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Next-generation sequencing (NGS) allows for the sequencing of multiple genes at a
very high depth of coverage. The principle of targeted therapy consists of the application
of drugs targeted against well-defined molecules that play a key role in tumor progression
and/or survival. Considering the continuous discovery of new molecules as a putative
target or as being responsible for treatment resistance mechanisms, single-gene analyses are
becoming less effective. At present, precision medicine requires multigene characterization.
The introduction of NGS to molecular diagnostics has allowed us to combine the high
analytical sensitivity with multigene tests [1–3]. The aim of this Special Issue is to focus on
the application of NGS in characterizing molecular alterations in solid tumors for diagnostic,
prognostic, or predictive purposes.

NGS provides a huge amount of molecular data starting from a relatively small amount
of input material. However, this technique must not be considered a magician’s hat; the
GIGO concept (Garbage In, Garbage Out), borrowed from computer science, is extremely
valid also and above all for NGS analysis. Analyzing a total of 144 formalin-fixed and
paraffin-embedded (FFPE) specimens, Chougule and colleagues performed a benchmark
in quality check metrics of DNA and RNA input that should be utilized by molecular
diagnostic laboratories for successful library preparation and good quality of NGS data [4].
The authors observed that samples with DIN (DNA integrity number) < 3 as well as DNA
concentration < 5 ng/µL are likely to fail and that compensating the poor DNA quality
with a higher DNA concentration is likely to give bad-quality NGS data. For FFPE RNA,
they observed that RIN (RNA integrity number) is not an accurate quality indicator and
that the RNA distribution value (DV) is a better-quality metric. Moreover, RNA library
concentration is an important predictive parameter for successful RNA libraries [4]. As
regards coverage and variant allele frequency cut-off for considering a “good-quality NGS
sample”, the authors asserted that 250× coverage and 10% VAF (Variant Allele Frequency)
have a high possibility of false-negative results and that coverage of 500× with 5% VAF is
recommended for FFPE samples [4].

NGS panels would help also in characterizing the molecular alterations in clinically
puzzling tumors. Malvi and colleagues have characterized a cohort of pancreatic ductal
adenocarcinomas (PDAC) in order to find any molecular alterations that could be associated
with histopathological features and clinical outcomes [5]. The authors have observed that
the survival of patients with PDAC was related to the presence of the TP53 and/or KRAS
mutation. In fact, patients with PDAC harboring the concomitant KRAS/TP53 mutations
had a significantly worse OS if compared to those with PDAC harboring only one of the
two genes mutated or without KRAS and TP53 mutations. Moreover, a dramatic prognostic
difference in the KRAS/TP53 double-mutated PDAC patients with an N2 stage compared
to all the other patients was observed [5]. NGS can then be an alternative technique to
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PCR-based assays if it is not associated with extra costs, as stated by the 2020 ESMO
guidelines [6], to evaluate KRAS and TP53 molecular status in PDAC to improve the clinical
management of the patients.

In mPDAC, the first-line therapy is based on chemotherapy (gemcitabine combined
with nab-paclitaxel, or FOLFIRINOX) [7]. In 2019, the FDA (Food and Drug Administration)
approved the use of PARP inhibitors (i.e., Olaparib) as maintenance for PDAC patients
harboring germline BRCA1 or BRCA2 pathogenic mutations (gBRCAm) [8]. In this context,
the assessment of BRCA1 and BRCA2 mutational status is nowadays crucial in PDAC
patients. Bruno and colleagues evaluated the feasibility of BRCA1/2 testing by NGS panel
on a series of FFPE pancreatic tumor clinical specimens [9]. Starting from a median
input DNA of 10 nanograms, they observed that 86.5% of cases were adequate for NGS
analysis, with a success rate of 81.2%. Intriguingly, the failed specimens were all from tissue
macrosections, characterized by a higher rate of fragmented DNA than standard sections,
biopsies, and fine-needle aspirations, due to the formalin fixation procedure [9].

Liquid biopsy refers to a minimally invasive method of analysis of molecular neoplastic
biomarkers performed starting from any type of patient body fluid (e.g., plasma, bile, urine,
saliva, cerebrospinal fluid, and pleural effusion) [10,11]. To date, liquid biopsy analysis
is routinely used in clinical practice, mainly in lung lesions, for obtaining material for
molecular analyses if the “solid tissue” material is suboptimal, monitoring the treatment
response, and detecting the minimal residual disease [12].

Zulato and colleagues have implemented the use of Roche’s Avenio ctDNA expanded
panel in about 90 diagnostic routine non-small cell lung cancers (NSCLCs) [13]. They were
able to successfully sequence 96.5% of samples. Avenio ctDNA kits demonstrated 100%
sensitivity in detecting single nucleotide variants (SNVs) at VAF higher than 0.5% and high
consistency in reproducibility. Moreover, they obtained matched results between tissue
and liquid samples in 89% of analyzed specimens [13].

Simarro and colleagues described a case report of a patient with metastatic NSCLC
who developed resistance mechanisms to the first-line EGFR-TKI treatment (dacomitinib),
and to the second-line treatment with Osimertinib [14]. NGS analysis performed in liquid
biopsy to characterize the resistance mechanism to second-line treatment revealed the
founder deletion in exon 19 of the EGFR gene in concomitancy with a TP53 deletion [14].
Further analysis allowed for the detection of a truncating mutation in the RB1 gene, pro-
viding solid evidence of the resistance mechanism to second-line treatment with Osimer-
tinib [14]. This study highlights the importance of implementing these high throughput
molecular techniques in routine clinical practice, to understand the genomic heterogeneity
of the tumor leading to personalized molecular-guided treatment.

Liquid biopsy is a useful tool not only for the management of NSCLC. Kastrisiou
and colleagues had developed a targeted, cost-effective NGS gene panel that could be
easily integrated in the day-to-day clinical routine starting from the plasma of patients
with metastatic colorectal carcinomas (mCRC) [15]. The panel allows for the analysis of
the hotspots in six clinically mCRC-relevant genes (KRAS, NRAS, MET, BRAF, ERBB2,
and EGFR) with a negative and positive agreement of RAS Testing in Tissue and Plasma
specimens of 92.8% and 81.2%, respectively [15].

As reported above, NGS multi-gene panel may be useful also to better characterize
clinically interesting cases. De Falco and colleagues described two patients with CRC
at different stages (pT2N0M0 and pT4cN1cM1), but both of them harbored double con-
current KRAS pathogenic mutations (p.G12D and p.G13D) that are normally mutually
exclusive [15]. Moreover, using an NGS panel, the authors observed that the two tumors
also harbored other mutations in PIK3CA, SMAD4, NOTCH1, ERBB2, and EGFR genes, but
all of them were different in the two tumors [15].

Catino and colleagues described the clinical outcome of a patient acquiring multiple
ALK mutations after lorlatinib treatment. In the same initial sites and at the abdominal
lymph nodes and contralateral pleura, the plasma of the patient was analyzed using
a multi-gene panel that confirmed an EML4-ALK fusion variant and also revealed the
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presence of ALK mutation p.G1202R [16]. At disease progression after ALK-TKI lorlatinib
treatment, another multi-gene NGS assay was performed on cell blocks of pleural effusions
revealing that the ALK p.G1202R mutation was still present and that another ALK missense
mutation (p.T1151K) was found. The authors conclude that this case emphasizes the need
to retest patients during the disease course and at the time of progression during ALK-TKIs
therapy [16].
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