dominates that of the other steps of
the algorithm, and the total complexity of the approach is 𝑂(𝑛2 𝑐 𝑝max),
i.e., the algorithm runs in pseudo-polynomial time. □

5. Computational experiments

We implemented all proposed algorithms in C and we evaluated
them through a computational analysis on a large set of benchmark of
instances. Unless explicitly specified, all the experiments were executed
on an Intel Xeon processor running at 1.7 GHz.

Our branch-and-bound algorithm uses Combo Martello et al. (1999)
to solve the deterministic knapsack subproblems. For computing lower
bound

̄
𝑧2 described in Section 3.3, we solved the quadratic model (18)–

(20) and the linear model (21)–(25) using the commercial solver Gurobi
9.0. All codes are publicly available under an open source licence, on
GitHub (Santini, 2020).
7

5.1. Instance generation

To assess the performances of the algorithms in different situations,
we generated a large set of instances with different characteristics. Our
benchmark is composed of 5 classes of problems: the first four classes
are based on the hard instances introduced by Pisinger (2005) for the
01-KP, whereas the last one is designed to challenge some of the bounds
introduced in Section 3. Each class includes instances of different sizes,
in terms of number of items; in particular, we generated problems with
𝑛 ∈ {100, 500, 1000, 5000}.

Class 1 The instances of this class are defined using weight, profit
and capacity values of hard 01-KP instances, without modifying
them. Given a 01-KP instance and an input parameter 𝐵 ∈ [0, 1],
we first determine the ⌈𝑛𝐵⌉ items with the largest profit, and
define these items as time-bombs (set 𝑇 ). Then, we define the
following parameters

𝑃 = max
𝑗∈𝑇

{𝑝𝑗},

𝑃 = min
𝑗∈𝑇

{𝑝𝑗},

𝑝 = max
𝑗∉𝑇

{

𝑝𝑗 ∶ 𝑝𝑗 < 𝑃
}

.

𝑃 represents the largest profit value over all time-bomb items,
whereas 𝑃 is the smallest profit of a time-bomb item, and 𝑝 is the
largest profit value of a deterministic item that is strictly smaller
than 𝑃 . Finally, we generate the probability of exploding of each
time-bomb item using the following formula

𝑞𝑗 = 0.1
𝑝𝑗 − 𝑝

𝑃 − 𝑝
(𝑗 ∈ 𝑇 ). (31)

In this way, each time-bomb item has a low probability of
exploding (𝑞𝑗 ≤ 0.1), modelling the realistic scenarios in lo-
gistic and data centre management mentioned in Section 1. In
addition, probabilities are proportional to profits, preventing
situations in which higher-profit items have a lower probability
of exploding.
We generated instances with 𝐵 ∈ {0.1, 0.2, 0.5}. For each pair
(𝑛, 𝐵) we defined 10 problems, that were obtained randomly
selecting different 01-KP base instances.

lass 2 These instances are similar to those of Class 1, but we de-
termine the time-bomb items selecting the ⌈𝑛𝐵⌉ ones with the
largest profit-to-weight ratio 𝑝𝑗∕𝑤𝑗 . Accordingly, we define 𝑃 ,
𝑃 , and 𝑝 in terms of profit-to-weight ratios and replace 𝑝𝑗 by
𝑝𝑗∕𝑤𝑗 for computing probabilities in (31).

Class 3 These instances are identical to those of Class 1 but for proba-
bilities, which are not correlated with the profits nor the weights
of the items. Rather, for each time-bomb item 𝑗, we set

𝑞𝑗 ∼ (1, 10), (32)

where (𝑏1, 𝑏2) denotes a beta distribution of parameters 𝑏1 and
𝑏2. The use of a beta distribution with such parameters produces
time-bomb items with a small probability of exploding.

lass 4 These instances are identical to those of Class 2 but for prob-
abilities, which are generated according to (32).

lass 5 In these instances, all items share the same weight 𝑤𝑗 = 𝑤,
while profits and probabilities are defined in such a way that
the product 𝑝𝑗𝜋𝑗 is a constant. These instances are intended to
be challenging, as all items appear to be identical when solving
the combinatorial upper bound 𝑧̄1 described in Section 3.1. To
define hard knapsack problems, for a given capacity value 𝑐, the
weights are defined as

𝑤 =
⌊

𝑘 𝑐
⌋

, (33)

𝑛
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where 𝑘 is a parameter. Profits are strongly correlated to weights
as follows

𝑝𝑗 = max
{

1,
⌈

𝑤 + 𝜀
⌉}

, 𝜀 ∼ 
(

0, 𝑤
8

)

, (34)

where  (𝜇, 𝜎) denotes a normal distribution of mean 𝜇 and
variance 𝜎2. We use the max to ensure that each profit take
a positive (integer) value, since the normal distribution has
unbounded support and the noise term 𝜀 could, in principle,
make 𝑝𝑗 negative. Finally, to achieve constant 𝑝𝑗𝜋𝑗 product, we
define 𝜋𝑗 = 𝑝∕𝑝𝑗 (where 𝑝 = min𝑗∈{1,…,𝑛} 𝑝𝑗), i.e., almost all items
in these instances are time-bomb. We generated instances with
𝑘 ∈ {1.6, 2.0, 2.4}, and defined 10 problems for each pair (𝑛, 𝑘),
using a different random seed for each instance.

Each of the five classes includes 120 instances. Our complete
enchmark set, composed of 600 problems, is publicly available on
itHub (Santini, 2020).

.2. Upper and lower bound comparison

Our first set of experiments is aimed at evaluating the computational
erformance of the lower and upper bounds described in Section 3.
enoting by 𝑧̄ the value of an upper bound on a given instance of the
roblem, the associated percentage gap is defined as

gap = 100 𝑧̄ − 𝑧∗

𝑧∗
,

here 𝑧∗ denotes the optimal solution value for the instance (whenever
nknown, this value is replaced by the best known solution value).
imilarly, the percentage gap associated with a lower bound

̄
𝑧 is

gap = 100
𝑧∗ −

̄
𝑧

𝑧∗
.

Table 1 reports, for each bound, the average percentage gap (col-
mn %gap), the average computing time in seconds (column time),
nd the percentage of instances in which the bound matches with the
ptimal or best known solution (column %opt). We omit the times for
he combinatorial lower bound

̄
𝑧1 because they are always negligible,

iven an optimal solution of relaxation (6)–(8).
Regarding bound

̄
𝑧2, we first ran preliminary experiments to com-

are the performances of the quadratic model (18)–(20) with those
f its linearised version (21)–(25). The results showed that solver
urobi 9.0 was always more efficient on the quadratic model than
n the linearised one; for this reason, all results refer to the model
18)–(20). However, in many cases, the computing time needed for
omputing a provably optimal solution of the model was too large to
mbed this lower bound within a B&B algorithm. Thus, we analysed
he performance of the solver with different time limits, namely 1 s,
0 s, and 1 h.

The table shows that lower bound
̄
𝑧2 usually outperforms

̄
𝑧1 in terms

f both average gap and number of optimal solutions found. Bound
̄
𝑧1,

owever, is much faster to be computed as it only requires to evaluate
bjective function (1) for the solution returned by the combinatorial
elaxation described in Section 3.1. Quite interestingly, even with a
ime limit of 1 s,

̄
𝑧2 gives a smaller %gap and a larger %opt than

̄
𝑧1.

or larger time limits, the quality of
̄
𝑧2 improves even further; with a

ime limit of 1 h, an optimal solution is found in almost 70% of the
nstances.

With respect to upper bounds, the upper bound from the continuous
elaxation, 𝑧̄2, consistently outperforms the combinatorial upper bound,
̄1, in terms of average gaps, often by two orders of magnitude; in ad-
ition, the associated upper bound coincides with the optimal solution
alue in a larger number of instances. Though larger than those needed
or computing 𝑧̄1, computing times for 𝑧̄2 are usually under 1 s, i.e., they
re still acceptable for usage within a B&B algorithm.

Finally, note that, as expected, instances of Class 5 are by far the
ost challenging in our benchmark, all bounds having their worst
erformances on the instances in this class.
8

b

.3. Tuning of the branch-and-bound algorithm

We now compare the performances of the B&B algorithm in alter-
ative configurations, obtained activating/deactivating some relevant
eatures of the algorithm. We run all the experiments using a time limit
qual to 3600 s per instance and compared the following variants:

SE: The Subset Enumeration scheme described in Section 4.1.
V1: The B&B algorithm introduced in Section 4.2, embedding bounds

𝑧̄1 and
̄
𝑧1 and implementing the early pruning and early bound-

ing acceleration techniques described in Sections 4.2.2 and
4.2.3, respectively.

V2: The algorithm obtained adding lower bound
̄
𝑧2 to V1; in our

implementation, we solve the quadratic model with a time limit
of 10 s at the root node. In addition, we solve the model with
time limit equal to 1 s every 1000 nodes of the enumeration tree.

V3: The algorithm obtained adding upper bound 𝑧̄2 to V1, i.e., also
computing at each node the continuous relaxation of the math-
ematical formulation of the problem by means of the procedure
described in Section 3.2.

V4: The algorithm obtained adding both
̄
𝑧2 and 𝑧̄2 to the V1, and

executing the lower bound procedure according to the same
setting described above.

V5: this algorithm is obtained from V4 by disabling the early pruning
described in Section 4.2.2.

V6: this algorithm is obtained from V4 by disabling the early bound-
ing described in Section 4.2.3.

or each algorithm, we report the following information:

• %gap: average percentage gap. Denoting by 𝑧̄ and
̄
𝑧 the best up-

per and lower bound found by the algorithm on a given instance,
the percentage gap is computed as

%gap = 100
𝑧̄ −

̄
𝑧

𝑧̄
;

• time: average computing time (in seconds);
• nds: average number of B&B nodes explored;
• %opt: number of instances solved to proven optimality.

For variant SE, we do not report the average number of nodes, as this
lgorithm does not compute dual bounds allowing for pruning, and
ence it always explores 2|𝑇 | nodes. Similarly, we do not report the
ercentage gap, which cannot be computed for lack of dual bounds.

The results in Table 2 show that, as may be expected, our B&B
lgorithm outperforms the basic scheme SE. Version V1, that includes

the computation of bounds 𝑧̄1 and
̄
𝑧1, solves most of the instances with

𝑛 ≤ 1000, except those in Class 5. Adding lower bound
̄
𝑧2 produces

some worsening of the results: version V2 has, on average, larger gaps
and smaller percentage of instances solved to optimality than V1. On
the contrary, adding upper bound 𝑧̄2 gives considerable improvements:
indeed, version V3 is able to solve more than 98% of the instances
within an average computing time under 3 min. The situation is similar
when adding to V1 both

̄
𝑧2 and 𝑧̄2: though the results of version V4 are

comparable to those of V3 in terms of number of optimal solutions, the
former is better in terms of average percentage gap, computing time,
and number of nodes.

Finally, results for versions V5 and V6 show that deactivating the
orresponding features produces a considerable worsening of the ap-
roach. Indeed, the average percentage gap grows from 0.18% to 0.90%
hen deactivating early pruning, and the number of instances solved to
roven optimality drops from 98.67% to 88.17% when removing early
ounding.
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Table 1
Comparison of lower and upper bounds.

z1 z2 (1 s) z2 (10 s) z2 (1 h) 𝑧̄1 𝑧̄2
Class Size %gap %opt %gap time %opt %gap time %opt %gap time %opt %gap time %opt %gap time %opt

Class 1

100 9.78 50.00 0.21 0.63 76.67 0.10 1.22 83.33 0.10 0.81 83.33 10.59 0.00 46.67 0.23 0.01 26.67
500 48.78 23.33 66.67 0.89 30.00 7.53 5.19 80.00 0.00 732.76 93.33 19.48 0.00 23.33 0.03 0.01 43.33
1000 41.52 40.00 66.67 0.89 26.67 53.33 7.60 40.00 0.00 971.28 90.00 19.30 0.00 40.00 0.03 0.01 43.33
5000 50.58 43.33 100.00 1.00 0.00 100.00 10.00 0.00 0.00 1105.04 80.00 18.68 0.05 43.33 0.01 6.61 40.00
All sizes 37.66 39.17 58.39 0.85 33.33 40.24 6.00 50.83 0.03 702.47 86.67 17.01 0.01 38.33 0.07 1.66 38.33

Class 2

100 31.05 13.33 0.70 0.76 73.33 0.00 2.61 90.00 0.00 2.78 90.00 10.73 0.00 13.33 0.20 0.00 16.67
500 52.91 16.67 46.67 0.72 36.67 0.33 4.12 70.00 0.01 351.50 73.33 15.22 0.00 16.67 0.08 0.00 16.67
1000 63.02 13.33 66.70 0.90 20.00 36.68 7.29 50.00 0.01 507.43 86.67 16.34 0.00 13.33 0.04 0.12 20.00
5000 79.31 10.00 100.00 1.00 0.00 100.00 10.00 0.00 2.76 1338.94 70.00 11.88 0.07 10.00 0.00 0.10 16.67
All sizes 56.57 13.33 53.52 0.85 32.50 34.25 6.01 52.50 0.69 550.17 80.00 13.54 0.02 13.33 0.08 0.05 17.50

Class 3

100 22.71 43.33 0.17 0.42 83.33 0.07 1.10 83.33 0.07 0.77 83.33 11.81 0.00 43.33 0.27 0.00 36.67
500 43.62 36.67 40.00 0.80 50.00 10.00 5.23 66.67 0.06 509.85 73.33 17.68 0.00 36.67 0.06 0.03 43.33
1000 49.59 36.67 70.00 0.95 16.67 43.33 6.50 46.67 0.00 814.32 70.00 17.59 0.00 36.67 0.03 0.12 30.00
5000 50.05 40.00 100.00 1.00 0.00 100.00 10.00 0.00 6.48 1171.85 80.00 21.38 0.01 40.00 0.13 0.10 33.33
All sizes 41.49 39.17 52.54 0.79 37.50 38.35 5.71 49.17 1.65 624.20 76.67 17.12 0.00 39.17 0.12 0.06 35.83

Class 4

100 44.11 16.67 3.75 0.90 70.00 0.02 2.33 83.33 0.01 1.51 90.00 11.16 0.00 16.67 0.18 0.00 3.33
500 82.37 3.33 60.00 0.93 23.33 7.26 5.68 50.00 0.29 961.37 66.67 20.65 0.00 3.33 0.04 0.07 10.00
1000 74.42 10.00 66.67 0.91 26.67 60.00 7.91 30.00 0.03 630.07 86.67 11.80 0.01 10.00 0.02 0.01 20.00
5000 93.26 3.33 100.00 1.00 0.00 100.00 10.00 0.00 0.02 1590.59 66.67 13.02 0.14 3.33 0.00 0.12 16.67
All sizes 73.54 8.33 57.60 0.94 30.00 41.82 6.48 40.83 0.09 795.89 77.50 14.16 0.04 8.33 0.06 0.05 12.50

Class 5

100 100.00 0.00 4.84 0.91 3.33 4.84 1.65 3.33 4.84 0.75 3.33 91.75 0.00 0.00 0.55 0.02 0.00
500 100.00 0.00 84.08 1.00 3.33 5.09 9.80 6.67 5.09 617.01 6.67 98.04 0.00 0.00 0.73 0.08 23.33
1000 100.00 0.00 93.85 1.00 0.00 49.92 10.00 0.00 4.87 863.26 3.33 99.19 0.00 0.00 1.45 0.13 16.67
5000 100.00 0.00 100.00 1.00 0.00 100.00 10.00 0.00 0.42 3600.00 93.33 97.01 0.00 0.00 0.92 0.17 93.33
All sizes 100.00 0.00 70.69 0.98 1.67 39.96 7.86 2.50 3.81 1270.25 26.67 96.50 0.00 0.00 0.91 0.10 33.33

Overall 61.85 20.00 58.55 0.88 27.00 38.93 6.41 39.17 1.25 788.59 69.50 31.66 0.01 19.83 0.25 0.39 27.50
Table 2
Comparison of Subset Enumeration and different B&B versions to solve the 01-TB-KP.

SE V1 V2 V3 V4 V5 V6

Type Size time %opt %gap time nds %opt %gap time nds %opt %gap time nds %opt %gap time nds %opt %gap time nds %opt %gap time nds %opt

Class 1

100 1095.28 70.00 2.66 299.04 50023085.9 93.33 4.72 366.29 4046200.5 90.00 0.00 0.85 44.2 100.00 0.00 1.96 38.3 100.0 0.00 1.80 38.3 100.00 0.00 2.28 38.3 100.00
500 3600.00 0.00 15.82 1081.89 47853858.3 70.00 16.41 1375.69 594013.5 66.67 0.00 7.55 166.0 100.00 0.00 11.73 166.0 100.0 0.00 7.86 166.0 100.00 0.00 96.75 24803.7 100.00
1000 3567.88 3.33 17.37 1082.21 20247003.8 70.00 17.37 1122.78 97693.7 70.00 0.00 2.61 73.6 100.00 0.00 7.91 73.6 100.0 0.00 8.32 73.6 100.00 0.00 36.71 5158.1 100.00
5000 3600.00 0.00 17.62 1584.43 3602219.0 56.67 18.16 1731.35 282141.1 56.67 0.01 198.64 297.3 96.67 0.01 197.58 297.6 96.7 0.01 218.13 297.5 96.67 2.57 374.05 2082.1 93.33
All sizes 2965.79 18.33 13.37 1011.89 30431541.8 72.50 14.17 1149.03 1255012.2 70.83 0.00 52.41 145.3 99.17 0.00 54.79 143.9 99.2 0.00 59.03 143.8 99.17 0.64 127.45 8020.5 98.33

100 1119.57 70.00 1.00 271.20 929217.1 93.33 1.59 487.92 145394.9 86.67 0.00 0.78 2539.5 100.00 0.00 5.15 2528.6 100.0 0.00 14.86 2528.6 100.00 0.00 4.71 2528.6 100.00
500 3480.03 3.33 12.33 1051.56 18587685.4 73.33 12.64 1111.69 284814.2 70.00 0.00 104.75 90647.7 100.00 0.00 130.29 36552.2 96.7 0.00 132.21 18820.5 96.67 0.00 143.66 54053.7 96.67
1000 3600.00 0.00 12.94 1216.45 1073564.8 66.67 12.95 1276.65 301615.4 66.67 0.00 31.38 2152.5 100.00 0.00 66.77 2152.5 100.0 0.00 41.35 1968.5 100.00 0.00 312.51 47122.8 100.00
5000 3600.00 0.00 10.71 2007.36 130794.4 46.67 11.01 2085.79 22257.5 46.67 0.00 172.90 1273.9 100.00 0.00 224.53 1273.9 100.0 0.00 304.03 1273.9 100.00 25.32 2315.41 23890.4 43.33
All sizes 2949.90 18.33 9.25 1136.64 5180315.4 70.00 9.55 1240.51 188520.5 67.50 0.00 77.45 24153.4 100.00 0.00 106.68 10626.8 99.2 0.00 123.11 6147.9 99.17 6.33 694.07 31898.9 85.00

Class 3

100 1086.34 70.00 0.00 0.26 82562.0 100.00 0.00 13.04 81939.9 100.00 0.00 0.03 34.9 100.00 0.00 0.80 21.7 100.0 0.00 0.86 21.7 100.00 0.00 0.80 21.7 100.00
500 3600.00 0.00 13.31 840.66 80857403.4 76.67 13.68 900.42 220884.7 76.67 0.00 21.83 121.8 100.00 0.00 10.84 121.1 100.0 0.00 15.92 120.9 100.00 0.00 55.46 687.3 100.00
1000 3600.00 0.00 14.55 1088.12 26692000.7 70.00 15.95 1358.49 376034.9 63.33 0.85 173.43 239.3 96.67 0.71 143.09 405.9 96.7 0.80 156.37 326.1 96.67 2.40 347.41 13132.2 93.33
5000 3600.00 0.00 20.10 1571.21 8907304.3 60.00 20.88 1707.71 51679.2 56.67 0.22 260.25 760.6 96.67 0.15 236.96 1580.7 96.7 0.13 230.55 1787.6 96.67 19.00 772.20 6051.6 80.00
All sizes 2971.59 17.50 11.99 875.06 29134817.6 76.67 12.63 994.92 182634.7 74.17 0.27 113.88 289.1 98.33 0.21 97.92 532.4 98.3 0.23 100.92 564.1 98.33 5.35 293.97 4973.2 93.33

Class 4

100 1226.04 66.67 0.00 0.55 185086.7 100.00 0.00 42.66 182652.7 100.00 0.00 0.10 169.6 100.00 0.00 3.48 130.4 100.0 0.00 3.20 130.4 100.00 0.00 3.50 131.0 100.00
500 3600.00 0.00 16.00 981.80 8005582.9 73.33 17.22 1201.00 288627.2 70.00 0.88 264.62 3039.2 96.67 0.29 256.66 3268.6 96.7 1.84 293.81 7551.8 93.33 5.06 536.86 63737.1 93.33
1000 3600.00 0.00 8.08 635.79 17406260.2 83.33 9.09 909.43 154356.0 80.00 0.00 5.64 490.5 100.00 0.00 13.22 490.5 100.0 0.00 17.08 490.5 100.00 13.62 1281.77 198982.5 83.33
5000 3600.00 0.00 9.82 1712.55 1592982.4 56.67 9.92 1996.53 59451.2 53.33 0.00 495.52 1926.0 100.00 0.00 406.57 1926.0 100.0 0.00 565.17 1916.7 96.67 79.22 2895.74 22565.9 20.00
All sizes 3006.51 16.67 8.47 832.68 6797478.1 78.33 9.06 1037.41 171271.8 75.83 0.22 191.47 1406.3 99.17 0.07 169.98 1453.9 99.2 0.46 219.82 2522.3 97.50 24.48 1179.47 71354.1 74.17

Class 5

100 3600.00 0.00 70.15 3081.88 482647463.6 23.33 91.86 3600.00 62357584.0 0.00 0.00 17.38 1108.5 100.00 0.00 16.05 514.0 100.0 0.00 16.06 562.3 100.00 0.00 17.38 562.3 100.00
500 3600.00 0.00 99.26 3600.00 143076350.2 0.00 98.85 3600.00 8821396.3 0.00 0.00 180.68 4064.3 100.00 0.00 138.23 2916.1 100.0 0.00 126.42 8270.9 100.00 0.00 206.58 10268.5 100.00
1000 3600.00 0.00 99.63 3600.00 111730081.6 0.00 99.63 3600.00 8031406.3 0.00 1.50 657.32 15366.5 93.33 0.77 584.82 15323.4 96.7 13.02 1571.06 64801.8 70.00 16.71 1526.87 98533.9 66.67
5000 3600.00 0.00 97.01 3600.00 66253571.1 0.00 97.01 3600.00 1558698.5 0.00 2.05 269.64 1271.7 93.33 1.66 268.75 1308.4 93.3 2.20 267.94 1447.8 93.33 2.20 268.24 1436.9 93.33
All sizes 3600.00 0.00 91.51 3470.47 200926866.6 5.83 96.84 3600.00 20192271.3 0.00 0.89 281.26 5452.7 96.67 0.61 251.96 5015.5 97.5 3.81 495.37 18770.7 90.83 4.73 504.77 27700.4 90.00

Overall 3098.76 14.17 26.92 1465.35 54494203.9 60.67 28.45 1604.37 4397942.1 57.67 0.27 143.29 6289.4 98.67 0.18 136.27 3554.5 98.7 0.90 199.65 5629.8 97.00 8.31 559.94 28789.4 88.17
w
a
o
s
i
o
a
(
B
i

5.4. Comparison of alternative exact methods

Our last set of experiments compares our B&B algorithm in its
best tuning (i.e., activating all bounding procedures, version V4) with
lternative exact solution methods. The first such method is the dy-
amic programming algorithm described in Section 4.3. In addition, we
valuate the direct application of general-purpose solvers for nonlinear
rogramming on the mathematical formulation (1)–(5). The model has
ome nice properties, e.g., its continuous relaxation asks to maximise a
oncave function over a convex set. Thus, modern commercial solvers,
hat nowadays include sophisticated tools (preprocessing, heuristics,
omain reduction techniques, . . . ) could perform competitively, at least
n small instances. We use solvers Couenne and Baron, which are
tate-of-the-art for the solution of MINLPs.

The results are shown in Table 3, whose columns have the same
9

eaning as in Table 2. The Dynamic Programming algorithm runs
ith a memory limit equal to 8 GB; when this limit is reached, the
lgorithm halts. Since this limit allowed to run Dynamic Programming
nly on small instances, we grouped the instances according to their
ize. In addition, we do not report column %gap for this algorithm, as
t either computes an optimal solution or terminates because it runs out
f memory. Because of licencing restrictions, experiments with Baron
nd Couenne were performed on a different machine equipped with a
slightly) faster processor, namely an Intel Xeon running at 2.53 GHz.
ecause Couenne often reported incorrect solutions due to numerical

nstabilities, for this solver we report an additional column (%valid)
that gives the percentage of instances for which the run was normally
completed. Average values for percentage gap, computing time and
percentage of optimal solutions are computed considering the valid
instances only.

The results show that Couenne is able to solve only a small number
of instances, with a percentage gap more than 30% on average. Though
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o
t
o

A

o
1

R

B

B

B
B

C

Table 3
Comparison of exact methods to solve the 01-TB-KP: solvers Couenne and Baron, Dynamic Programming and B&B.

B&B DP Baron Couenne

Size %gap time %opt time %opt %gap time %opt %gap time %opt %valid

100 0.00 5.49 100.00 2642.58 45.33 15.50 946.78 74.67 7.84 1684.64 54.36 99.33
500 0.06 109.55 98.67 – – 19.70 1372.78 64.00 19.33 2565.82 32.89 99.33
1000 0.29 163.16 98.67 – – 21.22 1607.87 59.33 20.25 2636.10 30.60 89.33
5000 0.36 266.88 97.33 – – 66.45 3461.52 10.00 78.67 2976.03 17.33 100.00
Overall 0.18 136.27 98.67 2642.58 45.33 30.72 1847.24 52.00 31.89 2462.03 33.85 97.00
having a similar percentage gap on average, Baron is able to solve more
than half of the instances to optimality, with an average computing
time of 30 min. Indeed, both solvers have satisfactory performances
for small and medium instances, while they are quite inefficient when
facing instances with 𝑛 = 5000. Our B&B algorithm clearly outperforms
the solvers: the number of instances solved to proven optimality is
considerably larger than that of the solvers, and the average comput-
ing time and percentage gap are reduced by more than an order of
magnitude.

6. Conclusions

In this paper we studied the 0–1 Time-bomb Knapsack problem, a
stochastic variant of the well-known 0–1 Knapsack Problem, in which
items have an associated probability of exploding. We presented a
natural mathematical model for this problem and introduced proce-
dures, based on combinatorial arguments and on convex optimisation,
for computing lower and upper bounds on the optimal solution value.
Finally, we presented alternative schemes for the exact solution of the
problem, and tested them computationally on a large benchmark of
instances. The comparison, which also involves general purpose solvers
that are state-of-the-art for nonlinear programming, show that our
branch-and-bound algorithm is the most efficient way to attack the
problem.

Future work shall analyse time-bomb versions of other problems
belonging to the class of knapsack problems. For example, the real-life
scenarios mentioned in Section 1 suggest that the time-bomb versions
of the Fixed-Charge Knapsack Problem and of the Multiple Knapsack
Problem are worth studying due to their practical relevance.
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