Supporting Information for

A Novel Cu(I)-5-nitropyridine-2-thiol Cluster with NIR Emission: Structural and Photophysical Characterization

Khaled Hassanein,^a Chiara Cappuccino,^b Marianna Marchini,^b Elisa Bandini,^a Meganne Christian,^c Vittorio Morandi,^c Filippo Monti,^{a*} Lucia Maini,^{b*} Barbara Ventura^{a*}

^a Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche

(CNR), Via P. Gobetti 101, 40129 Bologna, Italy. email: filippo.monti@isof.cnr.it;

barbara.ventura@isof.cnr.it

^b Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna,

Italy. email: l.maini@unibo.it

^c Istituto per la Microelettronica e Microsistemi (IMM) Sede di Bologna, Consiglio Nazionale delle

Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.

Figure S1: XRPD patterns of 1, 1n and the calculated pattern of 1.

Figure S2. Variable-temperature X-ray powder diffraction analysis of compound **1**. Powder pattern profiles measured *in situ*, color changes of the sample cooled down from 298 K (red line, bottom) to 83 K. At the end of the measurement, the sample was heated up to 298 K again (black line, top). No phase transition is observed, the shift of the peaks is due to thermal contraction.

Chemical formula	C ₃₀ H ₁₈ Cu ₆ N ₁₂ O ₁₂ S ₆
Formula Mass	1312.22 g/mol
Temperature	RT
Crystal System	Trigonal
Space Group	R-3
a/Å	22.3832(12)
b/Å	22.3832(12)
c/Å	7.0996(4)
α/°	90
β/°	90
γ/°	120
Volume/ Å ³	3080.41
R(int)	0.035
R1	0.0342
R2 (all data)	0.0530
Chi ²	1.013

 Table S1. Crystallographic data of compound 1 at room temperature.

Figure S3. Comparison between the experimental X-ray structure of complex 1 (red) and the one optimised by DFT methods (green). The structural overlap is obtained by minimizing the root-mean-square deviation (RMSD) of all the atomic positions except hydrogen atoms.

	X 1 (DFT data	U-DFT data				
	X-ray data	ground state	lowest triplet state				
	[56]	[D _{3d}]	$[C_s]$				
	Distances [Å]						
	2 0 1 0	2 7 7 7	2.582-2.438-2.582				
Cu–Cu	2.819	2.757	2.596-2.568-2.596				
Cu–Cu'	2.792	2.751	2.635-2.620-2.563				
Cu_S	2 249_2 250	2 284	2.340-2.363-2.371				
Cu 5	2.24) 2.250	2.204	2.330-2.341-2.338				
Cu–N	2.053	2.079	2.009-2.069-2.009 2.099-2.102-2.099				
CS	1 726	1 750	1.751–1.751–1.751				
<u> </u>	1.750	1.730	1.746-1.747-1.746				
	Angl	es [°]					
Cu–Cu–Cu	60.00	60.00	61.83–56.34–61.83				
	00.00	00.00	60.35-59.29-60.35				
Cu–Cu'–Cu	60.66	60.12	58.86-56.80-58.86				
			60.10-58.33-60.10				
Cu–Cu–Cu'	59.67	59.94	60 84-61 03-58 87				
		- /	66.59-61.88-66.59				
Cu–S–Cu	77.62	74.22	67.38–66.87–67.38				
S-Cu-Cu	51 19-51 21	52.89	56.28-59.06-57.13				
5 Cu Cu	51.17 51.21	52.09	56.26-56.56-56.36				
S–Cu–Cu'	79.99-80.00	82.53	86.91-87.31-86.79				
			143 87-141 25-148 17				
N–Cu–Cu	142.00–143.38	142.25	143.98–140.77–142.82				
N Cu Cu'	96 50 97 24	96.06	87.00-88.28-91.25				
N-Cu-Cu	80.30-87.34	80.00	85.37-86.28-87.84				
Cu–N–C	120.68	122.38	121.25–123.14–121.25				
			124.23-123.50-124.23				
Cu–S–C	105.94-106.49	104.27	101.35-100.46-101.09				
			110 27-102 64-106 69				
N–Cu–S	110.22–111.78	110.91	109.63-106.18-106.55				
C C N	110 (1	110.70	120.45-120.51-120.45				
5-C-N	119.01	119.70	120.92-120.67-120.92				
	Dihed	rals [°]					
Cu N C S	1 20	0.00	2.08-0.00-2.08				
	1.50	0.00	2.40-0.00-2.40				
Cu–Cu'–S–C	44.27-44.94	43.40	40.50-40.95-38.71				
	25.20	27.50	40.36-42.36-38.14				
U Cu–Cu–Cu–S	25.30	27.58	31.13-32.28-31.56				

Table S2. Comparison between key geometrical parameters of complex 1 obtained from X-ray diffraction crystallography and DFT optimizations in vacuum.

			27.83-30.09-27.95
<u></u>	1/18/00	146.02	143.52-144.74-143.52
	1-0.00	140.02	147.96-145.36-147.96
Cu' Cu' Cu' N	128 46 140 02	128.22	137.18-144.57-150.76
Cu –Cu –Cu –N	136.40-140.02	138.22	136.43-138.80-141.52
Cu–Cu–Cu–Cu'	54.33	54.66	55.09-55.54-55.79
			54.48-55.59-56.28
	100.74	100.52	109.32-110.07-109.32
Cu-Cu-Cu	109.74	109.32	108.09-109.14-108.09
IN NO	10.45	0.00	0.23-0.00-0.23
py-NO ₂			0.04-0.00-0.04

Figure S4. Arbitrarily scaled absorption spectrum (black solid), room temperature excitation spectrum (red dash, $\lambda_{em} = 768$ nm), low temperature excitation spectrum (brown dash, $\lambda_{em} = 823$ nm) of a powder sample of **1** obtained from bulk solution.

Table S3. The lowest 18 singlet vertical excitation for compound **1** in vacuum. Density differences are computed as $\rho_{Sn} - \rho_{S0}$ using relaxed excited-state densities and the ground-state SCF one. Isodensities = + 0.0004 (yellow, electron) and – 0.0004 e bohr⁻³ (gray, hole). The symmetry of each excited state (and molecular orbital) is given accordingly to the ground-state D_{3d} point group.

	Transition energy [eV (nm)] oscillator strength	Density difference $(\rho_{Sn} - \rho_{S0})$	Molecular-orbital contribution	Nature
$S_0 \rightarrow S_1$ (E _u)	2.42 (512) f = 0.092		$\begin{array}{ccc} H-1 & \rightarrow & L+4 \\ (e_u) & (a_{1g}) \\ & 96.1\% \end{array}$	cluster centered
$S_0 \rightarrow S_2$ (E _u)	2.42 (512) f = 0.092		$\begin{array}{ccc} H & \rightarrow & L+4 \\ (e_u) & (a_{1g}) \\ & 96.1\% \end{array}$	cluster centered
$S_0 \rightarrow S_3$ (Eg)	2.43 (511) f = 0.000		$\begin{array}{rrrr} H-4 & \rightarrow & L+4 \\ (e_g) & (a_{1g}) \\ & 97.6\% \end{array}$	cluster centered
$S_0 \rightarrow S_4$ (Eg)	2.43 (511) f = 0.000		$\begin{array}{ccc} H-3 & \rightarrow & L+4 \\ (e_g) & (a_{1g}) \\ & 97.6\% \end{array}$	cluster centered
$S_0 \rightarrow S_5$ (A _{2g})	2.49 (499) f = 0.000	- A A A A A A A A A A A A A A A A A A A	$\begin{array}{ccc} H-2 & \rightarrow & L+4 \\ (a_{2g}) & (a_{1g}) \\ & 97.5\% \end{array}$	cluster centered
$S_0 \rightarrow S_6$ (A _{1u})	2.80 (443) f = 0.000		$\begin{array}{ccc} H-5 & \rightarrow & L+4 \\ (a_{1u}) & (a_{1g}) \\ & 93.1\% \end{array}$	cluster centered

$S_0 \rightarrow S_7$ (E _u)	2.83 (438) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_8$ (E_g)	2.83 (438) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$\begin{array}{c} S_0 \rightarrow S_9 \\ (E_u) \end{array}$	2.88 (431) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{10}$ (E _u)	2.88 (431) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{11}$ (Eg)	2.89 (430) f = 0.001	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{12}$ (Eg)	2.89 (430) f = 0.001	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{13}$ (E _u)	2.93 (423) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

$S_0 \rightarrow S_{14}$ (Eg)	2.94 (422) f = 0.000	where the second s	highly multiconfigurational character	mixed cluster centered and charge transfer nature
$S_0 \rightarrow S_{15}$ (Eg)	2.94 (422) f = 0.000	and the second	highly multiconfigurational character	mixed cluster centered and charge transfer nature
$S_0 \rightarrow S_{16}$ (Eg)	2.94 (422) f = 0.015		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{17}$ (Eg)	2.96 (419) f = 0.094		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{18}$ (Eg)	2.96 (419) f = 0.094		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

Table S4. The lowest 14 triplet vertical excitation for compound 1 in vacuum. Density differences are computed as $\rho_{Tn} - \rho_{S0}$ using relaxed excited-state densities and the ground-state SCF one. Isodensities = + 0.0004 (yellow, electron) and – 0.0004 e bohr⁻³ (gray, hole). The symmetry of each excited state (and molecular orbital) is given accordingly to the ground-state D_{3d} point group.

	Transition energy [eV (nm)]	Density difference $(\rho_{Tn} - \rho_{S0})$	Molecular-orbital contribution	Nature
$S_0 \rightarrow T_1$ (E _u)	2.27 (547)		$\begin{array}{rrrr} H-1 & \rightarrow & L+4 \\ (e_u) & (a_{1g}) \\ & 96.8\% \end{array}$	cluster centered

$\begin{array}{c} S_0 \rightarrow T_2 \\ (E_u) \end{array}$	2.27 (547)	- A	$\begin{array}{ccc} H & \rightarrow & L+4 \\ (e_u) & & (a_{1g}) \\ & 96.8\% \end{array}$	cluster centered
$\begin{array}{c} S_0 \rightarrow T_3 \\ (E_g) \end{array}$	2.35 (528)		$\begin{array}{rcl} H-4 & \rightarrow & L+4 \\ (e_g) & (a_{1g}) \\ & 97.1\% \end{array}$	cluster centered
$\begin{array}{c} S_0 \rightarrow T_4 \\ (E_g) \end{array}$	2.35 (528)	A Provide A ProvideA ProvideA ProvideA Provide A Provide A Provide A Provide	$\begin{array}{rrrr} H-3 & \rightarrow & L+4 \\ (e_g) & (a_{1g}) \\ & 97.1\% \end{array}$	cluster centered
$S_0 \rightarrow T_5$ (A _{2g})	2.41 (514)		$\begin{array}{ccc} H-2 & \rightarrow & L+4 \\ (a_{2g}) & & (a_{1g}) \\ & & 96.8\% \end{array}$	cluster centered
$\begin{array}{c} S_0 \rightarrow T_6 \\ (E_g) \end{array}$	2.60 (477)		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$\begin{array}{c} S_0 \rightarrow T_7 \\ (E_g) \end{array}$	2.60 (477)		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow T_8$ (E _u)	2.60 (477)		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

$\begin{array}{c} S_0 \rightarrow T_9 \\ (E_u) \end{array}$	2.60 (477)	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow T_{10}$ (Eg)	2.61 (476)	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow T_{11}$ (E _u)	2.61 (474)	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

Figure S5. Normalized corrected emission spectra of **1** (as powder) from bulk solution (solid line) and from fast precipitation conditions (**1n**, open circles). $\lambda_{exc} = 450$ nm.

Figure S6. Pawely refinement on the powder patter of the sample 1 to determine the average crystal size with the Scherrer formula (crystal shape factor =1). An extra peak due the sample holder is observed at 2θ = 16.21°. Experimental pattern in blue, calculated pattern in red, difference plot in gray. The refinement converged at R_{wp}=4.53%.

Figure S7. Pawely refinement on the powder patter of the sample **1n** to determine the average crystal size with the Scherrer formula (crystal shape factor =1). Experimental pattern in blue, calculated pattern in red, difference plot in gray. The refinement converged at R_{wp} =2.81%.