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Abstract: Background: The accuracy of the coronal alignment corrections using conventional high
tibial osteotomy (HTO) falls short, and multiplanar deformities of the tibia require consideration
of both the coronal and sagittal planes. Patient-specific instrumentations have been introduced to
improve the control of the correction. Clear evidence about customized devices for HTO and their
correction accuracy lacks. Methods: The databases PUBMED and EMBASE were systematically
screened for human and cadaveric studies about the use of customized devices for high tibial
osteotomy and their outcomes concerning correction accuracy. Furthermore, a 3D-printed customized
system for valgus HTO with three pilot cases at one-year follow-up was presented. Results: 28 studies
were included. The most commonly used custom-made devices for HTO were found to be cutting
guides. Reported differences between the achieved and targeted correction of hip-knee-ankle angle
and the posterior tibial slope were 3◦ or under. The three pilot cases that underwent personalized
HTO with a new 3D-printed device presented satisfactory alignment and clinical outcomes at one-year
follow-up. Conclusion: The available patient-specific devices described in the literature, including
the one used in the preliminary cases of the current study, showed promising results in increasing the
accuracy of correction in HTO procedure.

Keywords: high tibial osteotomy; custom made; correction accuracy; knee osteoarthritis

1. Introduction

High tibial osteotomy (HTO) represents an effective joint-preserving procedure for
adult patients with isolated compartmental osteoarthritis of the knee, with good to excellent
long-term survival rates and patient-reported outcomes reported in the literature [1]. This
treatment aims to unload the affected compartment of the knee by shifting the load axis of
the lower extremity toward the center of the knee. The achieved correction is considered
critical to the procedure’s long-term outcomes [2]. However, the accuracy of the coronal
alignment corrections using conventional HTO falls short [3]. In addition, multiplanar
deformities of the tibia require consideration of both the coronal and sagittal planes and
thus require monitoring of the tibial slope [4]. 3D patient-specific instrumentations have
been introduced to improve the control of the correction for both the coronal and sagittal
plane through a 3D planning of the procedure and customized devices for cutting and
securing the osteotomy [5]. Several patient-tailored systems have been proposed and
tested in both cadaveric and human in vivo studies after the first investigations showed
encouraging results [6,7]. In particular, the latest cadaveric studies reported a difference
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between planned and achieved coronal tibial correction inferior than 1◦ [8,9], while the
largest published in vivo series showed a mean difference between the target and the
obtained correction of 1 ± 0.9 [10]. To gain more insight into the patient-specific systems
available for HTO and their accuracy, we conducted a systematic review of the literature
on studies describing and investigating the surgical techniques and the alignment results
of 3D-customized devices to perform HTO surgery. Additionally, the authors’ experience
of using an innovative 3D-printed customized system for valgus HTO was presented for
three pilot cases at one-year follow-up.

2. Materials and Methods
2.1. Research Strategy

Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines
were followed in conducting this study [11]. Research was performed for clinical hu-
man and cadaveric studies about the use of customized devices for high tibial osteotomy.
Two reviewers (G.D.F and A.G.) independently conducted the search in August 2022. Since
both reviewers agreed on the studies to be included, it was not necessary to involve a
third reviewer. The literature research was performed in relevant databases (PUBMED,
EMBASE). The Medical Subject Headings (MeSH) terms used for the search included “high
tibial osteotomy” AND “patient specific” AND/OR “custom made”. The research was
then supplemented through reference checking, manual searching in relevant journals, and
expert recommendations.

2.2. Study Selection

All titles and abstracts were screened with the following inclusion criteria: human
or cadaveric studies, case reports or technical notes, use of 3D preoperative planning
system and/or custom-made surgical device for high tibial osteotomy, analysis of surgical
technique and/or radiological accuracy data, English language, and full text available.
Exclusion criteria were as follows: articles that were off-topic, only in silico studies, only
femoral osteotomy studies, literature reviews, or systematic reviews.

2.3. Data Extraction and Synthesis

It was not possible to perform a quantitative analysis of the radiological and clinical
data abstracted because the analysis, the results, and the design of the included studies were
highly heterogeneous. Moreover, of the 23 included in vivo studies, four were technical
notes and three were case reports. Therefore, the results were qualitatively compared and
summarized, reporting upon: (1) the preoperative planning approach, (2) the customized
devices used, and (3) the radiological outcomes presented. The accuracy of the customized
devices was assessed investigating the difference between the planned and the achieved
value of the hip-knee-ankle angle (HKA), medial proximal tibial angle (MPTA), and pos-
terior tibial slope (PTS). Furthermore, the surgical time, the number of intra-operative
fluoroscopy figures, and the frequency of hinge fractures, where reported, were extracted
from the included studies.

3. Results

The electronic search yielded 362 studies. After duplications and non-English articles
were removed, 214 studies remained; of these, 186 were excluded after review of the
abstracts and full-text articles, leaving 29 eligible studies. An additional study was excluded
because it investigated the osteotomy procedure to correct tibial plateau fractures’ non-
union [12]. A total of 28 articles [6–10,13–35] were included in this systematic review
(Figure 1).
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opening wedge osteotomy surgical technique was described in 26 out of 28 presented 
studies. All the included studies used preoperative CT scan to obtain patient-specific 3D 
geometry for planning. The majority of patient-specific devices used in the literature for 
HTO were the customized osteotomy guides, described in 25 out of 28 studies included 
(Table 1), with only two studies using a custom-made plate [21,31]. 

Moreover, the producer of the planning system or customized devices for each 
included study was reported, where specified. Data about the correction accuracy were 
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Among the human study, the difference between the planned and the achieved correction 
of HKA was lower than 2.5°. In one study [17], a larger error was reported; however, it 
was a case report of a HTO in a complex valgus and recurvatum knee. Regarding to the 
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target and the obtained MPTA angle was under 1° except in one study [32] where 
intraoperative fluoroscopy was not used. 

 

Figure 1. PRISMA flow diagram.

The studies included and their design, the level of evidence, the osteotomy techniques,
and the customized devices used are summarized in Table 1. Among the included studies,
19 were human studies, four were cadaveric studies, and four were technical notes. One
study [32] presented both a human and a cadaveric series. A medial opening wedge
osteotomy surgical technique was described in 26 out of 28 presented studies. All the
included studies used preoperative CT scan to obtain patient-specific 3D geometry for
planning. The majority of patient-specific devices used in the literature for HTO were the
customized osteotomy guides, described in 25 out of 28 studies included (Table 1), with
only two studies using a custom-made plate [21,31].

Moreover, the producer of the planning system or customized devices for each in-
cluded study was reported, where specified. Data about the correction accuracy were
extracted from both the in vivo and in vitro studies when available (Tables 2 and 3). Among
the human study, the difference between the planned and the achieved correction of HKA
was lower than 2.5◦. In one study [17], a larger error was reported; however, it was a case
report of a HTO in a complex valgus and recurvatum knee. Regarding to the PTS, the
difference between the achieved sagittal alignment and the target was lower than 3◦ in
all the included studies. Among the cadaveric studies, the difference between the target
and the obtained MPTA angle was under 1◦ except in one study [32] where intraoperative
fluoroscopy was not used.

Five studies [8,20,28,29,35] reported the duration of the surgery, revealing an average
surgical time between 26.3 and 61 min. Seven studies [8,20,21,28,29,32,35] reported the
mean intraoperative fluoroscopy shoots, showing an average of figures between 1.3 and
18.8. Four studies reported the hinge fracture frequency, indicating a range from 0 to
24% [10,29,32,34].
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Table 1. Included Studies.

STUDY DESIGN LEVEL OF
EVIDENCE OSTEOTOMY TECHNIQUE CUSTOMISED DEVICE

Chaouche 2019 [10] Prospective cohort IV VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Chernchujit 2019 [13] Prospective cohort IV VALGUS MOW Planning system (3D CAD weight bearing simulated guidance)

Corin 2020 [14] Case report IV VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Donnez 2018 [15] Cadaveric study IV VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Duan 2021 [16] Prospective cohort IV VALGUS MOW Cutting guide (Formlabs, Somerville, MA, USA) Taylored spatial
frame (Tianjin Xinzhong, Tianjin, China)

Fortier 2021 [17] technical note V VARUS MCW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Fucentese 2020 [18] Retrospective case series IV VALGUS MOW Cutting guide (Medacta, Castel San Pietro, Switzerland)

Gerbers 2021 [19] Case report IV VARUS LOW Cutting guide (Materialise, Leuven, Belgium)
Repositioning guide (Materialise, Leuven, Belgium)

Jacquet 2019 (same patients of
Chaouche) [20] Prospective cohort IV VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Jeong 2022 [21] Case report IV VALGUS MOW Cutting guide 3D-printed Plate 3D-printed

Jones 2018 [7] Technical note V VALGUS MOW Cutting guide (Embody, London, UK)

Jörgens 2022 [9] Cadaveric study IV VALGUS MOW Cutting guide (Autodesk Inc., Mill Valley, CA, USA)
Spacers (Autodesk Inc., Mill Valley, CA, USA)

Kim 2018 [22] Retrospective comparative III VALGUS MOW Printed 3D spacer model
(Fortus 450 mc, Stratasys, Eden Prairie, MN, USA)

Kuriyama 2019 [23] Prospective cohort IV VALGUS MOW Planning system (3D Template, Kyocera, Kyoto, Japan)

Lau 2021 [24] Technical note V VALGUS MOW Cutting guide (Materialise, Leuven, Belgium)
Open wedges (Materialise, Leuven, Belgium)

Liu 2022 [8] Cadaveric study IV VALGUS MOW Cutting guide (Johnson & Johnosn, New Brunswick, NJ, USA)

Mao 2020 [25] Prospective comparative II VALGUS MOW Cutting guide 3 D-printed

Miao 2022 [26] Cadaveric study IV VALGUS MOW Cutting guide 3D-printed
Angular bracing spacer 3D-printed

Munier 2017 [27] Prospective cohort IV VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)
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Table 1. Cont.

STUDY DESIGN LEVEL OF
EVIDENCE OSTEOTOMY TECHNIQUE CUSTOMISED DEVICE

Pérez-Mañanes 2016 [28] Prospective comparative II VALGUS MOW Cutting guide (DaVinci 1.0, XYZ Printing, Taipei, Taiwan)
Polyhedral wedges (DaVinci 1.0, XYZ Printing, Taipei, Taiwan)

Predescu 2021 [29] Retrospective observational IV VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Rahmatullah Bin Abd Razak
2021 [30] Technical note V VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Ruggeri 2022 [31] Prospective cohort IV VALGUS MOW Cutting guide (T.O.K.A. 3D Metal Printing, Bath, UK)
Plate (T.O.K.A. 3D Metal Printing, Bath, UK)

Savov 2021 (in vivo series) [32] Retrospective observational IV
VALGUS MOW
VARUS LOW
VARUS MCW

Cutting guide (Newclip Technics, Haute-Goulaine, France)

Savov 2021 (cadaveric series) [32] Cadaveric study IV VALGUS MOW
VARUS LOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Tardy 2020 [33] Prospective comparative
(multicenter) II VALGUS MOW Cutting guide (Newclip Technics, Haute-Goulaine, France)

Van Genechten 2020 [34] Prospective cohort IV VALGUS MOW Fitting wedge (Materialise, Leuven, Belgium)
Cast (Materialise, Leuven, Belgium)

Victor 2013 [6] Prospective cohort IV VALGUS MOW
VARUS LOW Cutting guide (Materialise, Leuven, Belgium)

Yang 2018 [35] Prospective cohort IV VALGUS MOW Cutting guide (Formlabs, Somerville, MA, USA)

MOW: medial opening wedge; MCW: medial closing wedge, LOW: lateral opening wedge.

Table 2. (a) In Vivo Studies; (b) In Vivo Comparative Studies.

(a)

STUDY NUMBER OF PATIENTS/KNEES FU ∆ FROM PLANNED CORRECTION NOTES

Chaouche [10] 100 24 months ∆HKA 1 ± 0.9
∆PPTA 0.4 ± 0.8 N.R.

ChernchujIt [13] 19 N.R. ∆MA −0.04 N.R
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Table 2. Cont.

Corin [14] 1 N.R. N.A. Associated ACL revision

Duan [16] 25 18 months N.A. N.R.

Fucentese [18] 23 12 weeks ∆HKA 0.8 ± 1.5
∆PTS 1.7 ± 2.2 N.R.

Gerbers [19] 1 3 months ∆HKA 2.76;
∆PTS 1.24 Valgus and recurvatum preoperative knee deformity

Jacquet [20] 71 12 months Same study populations of Chaouche Outcomes evaluation: surgical time, surgeon anxiety, and number
of fluoroscopic images

Kuriyama [23] 60 2 months
∆MPTA1.4;

∆LPTS 1
∆MPTS −1

N.R.

Munier [27] 10 3 months ∆HKA 0.98
∆PTS 0.96 N.R.

Predescu [29] 25 12 months ∆HKA, ∆PTS, ∆MPTA <2◦ N.R.

Ruggeri [31] 4 6 months N.A. Lateralization of the ground reaction force at gait analysis

Savov [32] 19 N.R.
∆HKA 1.45 ± 1.16◦

∆MPTA 0.86 ± 0.6◦

∆LDFA 1.98 ± 1.33◦
N.R.

Van Genechten [34] 10 3 months
∆HKA 0.9 ± 0.6
∆MPTA1.3 ± 1.1
∆PTS 2.7 ± 1.8

N.R.

Victor [6] 14 6 weeks
∆ WEDGE ANGLE (CORONAL) 0◦

∆ WEDGE ANGLE (SAGITTAL) 0.3◦

∆HKA 0.3 ± 0.75
N.R.

Yang [35] 10 3 months ∆WBL % 4.9%
∆PTS 4.1% N.R.

Jeong [21] 1 6 weeks
∆HKA 0.7

∆MPTA 1.9
∆PTS 0.3

N.R.
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Table 2. Cont.

(b)

STUDY NUMBER OF PATIENTS/KNEES FU ∆ FROM PLANNED CORRECTION CONTROL GROUP AND RESULTS OF PSI GROUP

Kim [22] 20 12 months ∆HKA 2.3 ± 2.5
WBL: 80% ACCEPTABLE RANGE

20 standard MOW: HIGHER NUMBER OF PATIENTS IN
ACCETABLE RANGE (p = 0.028); LOWER MEAN ABSOLUTE

DIFFERENCE WITH THE TARGET POINT (p = 0.005)

Mao [25] 18 12 months ∆HKA 0.2 ± 0.6; ∆MPTA 0.1 ± 0.4 19 standard MOW SMALLER CORRECTION ERROR (p = 0.004)

Pérez-Mañanes [28] 8 N.R. ∆CA 0.5 20 standard MOW: NO STATISTICALLY
SIGNIFICANT DIFFERENCES

Tardy [33] 39 12 months ∆HKA 0.3 ± 3.1 61 standard MOW/LCW and a group of 26 MOW with navigation
system: NO STATISTICALLY SIGNIFICANT DIFFERENCES

∆: difference; HKA: hip-knee-ankle angle; MPTA: medial proximal tibial angle; PPTA: posterior proximal tibial angle; PTS: posterior tibial slope; LPTS: lateral posterior tibial slope;
MPTS: medial posterior tibial slope; MA: mechanical axis; WBL%: percentage of the weight-bearing line; CA: correction angle; PSI: patient-specific instrumentation; N.R.: nothing to
report; N.A.: non assessed

Table 3. Cadaveric Studies.

STUDY NUMBER OF PATIENTS/KNEES ∆ FROM PLANNED CORRECTION NOTES

Donnez [15] 10 ∆MPTA 0.2
∆PTS −0.1 N.R.

Jörgens [9] 13
∆MPTA 0.57
∆MPTS 0.98
∆LPTS 1.26

N.R.

Liu [8] 15 ∆HKA 0.62 ± 0.56;
∆PTS 1.24 ± 0.7

Control group of 11 standard HTO: PSI GROUP MORE ACCURATE FOR HKA
CORRECTION (p = 0.032) AND PTS CORRECTION (p = 0.015)

Miao 10 ∆MPTA −0.72

Savov [32] 8 ∆MPTA 3.47 ± 1.07◦

∆LDFA 2.18 ± 1.9◦

PERFORMED WITHOUT USE OF INTRAOPERATIVE FLUOROSCOPY;Compared to
human retrospective series by Savov with intra-operative fluoroscopy: SIGNIFICANT
HIGHER ACCURACY WAS OBTAINED USING INTRAOPERATIVE FLUOROSCOPY
(p < 0.001)

∆: difference; MPTA: medial proximal tibial angle, PTS: posterior tibial slope; LDFA: lateral distal femoral angle; PSI: patient-specific instrumentation; N.R.: nothing to report.
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4. Preliminary Cases of HTO with a New 3D-Printed Customized Device
4.1. Ethics

The three presented preliminary cases of patients who underwent valgus HTO surgical
procedure with a customized device were part of a prospective cohort of 25 patients
included in an ongoing clinical trial performed at Rizzoli Orthopedic Institute. The trial
received institutional (protocol code 0013570 of 5/11/2019) ethics regulatory approval, all
patients provided informed consent. This was a single arm prospective interventional trial,
registered at ClinicalTrials.gov (NCT04574570).

4.2. Customized System for Valgus HTO

Three pilot cases were analyzed (male/female: 3/0; left/right side: 1/2), taken from
a prospective cohort of 25 patients included in a clinical and biomechanical study about
the clinical and radiological outcomes of a patient-specific 3D-printed device for valgus
high tibial osteotomy. Inclusion criteria were: age between 40 and 65 years old, BMI
under 40, varus knee malalignment and uni-compartmental medial non-inflammatory
knee osteoarthritis.

The personalized HTO system under investigation was the TOKA system (3D Metal
Printing Ltd., Bath, UK). This system is based on digital planning performed on a weight-
bearing radiograph and a CT scan of the patient’s tibia. The digital planning used the
Miniaci method as reported by Elson [36]. The surgeon determined the required correction,
expressed as change in hip-knee-ankle (HKA, where HKA > 180◦ is varus) angle or medi-
olateral intersection of mechanical axis (hereafter termed ML, expressed as a percentage
of tibial plateau width, where ML = 0% represents the medial border of tibial), based on
the pre-operative weight-bearing long leg radiograph. The location and angle of the main
incision together with any desired change in posterior tibial slope (PTS) are configurable
during the 3D preoperative planning (Figure 2).
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Figure 2. (a) 2D planning based on the pre-operative weight-bearing long leg radiograph. (b) The
location and angle of the main incision together with any desired change in posterior tibial slope
(PTS) were selected using the 3D CT data.

The surgeon is also able to select the screw locations and plan around any existing
hardware such as ACL repair screws. The planning software then generated the geometries
of both the surgical guide and the HTO stabilization plate both contoured to the patient’s
individual tibia surface geometry and outputs the screw and drill length requirements
(Figure 3).
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Figure 3. (a) The planning software generates the geometries of both the HTO stabilization plate,
and the surgical guide contoured to the patient’s individual tibia surface geometry; (b) the planning
software also records all screw lengths required.

Once the final surgical plan and design were approved by the surgeon, the surgical
guide and plate were 3D-printed in medical grade titanium alloy (Ti6AL4V, ASTM F136
grade 23) using an ISO13485-certified production process (AM250, Renishaw plc, Wotton-
under-Edge, UK). The surgical guide embodies all the required instrumentation for the
osteotomy, together the guide and the plate weigh approximately 0.3 kg. The guide incorpo-
rates a patented opening mechanism which removes the need for placing instrumentation,
such as spreaders and osteotomes, within the osteotomy cut.

4.3. Surgical Technique

All surgeries were performed by the first author (S.Z.), who is an experienced specialist
knee surgeon with a clinical interest in HTO. The patient was positioned supine, with a
thigh torniquet, under regional anesthesia supplemented with sedation. The entire lower
extremity was prepared and draped. The joint line position was identified by placing
an intra-articular needle parallel to the surface of the tibial plateau. A longitudinal skin
incision, approximately 6 cm in length, was made over the pes anserinus insertion at the
anteromedial aspect of the tibia. The medial aspect of the proximal tibia was exposed by
elevating the insertion of the pes anserinus, and the hamstrings tendons, and by releasing
slightly the superficial layer of the medial collateral ligament. The neurovascular structures
underlying the knee joint were protected by retracting them with a blunt retractor. The
patient-specific cutting guide was placed in the planned position and temporarily secured
with two k-wires and their position was confirmed with intra-operative fluoroscopy. The
use of k-wires permits re-positioning of the guide before definitive placement. Once the
planned location has been obtained, the device was secured with seven drill bits (Figure 4).
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The biplanar osteotomy was then performed (Precision Blade, Stryker). After the
bone cut, the osteotomy gap was opened using the two opening screws and temporarily
stabilized with two patient-specific wedges (Figure 5a,b). The cutting guide was then
removed, leaving only the two drill bits above and below the osteotomy site. The custom
plate was positioned using the two remaining drill bits as a guide. The plate was then fixed
with seven screws. The two temporary wedges were then removed and an allograft bone
wedge from the Rizzoli Orthopedic Institute bone bank was placed in the osteotomy gap
(Figure 5c).
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Figure 5. (a) After the bone cut, the osteotomy gap was opened using the two opening screws; (b) the
gap was then temporarily filled with two patient-specific wedges; (c) the custom plate was then
positioned using the two remaining drill bits as a guide and secured with seven screws.

Following the surgery, the knee was placed in an extension brace for three weeks,
removable during the day for the range of motion exercises which were allowed from the
second day after surgery. Following an initial non-weight-bearing period of three weeks,
progressive weight-bearing as tolerated was allowed.

4.4. Imaging Evaluation

All subjects had a pre-operative weight-bearing long leg radiograph and CT scan
(Carestream, Rochester, NY, USA) which were used for digital planning and creation of the
personalized surgical guide and plate, as well as antero-posterior and lateral radiographs of
the knee. Weight-bearing long leg radiographs and CT scan were repeated at 6 months for
assessment of correction based on HKA angle, ML distance, and posterior tibial slope (PTS).

4.5. Clinical Evaluation

Patient-reported Outcomes (PROMS) were taken pre-operatively, and at one, three, six,
and twelve months post-operatively. The PROMS recorded were the Knee Osteoarthritis
Outcome Score (KOOS), and visual analogue pain scores (VAS, 0=no pain, 10=worst pain).
The KOOS was considered as a total score averaged across all domains and as individual
domains. The VAS score was for pain during activity (VASact).

4.6. Preliminary Cases

Demographics, clinical and alignment accuracy data of three pilot cases are sum-
marized in Table 4. The patients underwent radiological and clinical follow up at 6 and
12 months, respectively.

Patient 1 (Figure 6a) was a 48-year-old non-professional rock climber presented with
medial knee pain with functional restriction. Pre-operative X-ray assessment showed a
varus HKA of 185.6◦. The planned HKA was of 180.6◦ with no changes of the PTS. Post-
operative X-rays showed a difference between planned and achieved correction of 0.5◦ and
0.1◦ for HKA and PTS, respectively.
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Table 4. Pilot Cases.

PATIENT
ID AGE BMI

VAS
PRE-
OP

VAS
POST-

OP

KOOS
TOTAL
PRE-OP

KOOS
TOTAL

POST-OP

HKA
PRE-
OP

HKA
PLANNED

HKA
POST-

OP

PTS
PRE-OP

PTS
PLANNED

PTS
POST-

OP

Patient 1 48 years old 23.5 3 0 76 86 185.6◦ 180.6◦ 180.1◦ 10◦ 10◦ 9.9◦

Patient 2 60 years old 27.7 3 0 51 74 190.1◦ 180.3◦ 181.9◦ 8◦ 8◦ 8◦

Patient 3 47 years old 24.7 4 0 51 90 194.3◦ 181.3 181.1◦ 18◦ 13.5◦ 15◦

BMI: body mass index; HKA: hip-knee-ankle angle; PTS: posterior tibial slope.
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Figure 6. Pre- and postoperative full-length weight-bearing X-ray and lateral knee X-ray of patient 1
(a) and patient 2 (b).

Patient 2 (Figure 6b) was a 60-year-old policeman presented with medial knee pain,
K-L grade 2 of the medial compartment and constitutional varus knee of 190.1◦ HKA.
The difference between the planned and achieved coronal correction was 1.6◦. The aim
to not change the PTS was fully achieved, with a difference of the preoperative and
postoperative PTS of 0◦. At final follow up, the patient presented with no pain and
satisfactory functional outcomes.

Patient 3 (Figure 7) was a 47-year-old competitive cyclist who had a previous ACL
reconstruction with medial meniscectomy. He presented with knee pain and functional
restriction. On pre-operative radiographic assessment, he showed K-L grade 3 medial
OA with a coronal malalignment of 194.3◦ of varus HKA and a significant PTS of 18◦.
The preoperative plan aimed to address both the coronal malalignment and the PTS with
reductions of 13◦ and 4.5◦, respectively. The difference between planned and corrected
angles assessed post-operatively was of 0.2◦ and 1.5◦ for the HKA and PTS, respectively. At
final follow up, he had resumed the sport activity and presented improved patient-reported
clinical results.
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5. Discussion

The current systematic review revealed several systems with patient-specific instru-
mentation which show promising results, particularly regarding correction accuracy. The
interest and application of custom-made devices for high tibial osteotomy are rising.

A recent systematic review reported that conventional HTO procedures can delay the
onset of knee arthroplasty by more than 15 years [1]. However, this procedure presents
several pitfalls, including generalized and specific surgical complications such as deep vein
thrombosis, nerve injury, and intra-operative fractures [21]. Furthermore, postoperative
under- and over-correction regularly occurs, affecting the long-term outcomes of HTO,
which depend on the accuracy of the correction [7]. A recent systematic review, which
reported on whether the postoperative correction was within an acceptable preset range,
concluded that the HTO techniques described in the literature bear a surprisingly low
accuracy for the targeted angle [3]. While the optimal angular correction has not been clearly
determined in the literature, the crucial role of a patient-specific 3D approach in improving
the accuracy, safety, and clinical outcomes of the HTO has been highlighted [21,37].

Cadaveric studies investigating the accuracy of patient-specific 3D-printed device for
HTO have risen in recent years [8,9,15,26], reporting a mean difference between planned
and achieved medial proximal tibial angle (MPTA) under 1◦ (Table 3). These favorable
results have also been confirmed in in vivo studies (Table 2a). The first pilot human study
conducted using 3D planning and customized cutting guide in osteotomies around the
knee reported a mean deviation between the planned and the executed wedge angle of
0◦ (SD 0.72) in the coronal plane and 0.3◦ (SD 1.14) in the sagittal plane. A postoperative
difference of 0.3◦ was seen in hip-knee-ankle angle when compared to the preoperative
planning [6]. The largest prospective cohort of patients who underwent HTO with a patient-
specific cutting guide showed a mean difference of 1 ± 0.9◦ and 0.4 ± 0.8◦ between the
planned and achieved HKA and PTS, respectively [10]. Similar results were reported by a
retrospective case series of 23 patients who underwent HTO using a different customized
cutting guide with a mean deviation between the target and the post-operative HKA and
PTS of 0.8 ± 1.5◦ and 1.7 ± 2.2◦, respectively [18]. A previous systematic review and
metanalysis, in which patient-specific HTO were compared to both computer-assisted
surgery and standard procedures, showed a statistically significant reduction of postopera-
tive outliers of patient-specific and computer-assisted procedures compared to traditional
techniques. On the other hand, these alignment accuracy findings lacked statistical sig-
nificance of superiority [5]. In the current systematic review of the literature, the authors
found four studies in which a patient-specific 3D-printed system was compared to a stan-
dard HTO procedure [8,25,28,33] (Table 2b). While two out of four reported a statistically
significant higher accuracy in the custom-made device group [22,25], the other two did
not show statistically significant differences between the two procedures [28,33]. Overall,
the ability of patient-specific instrumentation to achieve an accurate correction appears
to be promising. In line with these findings, the alignment results of the first three pilot
cases of a new 3D-printed system presented in the current study showed a satisfactory
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accuracy of correction on both coronal and sagittal plane, with a brief learning curve for
the surgeon [20].

Most of the studies relating to custom-made devices for HTO, as well as the patient-
specific system presented in the current review, focused on the medial opening wedge
technique (Table 1). This may be due to the attractive features of the opening wedge
procedure: the absence of peroneal nerve injury risk, the reduced invasiveness with respect
to muscle attachment site disturbance, the opportunity for fine-tuning the correction during
the procedure, and no leg shortening [38]. For these reasons, the present review focused on
the first experience using a custom-made open wedge HTO device.

The most investigated aspect of a patient-specific 3D device applied to HTO surgery
was the cutting guide (Table 1), which plays a key role in translating the pre-operative
3D surgical planning to the operating room. While some cutting guides use distant bony
landmarks [7,26] aiming for a smaller skin incision, most cutting guides described in the
literature rely on local bone references. Other customized devices for HTO reported in the
literature are the spacer wedge blocks [9,22,24,28,34]. The system described in the current
study includes both the surgical guides and the wedges, using local proximal tibial bone
landmarks for guide positioning. The surgical guide also incorporates an integrated screw
opening system, which removes the need for several instruments and achieves the desired
correction precisely; the current systematic review did not reveal similar systems described
in the literature.

The advent of angular stable locking-plate technology has improved the fixation
technique and increased the use of osteotomy [7], particularly for the opening wedge
technique. A significant number of complications, however, are associated with the fixation
device itself—including hardware failure and regional pain syndrome [39]. Despite these
issues, the current review found only one study [21] in which a customized plate was used.
Moreover, in the new patient-specific system described in the current study, the osteotomy
was secured with a 3D-printed custom-made locking plate, with the aim of reducing the
hardware-related regional syndrome and the need to remove the fixation device.

The current study presents several limitations. The analysis of the clinical outcomes
was not performed because of the short-term follow-up of most of the included studies,
which was under one year. Moreover, technical notes or case reports without radiological
and clinical results were included in the review, leading to a low level of evidence of the
included studies. Therefore, caution should be used when interpreting the results of the
current review. Furthermore, in view of the heterogeneity of the data and studies included,
we do not perform a quantitative analysis but only a qualitative one. However, the aim
of the review was to give an overview of the customized device for HTO reported in the
literature and to assess the accuracy of the postoperative correction, where considered and
stated. When it comes to the new 3D-printed tailored system presented, the low number
of patients represents an important limitation. These are the authors’ first results using
a patient-specific device for HTO and it therefore represents only a preliminary analysis
of this new system for HTO surgery. On the other hand, the aim of the study was to
describe this new patient-specific approach and to present three first pilot cases with their
outcomes at one-year follow-up. To fully assess the results of the procedure, it would be
necessary to analyze the mid- and long-term follow-up outcomes of all the populations of
the ongoing trial.

The current review highlighted that several different 3D patient-specific approaches
to HTO are available to increase the accuracy of the alignment correction and that their
preliminary, short- and mid-term follow-up results showed promising results. Consistent
with these data, the pilot cases that underwent surgery with the new 3D-printed customized
system presented in the current study revealed satisfactory preliminary results in accuracy
and excellent clinical outcomes. However, further studies at long-term follow-up and
with a larger number of patients are needed to confirm these results and to investigate the
association between the improvement of accuracy and the rise of clinical outcomes.
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6. Conclusions

The available 3D patient-specific devices for customized HTO showed promising re-
sults in increasing the accuracy of the alignment correction. However, further studies with
long-term follow-up and with a larger number of patients are needed to confirm these re-
sults and investigate the association between accuracy improvement and clinical outcomes.
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