Supporting Information

Sulfoxonium Ylides in Aminocatalysis: An Enantioselective Entry to Cyclopropane-Fused Chromanol Structures

Giorgiana Denisa Bisag, Pietro Pecchini, Michele Mancinelli, Mariafrancesca Fochi, * and Luca Bernardi*
Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis - C^{3}, and INSTM RU Bologna, Alma Mater Studiorum - University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy).
E-mail: mariafrancesca.fochi@unibo.it; luca.bernardi2@unibo.it

Table of contents

Additional experiments for the diastereodivergent oxa-Michael reaction 4aa $\rightarrow \mathbf{8 a a}--------------$-S5

Synthesis of products 4: general procedure and characterization-- 9

Determination of the relative configuration of compounds $\mathbf{4} \mathbf{\prime} \mathbf{a b}$ and 3ab--------------------------------S22
Determination of the relative configuration of compounds cis-8aa and trans-8aa--------------------S26

Optimization of reaction conditions for product 4aa: additional results

Different catalysts were tested in the reaction between 2^{\prime}-hydroxy cinnamaldehyde $\mathbf{1 a}$ and stabilized sulfoxonium ylide 2a and the results are reported in Table S1. Only the reaction performed with catalyst \mathbf{A} gives product $\mathbf{4 a a}$ with promising results in terms of yield and enantioselectivity (entry 1). Indeed, a little change on the catalyst's backbone such as a methyl as O-protecting group or 3,5-CF3 as substituents on the two aromatic rings leads to obtaining product 4aa with a lower value of yield and enantioselection (entries 2 and 3). While, performing the reaction with imidazolidinone \mathbf{D} as catalyst, product 4aa was present in the reaction mixture only in traces and in a racemic form.

Table S1. Catalyst screening ${ }^{a}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}, 1$ equiv.), $\mathbf{2 a}(0.15 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{PhCOOH}(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ catalyst A-D (0.02 mmol , $20 \mathrm{~mol} \%)$ and $\mathrm{CDCl}_{3}(200 \mu \mathrm{~L}), \mathrm{rt}, 1-12 \mathrm{~h} .{ }^{\mathrm{b}}$ Enantiomeric excess determined by CSP-HPLC. ${ }^{\mathrm{c}}$ Yield determined after chromatographic column on silica gel.

Once the right catalyst for the reaction was identified, a solvent screening was performed and the results are reported in Table S2. Numerous solvents were tested, but product 4aa was obtained only by performing the reaction in toluene or in halogenated solvents (entries 1-3). Indeed, performing the reaction in THF, MTBE or EtOAc only starting materials were present in the reaction mixture without traces of product 4aa (entries 4-6). Performing the reaction in toluene (entry 2) product 4aa was obtained with a lower value of yield and enantiomeric excess, compared to CDCl_{3}. While using dichloromethane, comparable results in terms of yield and enantio-selection were obtained (entry 3). Given the convenience of using a deuterated solvent during the optimization process, and the good results obtained, we decided to use deuterated chloroform as solvent for the next screening.

${ }^{\text {a }}$ Reaction conditions: $1 \mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1$ equiv.), $\mathbf{2 a}$ ($0.15 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{PhCOOH}(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ catalyst $\mathbf{A}(0.02 \mathrm{mmol}$, $20 \mathrm{~mol} \%)$ and solvent $(200 \mu \mathrm{~L}), \mathrm{rt}, 1-12 \mathrm{~h} .{ }^{\mathrm{b}}$ Enantiomeric excess determined by CSP-HPLC. ${ }^{\mathrm{c}}$ Yield determined after chromatographic column on silica gel.

To improve both the enantiomeric excess and the yield of the product 4aa we investigated the dilution of the reaction (Table S3). We found that performing a more diluted reaction (0.1 M , entry 2 instead of 0.5 M entry 1), product 4 aa can be obtained with higher values of both yield and enantio-selection.

Table S3. Concentration ${ }^{a}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}, 1$ equiv.), $\mathbf{2 a}(0.15 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{PhCOOH}(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ catalyst $\mathbf{A}(0.02 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and $\mathrm{CDCl}_{3}(200$ or $1000 \mu \mathrm{~L})$, rt, $1-2 \mathrm{~h} .{ }^{\mathrm{b}}$ Enantiomeric excess determined by CSP-HPLC. ${ }^{\mathrm{c}}$ Yield determined after chromatographic column on silica gel.

In the end, we moved to evaluate the influence of the additives as co-catalysts in the reaction between aldehyde $\mathbf{1 a}$ and sulfoxonium ylide $\mathbf{2 a}$. We found that performing the reaction with CSA as additive, product 4aa can be obtained with a very high value of enantiomeric excess but a lower yield (entry 2). Moving on to evaluate the different acidity of benzoic acid derivatives, we understood that performing the reaction with a rather acidic benzoic acid, $p-\mathrm{NO}_{2}$-benzoic acid, it is possible to improve the yield of product 4aa, compared to the simple benzoic acid, while the enantiomeric excess experiences a considerable decrease (entry 3). Performing the reaction with a less acidic benzoic acid, p-MeO-benzoic acid, both the value of yield and enantioselectivity remain unchanged (entry 4). In the end, we decided to test an aliphatic acid (AcOH) but no variation of the yield or enantiomeric excess was verified (entry 5). Taking into consideration the achieved result, but considering that the
acidity of the additive could compromise the stability of the sulfoxonium ylide $\mathbf{2 a}$ we decided to perform the same experiment but using sodium acetate as additive. In this case, an increase of yield was observed (entry 6). The beneficial effect of sodium acetate on the yield of the reaction was confirmed by an experiment performed without additives (entry 7). We then tried alternative bases, such as tertiary amines, as additives in the reaction. As shown in entries 8-11, use of these bases in either catalytic or stoichiometric amounts led to poorer results, so sodium acetate was chosen as cocatalyst for the reaction.

Table S4. Additives screening ${ }^{a}$

${ }^{\text {a }}$ Reaction conditions: $1 \mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1$ equiv.), 2a ($0.15 \mathrm{mmol}, 1.5$ equiv.), additive ($0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$) catalyst $\mathbf{A}(0.02 \mathrm{mmol}, 20$ $\mathrm{mol} \%)$ and $\mathrm{CDCl}_{3}(1000 \mu \mathrm{~L})$, rt, 1-12 h. ${ }^{\mathrm{b}}$ Enantiomeric excess determined by CSP-HPLC. ${ }^{\mathrm{c}}$ Yield determined after chromatographic column on silica gel.

Proposed reaction pathway for the catalytic reaction

Scheme S 1 summarizes our current hypothesis on the reaction pathway. Condensation of the cinnamaldehyde with the catalyst, under acidic conditions, affords a reactive iminium ion in equilibrium with its more stable (and unreactive) hemiaminal form. Attack of the sulfoxonium ylide on the less hindered rear face of the iminium ion results in an enamine intermediate. The enamine can displace DMSO by attacking with its rear face in a $\mathrm{S}_{N} 2$-like reaction. The perfect diastereoselectivity observed in all cases can be ascribed either to a highly diastereoselective attack of the ylide to the imium ion, or to a reversible attack to the iminium ion followed by a selectivity determining DMSO displacement step. Hydrolysis releases the catalyst and an aldehyde product with 2,3-trans configuration. Epimerization α to the aldehyde function can be expected to be facile in this species. Hemiacetalization traps the cis-isomer giving stable compound 3aa.

Scheme S1

Additional experiments for the diastereodivergent oxa-Michael reaction 4aa \rightarrow 8 aa

The intramolecular oxa-Michael reaction delivering 8aa from 4aa was found to proceed smoothly under basic promotion. Since an achiral catalyst/promoter such as $\mathrm{Et}_{3} \mathrm{~N}$ delivered the product with low diastereomeric ratio (1.5:1 favoring trans-8aa), few chiral bifunctional catalysts derived from Cinchona alkaloids were tried in the reaction in toluene at RT (Scheme S2), in order to develop a selective, and possibly diastereo-divergent, process. This class of catalysts is known to be very effective in a related oxa-Michael reaction. ${ }^{1}$

-(dh)QN series (cis-selective reaction):

-(dh)QD series (trans-selective reaction):

cis/trans $=1: 4.5$

cis/trans $=1: 3.5$

Scheme S2
Catalysts from the quinine series were found to promote the selective formation of the cis-8aa isomer, with a benzylic squaramide derivative outperforming other structures. Solvents other than toluene did not provide any improvement. Quinidine derived catalysts were indeed able to steer the reaction towards the trans-8aa isomer. However, in this case the catalyst providing the best result was found to be a thiourea derivative. The requirement of non-pseudoenantiomeric catalysts for a diastereo-

[^0]divergent process of this type can be rationalized considering that the transition states leading to cis8aa and trans-8aa are intrinsically diastereomeric, and thus do not necessarily require enantiomeric catalysts for their stabilization/promotion. ${ }^{2}$

[^1]
General methods and materials

General Methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury 300, 400 or Inova 600 spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvents signals for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{3}{ }^{13} \mathrm{C}$ NMR were acquired with ${ }^{1} \mathrm{H}$ broad-band decoupled mode. NOE spectra were recorded using the DPFGSE-NOE sequence, ${ }^{4}$ using a mixing time of 2.80 s and "rsnob" 50 Hz wide selective pulses. ECD spectra were recorded on a Jasco J-810 instrument. High Resolution Mass Spectra (HRMS) were recorded on a Waters Xevo Q-TOF spectrometer. ESI spectra were recorded on a micromass LCT spectrometer using electrospray (ESI) ionization technique. Compounds 4baga are rather unstable and could not be subjected to HRMS analysis, but only to low resolution ESIMS (faster access). Optical rotations were measured on a Perkin Elmer 241 Polarimeter provided with a sodium lamp and are reported as follows: $[\alpha] \lambda{ }^{\mathrm{T}}{ }^{\left({ }^{C} \mathrm{C}\right)}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$, solvent). The enantiomeric excess of the products (ee) were determined by chiral stationary phase HPLC (Daicel Chiralpak OJH or AD-H or IC columns), using a UV detector operating at 254 nm . Infrared (ATR) spectra were recorded on a Perkin Elmer Spectrum Two FT-IR spectrometer equipped with an ATR probe. Signals are reported as strong (s), medium (m), and weak (w). Melting points (uncorrected) were determined with a Stuart Scientific SMP3 apparatus. Purification of reaction products was carried out by flash chromatography (FC) on silica gel (230-400 mesh) or by gravimetric chromatography using 70-230 mesh silica. The absolute and relative configuration of the products was determined on compounds $\mathbf{4} \mathbf{a b}$ and 3ab (see dedicated section), and assigned by analogy to the remaining compounds. The relative configuration at the cyclopropane of known compound 6aa, derived from 3aa, is in line with this assignment.

Materials. Analytical grade solvents and commercially available reagents were used as received, unless otherwise stated. Catalyst A was purchased from Fluorochem and used as received. Reference racemic products $\mathbf{4}$ for CSP HPLC analysis were prepared using an equimolar mixture of (R)-A and (S)-A as catalyst. Catalysts $\mathbf{Q N} \mathbf{- 1}$ and $\mathbf{d h Q D} \mathbf{- 1}$ were prepared according to the literature. ${ }^{5}$

[^2]
Starting Materials

2'-hydroxycinnamaldehydes 1

2'-hydroxycinnamaldehydes $\mathbf{1}$, reported below, were prepared according to literature procedure. ${ }^{6}$

Sulfoxonium ylides 2

Sulfoxonium ylides $\mathbf{2}$, reported below, were prepared according to literature procedure. ${ }^{7}$

2d

2e

[^3]
Synthesis of products 4: general procedure and characterization

In a small vial equipped with a magnetic stirring bar, aldehyde $\mathbf{1}(0.1 \mathrm{mmol}, 1$ equiv.) and sulfoxonium ylide 2 ($0.15 \mathrm{mmol}, 1.5$ equiv.) were added to a $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ solution of catalyst (S) A ($0.02 \mathrm{mmol}, 0.20$ equiv., 6.5 mg) and AcONa ($0.02 \mathrm{mmol}, 0.20$ equiv., 1.6 mg). The resulting mixture was stirred at room temperature for 12 h . Subsequently, the appropriate phosphorous ylide ($0.3 \mathrm{mmol}, 3$ equiv.) was added and the resulting mixture was stirred at room temperature for 1 h . Next, the solvent was eliminated under vacuum and directly purified by flash column chromatography on silica gel affording compounds $\mathbf{4}$ as E / Z mixtures. In some cases, a fraction containing compounds 4 as single E-isomers was collected and used for the characterization. In all cases, the E-4 isomer was highly prevalent over its Z-4 counterpart (estimated ratio $>9: 1$).

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4aa

4aa

The general procedure was followed using aldehyde 1a, sulfoxonium ylide 2a, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4aa as E / Z mixture, and a fraction containing pure E-4aa as colorless oils (overall 67% yield, 20.4 mg). Performing the reaction on 1 mmol scale, that is, using 148.2 mg of substrate $\mathbf{1 a}(1.0 \mathrm{mmol}), 246.3 \mathrm{mg}$ of ylide $\mathbf{2 a}(1.5 \mathrm{mmol}), 65.1 \mathrm{mg}$ of catalyst (S)-A $(0.20 \mathrm{mmol}), 16.4 \mathrm{mg}$ of sodium acetate $(0.20 \mathrm{mmol})$ in 10 mL of CDCl_{3} as solvent for the catalytic reaction, and 1.045 g of phosphorous ylide (3 mmol) for the Wittig reaction, product 4aa was obtained in 69% overall yield ($210.0 \mathrm{mg}, 0.69 \mathrm{mmol}$) and 97% ee. E-4aa isomer: $[\alpha]_{\mathrm{D}}{ }^{25}=+20\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 97% ee. IR (ATR) $v(\max)=3390(\mathrm{br}, \mathrm{m}) 1714$ (s) 1687 (s) 1176 (s) cm ${ }^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right) \delta=7.18-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, J = 15.5, 10.3 Hz, 1H), $6.02(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{dd}, \mathrm{J}=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, \mathrm{J}=10.4,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=5.7$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=172.0,166.0,155.0,144.9,129.8,128.9,122.7,120.9,120.7,115.5,61.3,60.3,30.4,28.4,27.8$, 14.25, 14.21. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$ 327.1203; Found 327.1196. HPLC: OJ-H (n-hexane $/ i-\operatorname{PrOH} 90: 10,0.75 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\min }=15.1, \mathrm{~min}, \mathrm{t}_{\mathrm{maj}}=17.9 \mathrm{~min}$.

Methyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ab

4ab

The general procedure was followed using aldehyde $\mathbf{1 a}$, sulfoxonium ylide $\mathbf{2 b}$, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing E/Z mixture of 4ab as colorless oil (64% yield, 18.6 mg) with 96% ee. E/Z-4ab: IR (ATR) $v(\max)=3392$ (br, m) 1710 (s) 1691 (s) 1248 (s) 1167 (s) 1139 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right)$ [signals of the E-isomer] $\delta=7.14(\mathrm{ddd}, \mathrm{J}=8.1,7.4,1.7$, $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, \mathrm{J}$ $=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $2.97(\mathrm{dd}, \mathrm{J}=9.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, \mathrm{J}=10.3,9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=172.4$, 165.9, 154.9, 144.7, 129.8, 128.9, 122.8, 120.8, 120.7, 115.5, 60.3, 52.3, 30.4, 28.4, 27.5, 14.2 HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O} 5 \mathrm{Na}$ 313.1046; Found 313.1043; $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{KO}_{5}$ 329.0786; Found 329.0780. HPLC: IC (n-hexane $/ i-\operatorname{PrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}$) E-isomer: $\mathrm{t}_{\text {min }}=7.7 \mathrm{~min}, \mathrm{t}_{\text {maj }}=9.4 \mathrm{~min}$.

Methyl (1R,2R,3S)-2-(2-hydroxyphenyl)-3-(3-methoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4'ab

4'ab

The general procedure was followed using aldehyde $\mathbf{1 a}$, sulfoxonium ylide $\mathbf{2 b}$, and methyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing E/Z mixture of $\mathbf{4}^{\prime} \mathbf{a b}$ as colorless oil in 62% yield (17.1 mg) with 94% ee. E/Z4'ab: IR (ATR) $v(\max)=3400$ (br, m) 1719 (s) 1694 (s) 1251 (s) 1160 (s) 1139 (s) $\mathrm{cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right)$ [signals of the E-isomer] $\delta=7.15(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=$ $6.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, J=$ $10.2,9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=172.3,166.3,154.9,145.0,129.9,128.9,122.4,120.83,120.81,115.5,52.3$, 51.5, 30.4, 28.5, 27.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na} 299.0890$; Found 299.0886; $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{KO}_{5} 315.0629$; Found 315.0637. HPLC: ADH (n-hexane/iPrOH 90:10, $0.75 \mathrm{~mL} / \mathrm{min}$) E-isomer: $\mathrm{t}_{\text {maj }}=18.2 \mathrm{~min}, \mathrm{t}_{\min }=19.6 \mathrm{~min}$.

Butyl (1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylatecarboxylate 4ac

4ac The general procedure was followed using aldehyde 1a, sulfoxonium ylide $\mathbf{2 c}$, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4ac as E / Z mixture, and a fraction containing pure E-4ac as colorless oils (overall 60% yield, 19.9 mg) with 95% ee. E-4ac isomer: $[\alpha]_{\mathrm{D}}{ }^{25}=+28\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 95% ee. IR (ATR) $v(\max)=3398$ (br, m) 1718 (s) 1693 (s) 1248 (s) 1168 (s) 1139 (s) $\mathrm{cm}^{-1} .^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=7.17-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{td}, \mathrm{J}=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}$ $=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, \mathrm{J}=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, \mathrm{J}$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=9.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, \mathrm{J}=10.3,9.1,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=5.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=172.1,166.0,155.0,144.9$, $129.8,128.9,122.7,120.9,120.7,115.5,65.2,60.3,30.6,30.3,28.4,27.8,19.1,14.1,13.7$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na} 355.1516$; Found 355.1508. HPLC: OJ-H (n-hexane/iPrOH 90:10, $0.75 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\text {min }}=10.6 \mathrm{~min}, \mathrm{t}_{\text {maj }}=12.4 \mathrm{~min}$.

Isobutyl (1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ad

4ad

The general procedure was followed using aldehyde 1a, sulfoxonium ylide 2d, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4ad as E / Z mixture, and a fraction containing pure E-4ad as colorless oils (overall 70% yield, 23.2 mg) with 95% ee. E-4ad isomer: $[\alpha]_{\mathrm{D}}{ }^{25}=+27\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 95% ee. IR (ATR) $v(\max)=3396$ (br, m) 1718 (s) 1693 (s) 1247 (s) 1163 (s) 1139 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=7.17-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{td}, \mathrm{J}=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, J $=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, \mathrm{J}=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.93(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dd}, \mathrm{J}=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, \mathrm{J}=10.4,9.1,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3},+2{ }^{\circ} \mathrm{C}$) $\delta=172.0,166.0,155.0,144.9,129.8,128.9,122.7$, 120.9, 120.7, 115.5, 71.4, 60.3, 30.3, 28.4, 27.8, 27.7, 19.1, 14.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd
for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O} 5 \mathrm{Na} 355.1516$; Found 355.1515. HPLC: OJ-H (n-hexane $/ \mathrm{i}-\mathrm{PrOH} 90: 10,0.75 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\text {min }}=8.9 \mathrm{~min}, \mathrm{t}_{\text {maj }}=10.0 \mathrm{~min}$.
tert-Butyl (1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ae

4ae

The general procedure was followed using aldehyde 1a, sulfoxonium ylide $\mathbf{2 e}$, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4ae as E / Z mixture, and a fraction containing pure E-4ae as colorless oils (overall 57% yield, 19.0 mg) with 95% ee. E-4ae isomer: $[\alpha] \mathrm{D}^{25}=+25\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 95% ee. IR (ATR) $v(\max)=3423(\mathrm{br}, \mathrm{m}) 1710$ (s) 1698 (s) 1254 (s) 1141 (s) $\mathrm{cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right) \delta=7.17-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.9,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.89(\mathrm{dd}, J=9.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=10.4,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=5.8,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=171.0,166.0$, 155.0, 145.1, 129.8, 128.8, 122.6, 121.0, 120.6, 115.5, 81.6, 60.2, 30.0, 28.8, 28.1, 28.0, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na} 355.1516$; Found 355.1514. HPLC: OJ-H (n-hexane/iPrOH 90:10, $0.75 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\text {min }}=7.1 \mathrm{~min}, \mathrm{t}_{\mathrm{maj}}=7.8 \mathrm{~min}$.

Allyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4af

4af

The general procedure was followed using aldehyde $\mathbf{1 a}$, sulfoxonium ylide $\mathbf{2 f}$, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4af as E / Z mixture, and a fraction containing pure E-4af as colorless oils (overall 65% yield, 20.5 mg) with 90% ee. E-4af isomer: $[\alpha]_{D^{25}}+31\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 90% ee. IR (ATR) $v(\max)=3393$ (br, m) 1715 (s) 1691 (s) 1249 (s) 1160 (s) 1139 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=7.19-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J$ $=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddt, $J=17.1$, $10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=5.9$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{dd}, J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddd}, J=10.3,9.1,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{dd}, J=5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) δ $=171.7,165.9,154.9,144.7,131.8,129.8,128.9,122.8,120.8,120.7,118.7,115.5,65.9,60.3,30.5$,
28.5, 27.7, 14.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$ 339.1203; Found 339.1210. HPLC: OJ-H (n-hexane $/ i-\operatorname{PrOH} 90: 10,0.75 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\min }=15.3 \mathrm{~min}, \mathrm{t}_{\mathrm{maj}}=19.1 \mathrm{~min}$.

Benzyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ag

4ag

The general procedure was followed using aldehyde 1a, sulfoxonium ylide $\mathbf{2 g}$ and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4ag as E / Z mixture, and a fraction containing pure E-4ag as colorless oils (overall 56% yield, 10.5 mg$)$ with 97% ee. E-4ag isomer: $[\alpha]_{\mathrm{D}}{ }^{25}=+11\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 97% ee. IR (ATR) $v(\max)=3388$ (br, m) 1714 (s) 1690 (s) 1248 (s) 1161 (s) 1138 (s) cm ${ }^{-1} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{td}, J=7.5,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.19 (br s, 2H), $4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J=10.4,9.2,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=5.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3},+25\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta=171.8,165.9,154.9,144.7,135.5,129.8,128.9,128.6,128.4,128.3,122.9,120.8,120.7$, 115.5, 67.1, 60.3, 30.5, 28.6, 27.7, 14.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}$
 $\mathrm{t}_{\text {maj }}=38.7 \mathrm{~min}$.

Ethyl 3-((1S,2R,3R)-2-benzoyl-3-(2-hydroxyphenyl)cyclopropyl)acrylateacrylate 4ah

4ah

The general procedure was followed using aldehyde $\mathbf{1 a}$, sulfoxonium ylide $\mathbf{2 h}$, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing $4 \mathbf{a h}$ as E / Z mixture as colorless oil (35% yield, 12.4 mg) with 93% ee. E/Z-4ah mixture: IR (ATR) v (max) $=3431$ (br, m) 1700 (s) 1661 (s) 1253 (s) 1140 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right)$ [signals of the E-isomer] $\delta=8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.65-$ 7.57 (m, 1H), 7.55 - 7.48 (m, 2H), 7.20-7.17 (m, 2H), 6.91 (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, $J=$ $8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=15.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ddd, $J=10.6,8.9$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] δ $=197.1,166.1,155.0,145.2,137.3,133.4,130.0,129.0,128.8,128.3,122.7,121.3,120.8,115.7$, 60.3, 33.5, 32.2, 30.7, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O} 4 \mathrm{Na} 359.1254$; Found
359.1253. HPLC: OJ-H (n-hexane $/ \mathrm{i}-\mathrm{PrOH} 90: 10,0.75 \mathrm{~mL} / \mathrm{min}, \mathrm{E}$-isomer) $\mathrm{t}_{\text {min }}=30.7 \mathrm{~min}, \mathrm{t}_{\text {maj }}=42.6$ min.

Ethyl

(1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-methylphenyl)cyclopropane-1-carboxylate 4ba

The general procedure was followed using aldehyde $\mathbf{1 b}$, sulfoxonium ylide 2a, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4ba as E / Z mixture, and a fraction containing pure $\mathrm{E}-4 \mathrm{ba}$ as colorless oils (overall 52% yield, 16.5 mg) with 92% ee. E-4ba isomer: $[\alpha]_{D^{25}}+38\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) for 92% ee. IR (ATR) $v(\max)=3396$ (br, m) 1715 (s) 1693 (s) 1251 (s) 1173 (s) 1139 (s) cm ${ }^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right) \delta=7.02-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{dd}$, $J=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.93 (dd, $J=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=10.4,9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=5.7,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.+25^{\circ} \mathrm{C}\right) \delta=172.0,166.0,154.7,145.0,139.1,129.6,122.7,121.5,117.7,116.2,61.3,60.2,30.4$, 28.2, 27.8, 21.1, 14.25, 14.22. MS (ESI) m/z: [M + Na] ${ }^{+}$341. HPLC: IC (n-hexane/i-PrOH 80:20, 1 $\mathrm{mL} / \mathrm{min}) \mathrm{t}_{\min }=7.1 \mathrm{~min}, \mathrm{t}_{\text {maj }}=8.8 \mathrm{~min}$.

Ethyl

(1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methylphenyl)cyclopropane-1-carboxylate 4ca

4ca

The general procedure was followed using aldehyde $\mathbf{1 c}$, sulfoxonium ylide 2a, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing E / Z mixture of $\mathbf{4 c a}$ as colorless oil (overall 45% yield, 14.3 mg) and 95% ee. E/Z-4ca: IR (ATR) $v(\max)=3433$ (br, m) 1703 (s) 1700 (s) 1251 (s) $1180(\mathrm{~s}) 1138(\mathrm{~s}) \mathrm{cm}^{-1} \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=6.98-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=23.6,15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=$ $10.5,9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=5.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=172.0,165.9,152.6$, $144.9,130.3,129.9,129.3,122.7,115.4,61.3,60.2,30.4,28.5,27.7,20.5,14.27,14.23 . \operatorname{MS}$ (ESI)
$\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} 341$. HPLC: IC (n-hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}$) E-isomer: $\mathrm{t}_{\mathrm{min}}=6.9 \mathrm{~min}, \mathrm{t}_{\text {maj }}=$ 8.6 min .

Ethyl

(1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methoxyphenyl)cyclopropane-1-carboxylate 4da

The general procedure was followed using aldehyde 1d, sulfoxonium ylide 2a, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing E / Z mixture of $\mathbf{4 d a}$ as colorless oil (overall 63% yield, 21.1 mg), and 97\% ee. E/Z-4da: IR (ATR) $v(\max)=3409$ (br, m) 1714 (s) 1695 (s) 1251 (s) 1199 (s) 1176 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right)$ [signals of the E-isomer] $\delta=6.80-6.60(\mathrm{~m}, 3 \mathrm{H}), 6.23$ (dd, $J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{qd}, J=7.2,0.6 \mathrm{~Hz}, 2 \mathrm{H})$, 4.11 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 2.99 - 2.93 (m, 1H), $2.60(\mathrm{ddd}, J=10.4,9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ $(\mathrm{dd}, J=5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=171.8,165.9,153.5,148.9,144.7,122.9,121.9,116.3$, 115.6, 113.8, 61.3, 60.3, 55.8, 30.3, 28.6, 27.8, 14.25, 14.22. MS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} 357$. HPLC: IC (n-hexane $/ \mathrm{i}$-PrOH 80:20, $1 \mathrm{~mL} / \mathrm{min}$) E-isomer: $\mathrm{t}_{\text {min }}=10.2 \mathrm{~min}, \mathrm{t}_{\text {maj }}=11.7 \mathrm{~min}$.

Ethyl
 (1R,2R,3S)-2-(5-chloro-2-hydroxyphenyl)-3-(-3-ethoxy-3-oxoprop-1-en-1-

yl)cyclopropane-1-carboxylate 4ea

The general procedure was followed using aldehyde $\mathbf{1 e}$, sulfoxonium ylide 2a, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing 4ea as E / Z mixture, and a fraction containing pure E-4ea as pale yellow oils (overall 57% yield, 19.3 mg) with 90% ee. E-4ea: $[\alpha] \mathrm{D}^{25}=+38\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 90% ee. IR $(\mathrm{ATR}) v(\max)=3418(\mathrm{br}, \mathrm{m}) 1704$ (s) 1249 (s) 1179 (s) $1140(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=7.15-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=15.4$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.92 (dd, $J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{ddd}, J=10.3,9.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=171.7,166.0,153.7,144.2,129.7,128.7,125.3,123.2,122.8,116.8,61.5,60.4$, 30.2, 28.1, 27.5, 14.2, 14.1. MS (ESI) m/z: $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+} 361,\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+} 363$. HPLC: IC $(n-$ hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}$) E-isomer: $\mathrm{t}_{\min }=5.1 \mathrm{~min}, \mathrm{t}_{\text {maj }}=5.9 \mathrm{~min}$.

methoxyphenyl)cyclopropane-1-carboxylate 4fa

4fa

The general procedure was followed using aldehyde $\mathbf{1 f}$, sulfoxonium ylide 2b and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate and 1 equiv. of $\mathrm{NaOAc}(8.2 \mathrm{mg})$. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $=$ 200:1) afforded a fraction containing E/Z mixture of $4 \mathbf{f a}$ as yellow oil (43% yield, 14.4 mg), and 85% ee $. \mathrm{E}-4 \mathbf{f a}:[\alpha] \mathrm{D}^{25}=+23\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 85% ee. IR (ATR) $v(\max)=3393$ (br, m) 1715 (s) 1695 (s) 1162 (s) cm ${ }^{-1} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=7.01(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{dd}, J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H})$, $4.16-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, J=8.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (ddd, $J=10.4,9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.31(\mathrm{dd}, J=5.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , $\mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=171.9,165.9,160.3,155.8,144.8,130.6,122.7,113.0$, 106.2, 101.7, 61.3, 60.2, 55.3, 30.2, 27.9, 27.8, 14.24, 14.20. MS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} 357$. HPLC: AD-H (n-hexane $/ i-\operatorname{PrOH} 90: 10,1 \mathrm{~mL} / \mathrm{min}$) E-isomer: $\mathrm{t}_{\mathrm{maj}}=16.7 \mathrm{~min}, \mathrm{t}_{\text {min }}=22.8 \mathrm{~min}$.

Ethyl

(1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-3-methoxyphenyl)cyclopropane-1-carboxylate 4ga

The general procedure was followed using aldehyde $\mathbf{1 g}$, sulfoxonium ylide $\mathbf{2 a}$, and ethyl 2-(triphenyl- λ^{5}-phosphaneylidene)acetate. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=200: 1\right)$ afforded a fraction containing E/Z mixture of 4 ga as colorless oil (overall 43% yield 14.4 mg) and 88% ee. E/Z4ga: IR (ATR) $v(\max)=3427$ (br, m) 1711 (s) 1272 (s) 1176 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $+25^{\circ} \mathrm{C}$) [signals of the E-isomer] $\delta=6.81-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.5$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=9.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=10.5,9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=5.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right)$ [signals of the E-isomer] $\delta=172.1,166.1,146.4,145.6,145.0,122.3,121.4,120.7,119.3,109.8$, 61.1, 60.1, 56.0, 30.7, 28.6, 27.7, 14.22, 14.20. MS (ESI) m/z: [M + Na] ${ }^{+} 357$. HPLC: IC (n-hexane/iPrOH 80:20, $1 \mathrm{~mL} / \mathrm{min}$) E-isomer: $\mathrm{t}_{\text {maj }}=12.5 \mathrm{~min}, \mathrm{t}_{\min }=15.2 \mathrm{~min}$.

Synthetic elaborations

Synthetic elaboration on 3aa were performed using freshly prepared 3aa, isolated by a fast flash column chromatography using 3:1 hexane/acetone from catalytic crude, or using the one pot protocols detailed below.

Ethyl (1S,1aS,7bS)-2-oxo-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 5aa

In a small vial equipped with a magnetic stirring bar, PCC ($0.2 \mathrm{mmol}, 2$ equiv., 43 mg) was added to a solution of cyclopropanchromanol $\mathbf{3 a a}\left(0.1 \mathrm{mmol}, 1\right.$ equiv., 23 mg), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 12 h and then poured into an aq. solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(3 \mathrm{M})$, and extracted with $\mathrm{DCM}(3 \mathrm{x})$. The combined organic phases were dried over MgSO_{4}, filtered and evaporated under reduced pressure. The crude residue was then purified by flash column chromatography on silica gel (n-hexane/ $\mathrm{Et}_{2} \mathrm{O}=3: 1$) affording product $\mathbf{5 a a}$ as a white solid in $\mathbf{3 7 \%}$ yield (8.6 mg)

One pot protocol: In a small vial equipped with a magnetic stirring bar, aldehyde $\mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1$ equiv., 14.8 mg) and sulfoxonium ylide $\mathbf{2 a}\left(0.15 \mathrm{mmol}\right.$, 1.5 equiv., 25.2 mg) were added to a CDCl_{3} $(1 \mathrm{~mL})$ solution of catalyst (S)-A $(0.02 \mathrm{mmol}, 0.20$ equiv., 6.5 mg$)$ and AcONa ($0.02 \mathrm{mmol}, 0.20$ equiv., 1.6 mg). The resulting mixture was stirred at room temperature for 12 h , then treated directly with PCC ($0.3 \mathrm{mmol}, 3$ equiv., 65 mg). Work-up and purification as above afforded compound 5aa as a white solid in 35% yield (8.1 mg).
m.p. $=77-80^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}+7.2\left(\mathrm{c}=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 96% ee. IR (ATR) $v(\mathrm{max})=1754$ (s) $1722(\mathrm{~s})$ 1172 (s) 1076 (s) cm ${ }^{-1} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) $\delta=7.39(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 $-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{dd}, J=$ 8.1, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right) \delta=169.9,163.9,150.0,128.7,128.2,124.7,119.0,117.4,62.0$, 27.5, 27.0, 25.2, 14.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na} 255.0628$; Found 255.0633. HPLC: AD-H (n-hexane $/ i-\operatorname{PrOH} 90: 10,0.75 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\text {maj }}=11.4 \mathrm{~min}, \mathrm{t}_{\min }=15.7 \mathrm{~min}$.

Ethyl (1S,1aS,7bR)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 6aa

In a small vial equipped with a magnetic stirring bar, PTSA $\cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 1$ equiv., 95.1 mg$)$ was added to a solution of cyclopropanchromanol 3aa (0.1 mmol , 1 equiv., 23 mg) in 2.5 mL of MeOH . The reaction was stirred at rt for 1 h and then the desired intermediate $\mathbf{3}$ 'aa was purified by a short plug on silica gel using DCM as eluent. Intermediate 3'aa was then dissolved in 1 mL of DCM and cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 3$ equiv., $42.5 \mathrm{mg}, 37 \mu \mathrm{~L})$ and $\mathrm{Et}_{3} \mathrm{SiH}(0.3 \mathrm{mmol}, 3$ equiv., $34.9 \mathrm{mg}, 48 \mu \mathrm{~L}$) were added and the reaction was stirred at rt for 30 min . The mixture was then poured into a solution of $\mathrm{NaHCO}_{3(\text { sat })}$ and extracted with $\mathrm{DCM}(3 \mathrm{x})$. The combined organic phases were dried over MgSO_{4}, filtered and evaporated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel $(D C M / n$-hexane $=1: 1)$ affording product $\mathbf{6 a a}{ }^{8}$ as an oil in 67% yield (14.6 mg).

One pot protocol: In a small vial equipped with a magnetic stirring bar, aldehyde $\mathbf{1 a}(0.1 \mathrm{mmol}, 1$ equiv., 14.8 mg) and sulfoxonium ylide $\mathbf{2 a}\left(0.15 \mathrm{mmol}, 1.5\right.$ equiv., 25.2 mg) were added to a CDCl_{3} $(1 \mathrm{~mL})$ solution of catalyst (S)-A ($0.02 \mathrm{mmol}, 0.20$ equiv., 6.5 mg) and AcONa ($0.02 \mathrm{mmol}, 0.20$ equiv., 1.6 mg). The resulting mixture was stirred at room temperature for 12 h , then evaporated to dryness (replacing residual CDCl_{3} with MeOH portions). The residue was dissolved in MeOH (1 mL), and treated with PTSA $\cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 1$ equiv., 95.1 mg$)$. The reaction was stirred at rt for 1 h , then evaporated to dryness. The mixture containing intermediate $\mathbf{3}$ 'aa was then dissolved in 1 mL of DCM and cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 3$ equiv., $42.5 \mathrm{mg}, 37 \mu \mathrm{~L})$ and $\mathrm{Et}_{3} \mathrm{SiH}(0.3$ mmol, 3 equiv., $34.9 \mathrm{mg}, 48 \mu \mathrm{~L}$) were added and the reaction was stirred at rt for 30 min . Work-up and purification as above afforded compound $\mathbf{6 a a}$ as an oil in 17% yield $(3.7 \mathrm{mg})$. $[\alpha] \mathrm{D}^{25}-104.5$ ($\mathrm{c}=$ $0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) IR (ATR) $v(\max)=1723(\mathrm{~m}) 1253(\mathrm{~m}) 1029(\mathrm{~s}) \mathrm{cm}^{-1} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.+25^{\circ} \mathrm{C}\right) \delta=7.24(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=1.6,7.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{ddd}, J=1.2$, $7.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{dd}, J=1.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.91 (dd, $J=10.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=4.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 2 \mathrm{H}) 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right) \delta=172.2,152.7,128.7,127.3,124.0,121.8,117.3,61.6$,

[^4]60.8, 26.9, 24.4, 22.7, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 241.0835$; Found 241.0841 .

Ethyl (1S,2S,3R)-2-(hydroxymethyl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 7aa

In a small vial equipped with a magnetic stirring bar $\mathrm{NaBH}_{4}(0.225 \mathrm{mmol}, 1.5$ equiv., 8.5 mg$)$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of cyclopropanchromanol 3aa $(0.15 \mathrm{mmol}, 35.1 \mathrm{mg})$ in a $3: 1$ THF/ $\mathrm{H}_{2} \mathrm{O}$ mixture (1.5 mL). After 30 minutes stirring at $0^{\circ} \mathrm{C}$, the mixture was poured into a solution of $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(sat) }}$ and extracted with DCM. The combined organic phases were dried over MgSO_{4}, filtered and evaporated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel (n-hexane/acetone $=5: 1$) affording product 7 aa as a yellow oil in 91% yield (32.5 mg).

One pot protocol: In a small vial equipped with a magnetic stirring bar, aldehyde $\mathbf{1 a}(0.1 \mathrm{mmol}, 1$ equiv., 14.8 mg) and sulfoxonium ylide $\mathbf{2 a}\left(0.15 \mathrm{mmol}, 1.5\right.$ equiv., 25.2 mg) were added to a CDCl_{3} $(1 \mathrm{~mL})$ solution of catalyst (S)-A $(0.02 \mathrm{mmol}, 0.20$ equiv., 6.5 mg$)$ and AcONa ($0.02 \mathrm{mmol}, 0.20$ equiv., 1.6 mg). The resulting mixture was stirred at room temperature for 12 h , then evaporated to dryness (replacing residual CDCl_{3} with THF portions). The residue was dissolved in a $3: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture (1.5 mL), cooled to $0^{\circ} \mathrm{C}$, and treated with $\mathrm{NaBH}_{4}(0.225 \mathrm{mmol}, 1.5$ equiv., 8.5 mg). After 1.5 h , additional $\mathrm{NaBH}_{4}(0.225 \mathrm{mmol}, 1.5$ equiv., 8.5 mg) was added. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for an additional 30 minutes. Work-up and purification as described above afforded compound $7 \mathbf{a a}$ as a yellow oil in 50% yield (11.8 mg).
$[\alpha] \mathrm{D}^{25}-18.0\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR) $v(\max)=3452(\mathrm{w}, \mathrm{br}) 3165(\mathrm{w}, \mathrm{br}) 1701$ (s) 1219 (s) 1188 (s) $1018(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right) \delta=7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H})$, $4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=11.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.7(\mathrm{dd}, J=5.0$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right) \delta=173.1,154.9,131.3,128.8,122.8,121.1,116.7,61.5,61.1,29.1,26.6$, 22.9, 14.2. HRMS (ESI) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na} 259.0941$; Found 259.0946.

Ethyl (1S,1aS,2R,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1carboxylate and Ethyl (1S,1aS,2S,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydro cyclopropa $[c]$ chromene-1-carboxylate 8aa

cis-8aa-selective reaction (QN-1 catalyzed):

In a small vial equipped with a magnetic stirring bar catalyst QN-1 ($0.02 \mathrm{mmol}, 0.2$ equiv., 11.3 mg) was added to a solution of $\mathbf{4 a a}(0.1 \mathrm{mmol}, 1$ equiv., 30.4 mg$)$ in toluene $(0.5 \mathrm{~mL})$. The reaction was stirred 48 h at rt , then the catalyst was removed by a short plug of silica gel using $\mathrm{Et}_{2} \mathrm{O}$ as eluent. After evaporation of the solvents, the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicating a 7.2:1 diastereomeric ratio favoring the cis-8aa isomer. Subsequently, the crude residue was purified by flash column chromatography on silica gel (n-hexane/AcOEt $=14: 1$) affording product 8aa as a diastereomeric mixture in 58% yield $(17.6 \mathrm{mg})$ and 99% ee for the cis-8aa isomer. Cis/trans-8aa (cisenriched): IR (ATR) $v(\max)=1720$ (s) 1263 (s) 1172 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3},+25{ }^{\circ} \mathrm{C}$) [signals of the cis-isomer] $\delta=7.25(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}$, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (br d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (br t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19$ (m, 2H), 4.194.12 (m, 2H), 2.83 (dd, $J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dd, $J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (dd, $J=9.2,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{ddd}, J=9.2,4.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{br} \mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27$ $(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the cis-isomer] $\delta=171.9,170.2$, 152.5, 128.4, 127.4, 123.6, 122.0, 117.4, 68.0, 60.9, 60.8, 40.4, 30.6, 23.7, 23.1, 14.23, 14.21. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{5} 305.1389$; Found 305.1389. HPLC: IC (n-hexane/i-PrOH 95:5, $0.75 \mathrm{~mL} / \mathrm{min}$) cis-8aa isomer: $\mathrm{t}_{\min }=18.5 \mathrm{~min}, \mathrm{t}_{\text {maj }}=30.8 \mathrm{~min}$.

trans-8aa-selective reaction (dhQD-1 catalyzed):

In a small vial equipped with a magnetic stirring bar catalyst dhQD-1 ($0.02 \mathrm{mmol}, 0.2$ equiv., 12.0 mg) was added to a solution of $\mathbf{4 a a}(0.1 \mathrm{mmol}, 1$ equiv., 30.4 mg) in toluene $(0.5 \mathrm{~mL})$. The reaction
was stirred 48 h at rt , then the catalyst was removed by a short plug of silica gel using $\mathrm{Et}_{2} \mathrm{O}$ as eluent. After evaporation of the solvents, the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicating a 3.4:1 diastereomeric ratio favoring the trans-8aa isomer. Subsequently the crude residue was purified by column chromatography on silica gel (n-hexane/ $\mathrm{AcOEt}=14: 1$) affording product $8 \mathbf{8 a}$ as a diastereomeric mixture in 58% yield (17.5 mg) and 99% ee for the trans-8aa isomer. Cis/trans-8aa (trans-enriched): IR (ATR) v (max) $=1726$ (s) 1704 (s) 1261 (s) 1186 (s) 1029 (s) $\mathrm{cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}\right)$ [signals of the trans-isomer] $\delta=7.22(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=$ $7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{brd}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (br t, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{~d}, J=15.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (dd, $J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dd, $J=$ $15.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{br} \mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3},+25^{\circ} \mathrm{C}$) [signals of the trans-isomer] $\delta=171.9,170.3$, $149.5,128.5,127.8,123.7,122.1,118.4,67.6,60.9,60.8,38.4,29.6,25.5,22.2,14.23,14.18$. HPLC: IC (n-hexane $/ \mathrm{i}$-PrOH 95:5, $0.75 \mathrm{~mL} / \mathrm{min}$) trans-8aa isomer: $\mathrm{t}_{\text {min }}=23.2 \mathrm{~min} \mathrm{t}_{\text {maj }}=34.1 \mathrm{~min}$.

Determination of the relative configuration of compounds $\mathbf{4}^{\prime} \mathbf{a b}$ and 3ab

Compound $\mathbf{4}^{\prime} \mathbf{a b}$ was selected for the assignment of the relative disposition of cyclopropane protons. Full assignment of ${ }^{1} \mathrm{H}$ NMR signals was preliminarily determined by J-coupling and HSQC and HMBC bidimensional sequences. The ${ }^{1} \mathrm{H}$ NMR spectrum shows that the H_{3} signal is coupled with the $\mathrm{H}_{1}, \mathrm{H}_{2}$ and $\mathrm{H}_{1 \mathrm{E}}$ giving a ddd signal. The J constant $\mathrm{H}_{3}-\mathrm{H}_{1 \mathrm{E}}(J=9.5 \mathrm{~Hz})$ is easily confirmed by the $\mathrm{H}_{1 \mathrm{E}}$ signal at 6.22 ppm . The large value of J coupling constant with the cyclopropane $\mathrm{H}_{2}(J=9.7 \mathrm{~Hz})$ and the smaller J constant with the last cyclopropane $\mathrm{H}_{1}(J=4.3 \mathrm{~Hz})$ suggests that H_{3} is cis and trans, respectively, to these protons. To confirm the $1 \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}$ relative configuration, NOESY-1D spectra were acquired (Figure S1).

d)

Figure S1. DPFGSE-NOE spectra of $\mathbf{4} \mathbf{\prime} \mathbf{a b}\left(600 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}, \mathrm{~T}=25^{\circ} \mathrm{C}\right)$; a) control ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum; b) saturation of cyclopropane H_{2} signal; c) saturation of cyclopropane H_{3} signal; d) saturation of cyclopropane H_{1} signal.

On saturation of the proton in position 2 of the cyclopropane $\left(\mathrm{H}_{2}\right)$, strong NOE effect is generated on the H_{3} hydrogen (79.2\%), smaller on the $\mathrm{H}_{1}(20.8 \%)$ and H_{6}-Ph signals (Fig. S1 trace b). If the protons were in the same side, a 50% of NOE effect should occur. When H_{3} is saturated only H_{2} and $\mathrm{H}_{2 \mathrm{E}}$ give strong NOE effect. Finally, on saturation of the H_{1}, strong NOE effect is generated on the $H_{1 E}$ and H_{6}-Ph signals confirming that the substituents of the cyclopropane are in the same side of H_{1}.

These results indicate that cyclopropane has a $1 \mathrm{R}^{*}, 2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}$ relative configuration.

methyl (1R,2R,3S)-2-(2-hydroxyphenyl)-3-((E)-3-methoxy-3-oxoprop-1-
en-1-yl)cyclopropane-1-carboxylate

Having in hand the relative configuration of compound $\mathbf{4}^{\prime} \mathbf{a b}$, the relative assignment of the cyclopropyl ring in both major and minor products of compound 3ab was done. The two diastereoisomers differ for the configuration of the hemiacetal carbon 2. Keeping in mind the C.I.P. priority groups, the relative configuration is $1 \mathrm{~S}^{*}, 1 \mathrm{aS*}, 2^{*}, 7 \mathrm{bR} *$. To assign the relative configuration of the two isomers, NOESY-1D experiments were acquired (Figure S2).

On saturation of the aromatic proton H_{7}, NOE effect is generated on the $\mathrm{H}_{7 \mathrm{~b}}$ cyclopropane proton (Figure 2, trace b). When hemiacetal proton of major diastereosiomer $\left(\mathrm{H}_{2 \text { maj }}\right)$ is saturated, both H_{1} and $\mathrm{H}_{1 \mathrm{a}}$ give strong NOE effect (Figure S 2 , trace c), suggesting its disposition in the same side (3D structure in Figure S2, major). Vice versa, H_{1} does not give NOE effect on saturation of hemiacetal proton of minor diastereosiomer ($\mathrm{H}_{2 \min }$) (trace d) confirming their opposite side (3D structure in Figure S2, minor).

In conclusion, the relative configuration of the major diastereoisomer of $\mathbf{3 a b}$ is $1 \mathrm{~S}^{*}, 1 \mathrm{aS*}, 2 \mathrm{R}^{*}, 7 \mathrm{bR}^{*}$ and the minor diastereoisomer of $\mathbf{3 a b}$ is $1 \mathrm{~S}^{*}, 1 \mathrm{aS}^{*}, 2 \mathrm{~S}^{*}, 7 \mathrm{bR}$.

Major
$1 \mathrm{~S}^{*}, 1 \mathrm{aS}^{*}, 2 \mathrm{R}^{*}, 7 \mathrm{bR} \mathrm{B}^{*}$

Minor
$1 \mathrm{~S}^{*}, 1 \mathrm{aS}^{*}, 2 \mathrm{~S}^{*}, 7 \mathrm{bR} *$

Figure S2. DPFGSE-NOE spectra of 3ab (600 MHz in $\mathrm{CDCl}_{3}, \mathrm{~T}=25^{\circ} \mathrm{C}$); a) control ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum; b) saturation of H_{7} aromatic signal; c) saturation of $\mathrm{H}_{2 \text { maj }}$ major signal of hemiacetal; d) saturation of $\mathrm{H}_{2 \text { min }}$ minor signal of hemiacetal.

Determination of the relative configuration of compounds cis-8aa and trans-8aa

1a,2-cis-8aa

1a,2-trans-8aa

To determine the relative configuration between the C 1 a and C 2 chirality centers of compounds cisand trans-8aa, NOESY-1D experiments were performed on a mixture enriched in the trans-8aa isomer (Figure S3). Irradiation of the aromatic signal corresponding to H_{7} at 7.22 ppm (dd, $J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H})$ gave a NOE effect on the signal at $6.92 \mathrm{ppm}(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, assigned to H_{6}, and on the signal at $2.56 \mathrm{ppm}(\mathrm{dd}, J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$ (Figure S3, trace b). The latter signal could thus be assigned to $\mathrm{H}_{7 \mathrm{~b}}$. Such assignment was confirmed by irradiating the signal at 6.75 ppm (br d, $\left.J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, which gave NOE effect only on the aromatic signal at $7.11 \mathrm{ppm}(\mathrm{td}, J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$) (not shown). Irradiating the signal at $4.91 \mathrm{ppm}(\mathrm{br} \mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, assigned to H_{2} based on its chemical shift, gave NOE effect on the two cyclopropanic proton signals at 2.28 ppm (br $\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), and 2.27-2.24 ppm (m, 1H) (Figure S3, trace c). Irrespective of the assignment of these signals to H_{1} and H_{12}, this result indicates a cis-relationship between H_{2} and H_{1} and thus, ultimately, a 1a,2-trans relationship.

Figure S3. DPFGSE-NOE spectra of 8aa, predominantly 1a,2-trans (600 MHz in $\mathrm{CDCl}_{3}, \mathrm{~T}=25^{\circ} \mathrm{C}$); a) control ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum; b) saturation of H_{7} aromatic signal; c) saturation of H_{2}.

Determination of the absolute configuration of compounds 4'ab and 3ab

The determination of the absolute configuration (AC) of these products using X-Ray diffractometer was unfeasible because good crystals were not obtained. Therefore, the electronic circular dichroism (ECD) method was selected for the absolute configuration assignment.

Absolute Configuration of Compound 4'ab

The experimental ECD spectrum of compound $\mathbf{4}^{\prime}$ ab was acquired in the $195-400 \mathrm{~nm}$ region using a JASCO J-810 spectropolarimeter in HPLC-grade acetonitrile solution. Concentration was about $2 \cdot 10^{-}$
${ }^{4} \mathrm{M}$, optimized in order to have a maximum absorbance less than 1 , with a cell path of 0.1 cm . The spectrum was obtained by the average of 6 scans at $50 \mathrm{~nm} \cdot \mathrm{~min}^{-1}$ scan rate.

The ECD spectrum for compound $\mathbf{4}^{\prime} \mathbf{a b}$ shows a large negative band at 280 nm and a positive one at 220 nm (vide infra).
For compound $\mathbf{4} \mathbf{\prime} \mathbf{a b}$, two ground state geometries, within less than $1 \mathrm{kcal} / \mathrm{mol}$, were found and optimized at the B3LYP/6-31G(d,p) level of theory (Figure S4), and validated by frequency analysis (no imaginary frequency was observed). The two geometries differ in the dihedral angle of the o phenol, which can be -145.4° (73.3%) or $+58.7^{\circ}(26.7 \%)$.
The ECD spectra have been calculated in the gas phase for the two conformations with $1 R, 2 R, 2 S$ absolute configuration using TD-DFT. Four different hybrid functionals (BH\&HLYP ${ }^{9}$ and M06$2 \mathrm{X},{ }^{10} \omega \mathrm{~B} 97-\mathrm{XD}^{11}$ and CAM-B3LYP ${ }^{12}$) and the basis set $(6-311++\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ were employed (Figure S4).

[^5]

GS1
$0.000 \mathrm{kcal} / \mathrm{mol}$ 73.3\%

GS2
$0.599 \mathrm{kcal} / \mathrm{mol}$
26.7\%

Figure S4. Top: Ground state geometries of $\mathbf{4} \mathbf{\prime} \mathbf{a b}$ with $1 R, 2 R, 3 S$ absolute configuration. Bottom: calculated ECD spectra.

The calculated spectra for the two geometries are quite different (Figure S4), therefore the weighted sum was done and compared with the experimental ECD spectrum (Figure S5). The simulated spectra were vertically scaled and red-shifted to get the best match with the experimental spectrum. A very good overlap with the experimental ECD spectrum permits to assign the $1 R, 2 R, 2 S$ absolute configuration to compound $\mathbf{4}^{\prime} \mathbf{a b}$.

Calculated 1R,2R,3S

Figure S5 Overlap of calculated and experimental (black line) ECD spectra for compound ($1 R, 2 R, 2 S$) $\mathbf{4} \mathbf{\prime} \mathbf{a b}$.

Absolute Configuration of Compound 3ab

For compound 3ab, two diastereomeric geometries were found. Starting from relative configuration, $1 S, 1 \mathrm{aS}, 2 R, 7 \mathrm{~b} R$ geometry was calculated for the major diastereoisomer (78% by NMR) and $1 S, 1 \mathrm{aS}, 2 \mathrm{~S}, 7 \mathrm{~b}$ geometry was calculated for the minor diastereoisomer (22% by NMR). The ECD spectra have been calculated in the gas phase using TD-DFT, such as for compound $\mathbf{4} \mathbf{\prime} \mathbf{a b}$. Both calculated spectra for the two diastereoisomers have a good overlap with the experimental ECD of the mixture, meaning that the hemiacetal chiral carbon does not influence the biggest band at 230 nm , that is mainly due to the chromophores tetrahydrocyclopropa[c]chromene (Figures S6 and S7). However, the weighted sum of the two diastereoisomers was done and compared with the experimental ECD spectrum (Figure S8). The simulated spectra were vertically scaled and red-shifted to get the best match with the experimental spectrum. A very good overlap with the experimental ECD spectrum permits to assign the $1 S, 1 \mathrm{aS}, 2 R, 7 \mathrm{~b}$ R A.C. to the major diastereosiomer and $1 S, 1 \mathrm{aS}, 2 S, 7 \mathrm{~b} R$ A.C. to the minor diastereoisomer, thus confirming the correctness of the assignment previously done on $\mathbf{4} \mathbf{\prime} \mathbf{a b}$.

Major
1S,1aS,2R,7bR

Figure S6. Overlap of calculated ECD spectra for the major diastereoisomer of 3ab, and the experimental ECD of the diastereomeric mixture.

Minor
1S,1aS,2S,7bR

Figure S7. Overlap of calculated ECD spectra for the minor diastereoisomer of 3ab, and the experimental ECD of the diastereomeric mixture.

Figure S8 Overlap of calculated, the weighted sum of the two diastereoisomers of 3ab, and experimental (black line) ECD spectra.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products $\mathbf{4 - 8}$

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4aa

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Methyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4ab

${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Methyl (1R,2R,3S)-2-(2-hydroxyphenyl)-3-((E)-3-methoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4'ab

Butyl
(1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylatecarboxylate 4ac

N M

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Isobutyl (1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ad

4ad
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

シั்

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Allyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4af

今

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Benzyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4 ag

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl--3-((1S,2R,3R)-2-benzoyl-3-(2-hydroxyphenyl)cyclopropyl)acrylate 4ah

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-methylphenyl)cyclopropane-1carboxylate 4ba

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methylphenyl)cyclopropane-1carboxylate 4ca

Ethyl（1R，2S，3R）－2－（－3－ethoxy－3－oxoprop－1－en－1－yl）－3－（2－hydroxy－5－methoxyphenyl）cyclopropane－1－ carboxylate 4da

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\text { i }}$
べの

m mion

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Ethyl (1R,2R,3S)-2-(5-chloro-2-hydroxyphenyl)-3-(-3-ethoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4ea

methoxyphenyl)cyclopropane-1-carboxylate 4fa

${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-3-methoxyphenyl)cyclopropane-1carboxylate 4ga

Ethyl (1S,1aS,7bS)-2-0xo-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 5aa

©

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl (1S,1aS,7bR)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 6aa ${ }^{\mathbf{1 3}}$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^6]Ethyl (1S,2S,3R)-2-(hydroxymethyl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 7aa

7aa
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{1}{1}$				

7aa
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl (1S,1aS,2R,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate cis-8aa

Ethyl (1S,1aS,2S,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1carboxylate trans-8aa

Copies of HPLC traces of products 4-8

Ethyl (1R*,2S*,3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate rac-4aa

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4aa

Methyl
(1R*, 2S*, 3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-
carboxylate rac-4ab

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.493	BB	0.1851	1246.63782	104.53787	55.8733
2	9.118	BV	0.2300	984.54730	66.77629	44.1267

Methyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4ab

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.694		0.1860	96.50211	8.15624	2.2479
2	9.355		0.2402	4196.45410	271.73581	97.7521

Methyl (1R*,2R*,3S*)-2-(2-hydroxyphenyl)-3-(3-methoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4'ab

Methyl
(1R,2R,3S)-2-(2-hydroxyphenyl)-3-(3-methoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4'ab

Butyl
(1R*, 2S*,3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylatecarboxylate 4ac

Butyl
(1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylatecarboxylate 4ac

Isobutyl (1R*,2S*,3R*)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ad

Isobutyl
(1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ad

Tert-butyl (1R*,2S*,3R*)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ae

Tert-butyl
(1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ae

Allyl (1R*,2S*,3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4af

Allyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4af

carboxylate 4ag

Benzyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4af

Ethyl 3-((1S*,2R*,3R*)-2-benzoyl-3-(2-hydroxyphenyl)cyclopropyl)acrylate rac-4ah

Ethyl 3-((1S,2R,3R)-2-benzoyl-3-(2-hydroxyphenyl)cyclopropyl)acrylate 4ah

Ethyl (1R*,2S*,3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-methylphenyl)cyclopropane-1carboxylate 4ba

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.072		0.1755	1119.23657	96.39005	55.3514
2	8.791		0.2252	902.81921	62.24410	44.6486
Totals	s :			2022.05579	158.63414	

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-methylphenyl)cyclopropane-1carboxylate 4da

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.075		0.1790	34.59105	2.94582	3.7611
2	8.805		0.2255	885.12604	60.93709	96.2389

Totals : $919.71708 \quad 63.88291$

Ethyl (1R*,2S*,3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methylphenyl)cyclopropane-1carboxylate 4ca

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.049		0.1841	91.06892	7.47739	40.9751
2	8.754		0.3107	131.18553	6.05758	59.0249
Total				222.25446	13.53497	

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methylphenyl)cyclopropane-1carboxylate 4ca

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area
1	6.946		0.1662	60.97028	5.63460	2.5248
2	7.196		0.1635	23.43864	2.21344	0.9706
3	8.603		0.2189	2330.41064	166.94904	96.5045
Total	5 :			2414.81957	174.79707	

Ethyl(1R*,2S*,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methoxyphenyl)cyclopropane -1carboxylate 4da

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Ethyl(1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methoxyphenyl)cyclopropane -1carboxylate 4ba

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	10.164	BB	0.2538	22.87235	1.30941	1.6635
2	11.723	BV	0.3108	1170.94824	58.19378	98. 3364

Ethyl (1R*,2R*,3S*)-2-(5-chloro-2-hydroxyphenyl)-3-(-3-ethoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4ea

$\begin{gathered} \text { Peak R } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width $[\mathrm{min}]$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	5.089		0.1245	969.53308	122.26378	58.7465
2	5.901		0.1518	680.83551	71.04188	41.2535
Totals	s :			1650.36859	193.30566	

Ethyl (1R,2R,3S)-2-(5-chloro-2-hydroxyphenyl)-3-(-3-ethoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4fa

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	5.102		0.1221	46.74147	5.91772	5.2954
2	5.907	VV	0.1508	835.93378	86.48706	94.7046
Totals	s :			882.67525	92.40478	

Ethyl (1R*,2S*,3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-methoxyphenyl)cyclopropane-1-carboxylate 4fa

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	15.726		0.8584	545.57031	9.72621	48.1374
2	20.915		1.3468	587.78912	6.55085	51.8626
Total	/s :			1133.35944	16.27706	

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-methoxyphenyl)cyclopropane-1carboxylate 4fa

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.713		0.8369	66.84313	1.10624	7.3784
2	22.803		1.3048	839.09265	9.66531	92.6216
Total	s :			905.93578	10.77155	

Ethyl (1R*,2S*,3R*)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-3-methoxyphenyl)cyclopropane-1-carboxylate 4ga

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	12.596	BV	0.3021	1928.07642	98.59661	48.9097
2	15.303	BV	0.3678	2014.03845	85.19571	51.0903
Total	s :			3942.11487	183.79232	

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-3-methoxyphenyl)cyclopropane-1carboxylate 4ea

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { 期 }} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU]] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	12.539		0.2985	482.45602	25.07698	93.7354
2	15.248		0.3654	32.24416	1.31818	6.2646
Total	s :			514.70019	26.39517	

Ethyl (1S*,1aS*,7bS*)-2-oxo-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 5aa

Ethyl (1S*,1aS*,7bS*)-2-oxo-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 5aa

Ethyl (1S*,1aS*,2R*,7bR*)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydrocyclopropa[c] chromene-1-carboxylate cis-8aa and Ethyl ($1 \mathrm{~S}^{*}, 1 \mathrm{aS}$ *, $2 \mathrm{~S}^{*}, 7 \mathrm{bR} *$)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydro cyclopropa[c]chromene-1-carboxylate trans-8aa (trans:cis ca. 9:1 favoring the trans-8aa isomer).

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area \%
1	16.981		0.3233	237.06837	11.18567	4.6550
2	21.612		0.4197	2269.65967	82.83414	44.5668
3	29.128		0.5896	215.58414	5.74745	4.2332
4	31.966		0.6643	2370.40747	54.40604	46.5450

Ethyl (1S,1aS,2R,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydrocyclopropa[c] chromene-1-carboxylate cis-8aa

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	18.460	BB	0.2603	4.11539	2.32698 e-1	0.3436
2	30.866	BB	0.6321	1193.65674	28.88521	99.6564

Ethyl (1S,1aS,2S,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydro cyclopropa[c]chromene-1-carboxylate trans-8aa

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{\circ} \end{gathered}$
1	23.210		0.4817	14.20832	$4.53328 e-1$	0.6869
2	34.059		0.6599	2054.15625	47.94344	99.3131
Total	:			2068.36457	48.39677	

Copies of IR spectra of products 4-8

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4aa

Methyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4ab

Methyl (1R,2R,3S)-2-(2-hydroxyphenyl)-3-((E)-3-methoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4'ab

22/06/2022 10:45:52
Spectrum

Butyl
(1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylatecarboxylate 4ac

Isobutyl (1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1carboxylate 4ad

Tert-butyl carboxylate 4ae
(1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-

Allyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4af

Benzyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 4 ag

Analyst
Date
00

Ethyl--3-((1S,2R,3R)-2-benzoyl-3-(2-hydroxyphenyl)cyclopropyl)acrylate 4ah

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-methylphenyl)cyclopropane-1carboxylate 4ba

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methylphenyl)cyclopropane-1carboxylate 4ca

Ethyl (1R,2S,3R)-2-(-3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-5-methoxyphenyl)cyclopropane -1carboxylate 4da

Ethyl (1R,2R,3S)-2-(5-chloro-2-hydroxyphenyl)-3-(-3-ethoxy-3-oxoprop-1-en-1-yl)cyclopropane-1carboxylate 4ea

ethyl
(1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-4-
methoxyphenyl)cyclopropane-1-carboxylate 4fa
Analyst
Date

Ethyl (1R,2S,3R)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-3-(2-hydroxy-3-methoxyphenyl)cyclopropane-1carboxylate 4ga

Ethyl (1S,1aS,7bS)-2-0xo-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 5aa

Ethyl (1S,1aS,7bR)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate 6aa
22/06/2022 10:53:48

Spectrum

Ethyl (1S,2S,3R)-2-(hydroxymethyl)-3-(2-hydroxyphenyl)cyclopropane-1-carboxylate 7aa

Ethyl (1S,1aS,2R,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1-carboxylate cis-8aa

Ethyl (1S,1aS,2S,7bR)-2-(2-ethoxy-2-oxoethyl)-1,1a,2,7b-tetrahydrocyclopropa[c]chromene-1carboxylate trans-8aa

22/06/2022 10:59:21

Spectrum

[^0]: ${ }^{1}$ Zhu, D.-X.; Liu, J.-G.; Xu, M.-H. J. Am. Chem. Soc. 2021, 143, 8583.

[^1]: ${ }^{2}$ a) Lotter, D.; Castrogiovanni, A.; Neuburger, M.; Sparr, C. ACS Cent. Sci. 2018, 4, 656. b) Corti, V.; Riccioli, R.; Martinelli, A.; Sandri, S.; Fochi, M.; Bernardi, L. Chem. Sci. 2021, 12, 10233.

[^2]: ${ }^{3}$ Gottlieb, H. E.; Kottlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
 ${ }^{4}$ (a) Stonehouse, J.; Adell, P.; Keeler, J.; Shaka, A. J. J. Am. Chem. Soc. 1994, 116, 6037. (b) Stott, K.; Stonehouse, J.; Keeler, J.; Hwang, T. L.; Shaka, A. J. J. Am. Chem. Soc. 1995, 117, 4199. (c) Stott, K.; Keeler, J.; Van, Q. N.; Shaka, A. J. J. Magn. Reson. 1997, 125, 302. (d) Van, Q. N.; Smith, E. M.; Shaka, A. J. J. Magn. Reson. 1999, 141, 191.
 ${ }^{5}$ Wang, Y.; Milikiewicz, K. L.; Kaufman, M. L.; He, L.; Landmesser, N. G.; Levy, D. V.; Allwein, S. P.; Christie, M. A.; Olsen, M. A.; Nelville, C. J.; Muthukumaran, K. Org. Process Res. Dev. 2017, 21, 408; Cassani, C; Martín-Rapún, R.; Arceo, E.; Bravo, F.; Melchiorre, P. Nat. Protoc. 2013, 8, 325; Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.

[^3]: ${ }^{6}$ Ackrill, T. D.; Sparkes, H. A.; Wills, C. L. Org. Lett. 2015, 17, 3884-3887.
 ${ }^{7}$ Bisag, G. D.; Ruggieri, S.; Fochi, M.; Bernardi, L. Adv. Synth. Catal. 2021, 363, 3053-3059.

[^4]: ${ }^{8}$ Racemic 6aa: Ye, L.-W.; Sun, X.-L.; Li, C.-Y.; Tang, Y. J. Org. Chem. 2007, 72, 1335.

[^5]: ${ }^{9}$ In Gaussian 16 the BH\&HLYP functional has the form: $0.5 *$ EXHF $+0.5^{* E x L S D A}+0.5^{*} \Delta \mathrm{EX}^{\text {Becke88 }}+\mathrm{EC}^{\text {LYP }}$
 ${ }^{10}$ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
 ${ }^{11}$ Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540.
 ${ }^{12}$ Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393, 51.

[^6]: ${ }^{13}$ Racemic 6aa: Ye, L.-W.; Sun, X.-L.; Li, C.-Y.; Tang, Y. J. Org. Chem. 2007, 72, 1335.

