
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Spindle: Techniques for Optimizing Atomic Multicast on RDMA / Jha, Sagar; Rosa, Lorenzo; Birman, Ken. -
ELETTRONICO. - (2022), pp. 1085-1097. (Intervento presentato al convegno 42nd IEEE International
Conference on Distributed Computing Systems, ICDCS 2022 tenutosi a Bologna nel 10-13 July 2022)
[10.1109/ICDCS54860.2022.00108].

Published Version:

Spindle: Techniques for Optimizing Atomic Multicast on RDMA

Published:
DOI: http://doi.org/10.1109/ICDCS54860.2022.00108

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/898336 since: 2022-10-31

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICDCS54860.2022.00108
https://hdl.handle.net/11585/898336

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

S. Jha, L. Rosa and K. Birman, "Spindle: Techniques for Optimizing Atomic Multicast

on RDMA," 2022 IEEE 42nd International Conference on Distributed Computing

Systems (ICDCS), Bologna, Italy, 2022, pp. 1085-1097

The final published version is available online at

https://dx.doi.org/10.1109/ICDCS54860.2022.00108

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICDCS54860.2022.00108

Spindle: Techniques for Optimizing Atomic

Multicast on RDMA

Sagar Jha

Cornell University

Ithaca, NY, USA

srj57@cornell.edu

Lorenzo Rosa

University of Bologna

Bologna, Italy

lorenzo.rosa@unibo.it

Ken Birman

Cornell University

Ithaca, NY, USA

ken@cs.cornell.edu

Abstract—Modern networking technologies such as Remote
Direct Memory Access (RDMA) promise huge speedups in I/O
bound platforms, but software layering overheads must first be
overcome. Our paper studies this issue in a system that replicates
small data objects using atomic multicast: a case in which internal
synchronization is unavoidable, and any delay will be particularly
impactful. Spindle, the methodology we propose, entails a series
of optimizations including memory polling integrated with novel
sender and receiver batching techniques, null-message send logic,
and improved multi-thread synchronization. We applied Spindle
to Derecho, an open-source library for atomic multicast, and
obtained significant performance improvements both for the
library itself and for an OMG-compliant avionics DDS layered on
it. Derecho’s multicast bandwidth utilization for 10KB messages
rose from 1GB/s to 9.7GB/s on a 12.5GB/s network, and it became
more robust to delays even as latency dropped by nearly two
orders of magnitude. While our focus is on the Derecho library
and the OMG DDS, the same techniques should be relevant to
databases, file systems, and IoT infrastructures.

Index Terms—RDMA, atomic multicast, OMG DDS;

I. INTRODUCTION

Software infrastructures used in settings such as avion-

ics have strict dependability requirements that are addressed

through data and service replication. Application developers

adhere to standards like the OMG Data Distribution Service

(DDS) [1], which represents data as distributed objects (top-

ics). These objects are replicated across the subscribers in

accordance with Quality of Service (QoS) policies, which offer

various fault-tolerance and delay guarantees. Yet today’s DDS

systems stop short of the level of QoS needed for atomic

consistency [2] because the protocols were felt to be too costly.

Our work started with an effort to revisit this assumption in

light of RDMA.

Originally created as a hardware-offload technique for com-

munication in HPC systems, RDMA is increasingly popular

in cloud computing and compute clusters. The technology

enables direct data transfers between the virtual memory of

processes on remote machines, in which the only role of the

CPU is to request the operations. On cutting edge hardware,

with large messages, throughput can be as high as 200Gbps
and one-way latency as low as 0.75 µs.

Prior research applied RDMA to strongly consistent

fault-tolerance models such as State Machine Replication

(SMR) [3], yielding RDMA libraries for atomic multicast [4]–

[6]. One might expect that simply by layering middleware

over such a library we would gain commensurate speedups.

Unfortunately, however, this is not the case: we tried doing so

for the OMG DDS API, but encountered a series of overheads

associated with cross-layer handoffs, due to coordination,

locking and copying. The central dilemma is a tension between

overhead and delay: to minimize delay we would want to send

each new message promptly, but this incurs overhead on every

message. Those overheads can be amortized by batching but

this delays messages until the batch is full.

To tackle this class of inefficiencies, we created Spindle: a

set of optimizations for layering data replication services such

as communication middleware on a high speed RDMA library,

namely Derecho [4]. The approach is general, and should be

of value for the entire class of strongly consistent replication

systems [7], as well as for other forms of middleware and

for other high-speed networking technologies, e.g., DPDK [8].

We obtain very low latencies and big speedups, enabling

much stronger DDS QoS guarantees (failure atomicity, total

ordering, message logging with durability).

Our work on Spindle starts with a close study of cross-layer

handoff delays in situations where the application initiating

the send runs on its own threads, distinct from the threads

used in the underlying library. Such scenarios are common

because RDMA libraries typically use a dedicated polling

thread that is able to react instantly when data becomes ready.

The intent is that polling and spin-lock overheads would be

low, but we found that they are actually very significant. We

identified three major issues, all caused by the composition of

application threads and underlying RDMA library. First, when

a library must discover new messages from the application

or from the NIC, it turns out that even the briefest delays

can have a hugely amplified impact on performance. Second,

message-sending and receiving costs grow disproportionately

if the application has multiple incoming or outgoing message

streams. And finally, protocol control messages such as low-

level receipt or stability acknowledgments can be surprisingly

expensive: the latency to send minimal-sized acknowledg-

ments with RDMA is about the same as the latency to send

multiple KBs of application data. Thus while a layering of

a platform such as the OMG DDS on Derecho seems quite

simple (it requires just a few dozen lines of code), the solution

only performs well with very large messages.

These observations lead to a series of insights. The first

concerns batching. Derecho supported batching only on re-

ceipt. Spindle extends this into a unified opportunistic batching

mechanism, generating batches of varying sizes and applied at

all the stages: interaction with application threads, sending,

wire-level reception, stability (safety) sensing, and delivery

of upcalls and acknowledgments. Unified batching not only

slashes overheads but also makes the system far more tolerant

of scheduling delays.

A second insight relates to send-rate variability. Many

systems, including Derecho, are implicitly tuned for steady

data streaming: they work best when there is always a next

message to send as soon as the platform is ready. However,

at RDMA speeds, this assumption is unrealistic. We introduce

a new null-send mechanism that automatically sends empty

messages from a lagging sender with minimal overhead.

Finally, we introduce zero-copy message construction, en-

abling concurrent in-place preparation of new messages, while

the underlying library automatically performs sends as mes-

sages become ready. This lock-free concurrency in turn re-

quires a new style of opportunistic batch sends.

Our work is best understood as a next step in a progression

of insights concerned with leveraging modern high-speed com-

munication devices. Prior work explored separating control

and data planes [9] and optimizing the match between RDMA

and data movement [10], [11]. Derecho introduced a novel

monotonic representation of control data that facilitates op-

portunistic batching. Spindle shifts the focus to the interaction

between the application and the RDMA library.

II. BACKGROUND

A. Derecho atomic multicast protocol

Derecho implements a virtually synchronous membership

model within which it offers atomic multicast and persis-

tent replication using variants of Paxos [2], [4]. Application

processes are considered to be external or internal. External

members are basically clients of a service: their requests must

be relayed through an internal member. Internal members

comprise the service itself, and are said to belong to its top-

level group. The top-level group, in turn, is sharded into

smaller replication sets, which we refer to here as subgroups.

Multicasts in one shard won’t interfere with multicasts in other

shards, enabling linear scalability.

Within each subgroup, membership evolves through a se-

quence of views. A view change or reconfiguration occurs

on failures, node joins and leaves, which are assumed to be

relatively infrequent events. Atomic multicast is used when

updating data replicated within a subgroup: All members

receive these in the same order, and if a failure occurs,

pending multicasts are either delivered everywhere, or aborted

(not delivered anywhere) and then resent in the next view.

OMG DDS maps easily to this model: topics are hashed to

pick the subgroup where the topic will be managed, publish

is implemented as a multicast, and subscribe watching for

matching multicasts and then does an upcall. For an external

client, all of these are relayed.

Our work did not change the Derecho protocols, but unified

batching and null-sending are best explained with reference to

it major components: a control layer and an associated data

structure called the shared state table (SST), a data layer called

the small-message multicast (SMC), and a polling framework

using predicates that orchestrates the two. We briefly review

each.

B. SST

In Derecho, the control layer is represented by a data

structure called Shared State Table (SST). SST models each

node’s local state using a pre-agreed set of state variables. Each

process in the system has a local copy of the table, which it

accesses just like any other local table. A process is considered

to own one row: it updates the state data in this row to

notify other processes that its state has changed. The remaining

rows are read-only copies of the control data of each of its

peers. The actual transfers of data from process to process are

performed using one-sided RDMA writes: having updated its

own state variables, process A enqueues RDMA write requests

on its NIC, and this causes a series of one-to-one remote data

transfers to occur, updating the A row on processes B, C, D,

etc. There is no locking. Thus, although updates from any

single sender preserve that sender’s intended order, updates

from different processes can show up in different orders. It

turns out that the classic Paxos protocols can be reexpressed

to operate over this encoding, and that doing so yields an

exceptionally efficient atomic multicast solution [4].

In Table Ia we see an example SST, used by Derecho for

atomic multicasts in a single subgroup. In this example, we

have five application nodes with ids {0, 1, 2, 3, 4} organized

in three subgroups with memberships {0, 1, 2}, {0, 1, 3} and

{0, 2, 4}. There are two state variables, received num and

delivered num for each subgroup, abbreviated as literals r

and d in the table. Messages from each node in a subgroup

are received by all members in FIFO order. Thus every

message in the subgroup can be assigned a unique sequence

number, seq num which is its index in the delivery order.

The value of received num for a subgroup member is the

highest seq num s such that it has received all messages

with seq num ≤ s in the delivery order. Similarly, the value

of delivered num for a subgroup member is the sequence

number of the latest message it has delivered. Both counters

are monotonic, starting from −1.

Indeed, Derecho’s SST is designed for monotonic data:

counters that steadily increase, booleans that shift from false

to true, and lists of integers that are updated only via appends

or prefix-truncation. For basic types, such as counters, each

entry will fit in a cache line. This maps nicely to RDMA,

which is cache-line atomic and sequentially consistent. As a

result, every subgroup member is certain to see an increasing

sequence of values for every table entry. For example, when

node 0 sees that received num[1] for node 1 increases from

21 to 25, it can conclude that node 1 received the next four

messages. For updates to a list that spans multiple cache

lines, SST updates the list data, pushes the update with a

r[0] r[1] r[2] d[0] d[1] d[2]
node 0 8 25 -1 6 21 -1
node 1 9 21 — 6 20 —
node 2 6 — -1 6 — -1
node 3 — 23 — — 21 —
node 4 — — -1 — — -1

(a) State for atomic multicast

s[0][0] s[0][1] s[0][2] s[1][0] s[1][1] s[2][0]
{. . .}, 1 {. . .}, 0 {. . .}, 0 {. . .}, 7 {. . .}, 6 {. . .}, -1
{. . .}, 0 {. . .}, 0 {. . .}, 0 {. . .}, 7 {. . .}, 6 —
{. . .}, 0 {. . .}, 0 {. . .}, 0 — — {. . .}, -1

— — — — — —
— — — — — {. . .}, -1

(b) State for SMC data. {. . .} is a substitute for message content

Table I: Sample SST state at node 0 for 5 application nodes and 3 subgroups.

first RDMA operation, then updates a guard: a monotonic

counter used to signal that the data is ready, and pushes it

with a second RDMA operation. The RDMA memory-fencing

guarantee ensures that any member that sees the counter

update value will also see the updated version of the guarded

data.

C. SMC

SMC (small-message multicast) is a multicast protocol

implemented using a portion of the SST as a ring-buffer. Each

subgroup has a fixed, configurable number w (for window

size) of columns in the SST where each column entry for a

particular node is a slot for sending messages in that subgroup.

A slot is composed of a message area of a configurable, but

fixed size (thus the maximum message size is fixed) and a

counter. To send a message from a subgroup member, the

application obtains a slot in its row from SMC, generates

the message in it and calls send. SMC then updates the slot

counter and issues RDMA writes to push the message and the

counter to the subgroup members. On the receiver side, each

subgroup member monitors the counter of one slot for each

sender in which it expects to receive a message. Since the slots

are utilized in ring buffer order for consecutive messages, an

increase in the value of the counter indicates to the receiver

the presence of a new message.

Messages remain buffered until they have been delivered

to the application by every recipient. Thus a sending node

needs to track deliveries to know when it can reuse a slot

(failing to do so could cause an undelivered message to be

overwritten). The intent is that value of w be large enough

so that before running out of slots, some slots will have been

cleared, enabling continuous sending.

An example of SST columns corresponding to the SMC

state are shown in Table Ib, where slots are abbreviated using

the literal s. The first three slots are for subgroup 0, the

next two are for subgroup 1 and the last one is for subgroup

2. Thus in node 0’s copy of the SST, the counter value of

slot[0][0] being 1 for node 0’s row indicates that node 0 in

subgroup 0 has received 2 different messages in slot 0 from

itself, while the counter value of slot[2][0] being -1 for node

4’s row indicates that node 0 in subgroup 2 has not received

any message from node 4. Only nodes 0 and 1 are senders

in subgroup 1, thus the slots in node 3’s row are not used.

If node 0 were to send a new message in subgroup 1, it will

use slot[1][1] of node 0 which will result in the increment of

the slot’s counter value to 7. The window sizes of 3, 2, and 1

respectively are just to illustrate the concept: a w value in the

range 50 to 1000 would be typical for small messages.

Both SST and SMC guarantee that the memory layout of

the application during a view remains unchanged. Thus the

required memory can be allocated at each node at the begin-

ning of the view, registered with the NIC and the addresses

exchanged with all nodes for RDMA operations.

D. Monotonic predicates over the SST

RDMA is so much faster than traditional messaging that

per-event interrupts would be prohibitively slow. Accordingly,

Derecho’s core uses a single polling thread that watches for

work to do, then performs the needed action instantly. Because

there is a single thread, no locking is needed, and because only

a few conditions are of interest, any event of importance - a

new message ready to send, a new message from some other

peer, etc. - will be sensed within a few clock cycles.

To express this in a very general manner, we think of

the Derecho polling thread as an evaluator of a series of

predicates, i.e., conditional statements about data in the SST

or other control variables, such as a flag indicating that an

application thread has finished preparing a new message to

send. When a predicate is found to be true, the thread will

execute one or more corresponding code (predicate body). To

avoid busy waiting when there is no work to do, the polling

thread will quiesce if it loops for a while (1ms in current

settings) and nothing happens; in this state, the next event

will ring a form of doorbell to wake it up. In the active

state, the performance of the predicate thread is central to

the performance of Derecho.

This is where the concept of monotonicity is useful. In

Derecho prior to our work on Spindle, when a receiver thread

detected that new messages had arrived, it would opportunis-

tically discover a batch of size one or more messages, and

deliver them in order but as a single predicated action. This

reduces overheads and also rides out some forms of message

delay. However, the technique was used only on the receiver,

and only for this one purpose. Spindle, as we will see, takes

it quite a bit further.

There are three predicates of importance for Spindle:

Send predicate: Detects that the application has prepared

new messages that are ready to send.

Receive predicate: Monitors the SMC slot counter for every

sender in the subgroup. When the counter increments, a new

message is present, and the receive trigger runs. The trigger

can then increment the received num counter if the incoming

message is complete (large messages arrive in chunks), then

push the updated value to other subgroup members.

Delivery predicate: Checks to see if the next message in

the delivery order, say with id s, has become deliverable by

22 24 26 28 210 212 214 216 218 220

1.73
2.46

10

20

50

100

200

500

Dominated by
minimal wire delay

Dominated
by

message size

Message size (in Bytes)

L
a
te
n
cy

(i
n
µ
s)

RDMA writes

Figure 1: Latency vs data size on 100Gbps Mellanox RDMA.

Latency is nearly constant for up to 4KB message size.

checking if every member of the subgroup has received that

message (received num[i] >= s, ∀ i). The trigger delivers

the message, updates the receiver’s SST row, and then pushes

the update.

All three predicates need to run at high speeds without

thread scheduling delays. This explains the decision to em-

ploy a single predicate thread even though many subgroups

share the SST: multiple predicate threads would contend for

access to the SST memory as well as internal data structures

shared across all subgroups, resulting in locking and possible

cache-coherency delays. With a single thread, we lose the

opportunity of multi-threaded parallelism, but also eliminate

these overheads. Experiments made it clear that with our

batching techniques, a single thread can efficiently handle tens

of subgroups.

To illustrate these predicates in action, consider a new send

by the application thread. The application first acquires a free

SMC slot (meaning, the delivered num entry of all subgroup

members exceeds that of the slot). It constructs a message in

the slot and updates the associated counter. The send predicate

detects that the message is ready and initiates RDMA writes

to other subgroup members. A lock is needed because the

underlying data structures are shared with the predicate thread,

and also because multiple application threads may be sending

simultaneously. On the receive side, we see a similar stack,

but now the receive predicate senses the incoming messages

and the delivery predicate senses that they have become stable

and can be delivered.

III. SPINDLE OPTIMIZATIONS

Spindle was created as a response to a series of issues

we identified by microbenchmarking a baseline version of

the OMG DDS running on the Derecho atomic multicast.

Although Derecho performance is outstanding with large

messages, DDS publications are more frequently small. We

found that performance for message sizes and sending patterns

typical of DDS middleware (messages of up to a few KBs, a

few dozen topics with subgroups that are heavily overlapping)

was low. We set out to identify the issues that resulted in such

poor numbers. In this section, we detail some of the issues

and describe the Spindle techniques that respond to them.

A. Opportunistic batching

Performance of the baseline implementation is especially

low for small messages because the latency of sending control

data (acks for receiving a message, delivering a message) is

comparable to the latency of sending the application messages

themselves. Figure 1 plots RDMA write latency for different

message sizes. Latency for small messages does not increase

appreciably with the data size, increasing only marginally from

1.73 µs for 1-byte data to 2.46 µs for 4KB data.

The predicates described in Section II-D generate an ack

(sent through fields in the SST) for every new message receive

and delivery. This turns out to be expensive not only because

of the comparatively high latency of control messages as

described earlier, but also because posting an RDMA request

to the NIC takes ∼1 µs. In the baseline system, the predicate

threat spends more than 30% of its time posting RDMA writes.

A natural and effective way to address this is to batch

events at different stages of the delivery pipeline: send, re-

ceive and delivery. Underlying this observation is the use of

monotonicity for message sequence numbers: for instance,

if 10 messages in a sequence are received before acknowl-

edgment happens, the corresponding received num entry

can be simply advanced by 10 and a single RDMA write

operation issued to push the acknowledgment through the SST.

Batching acknowledgments will drastically reduce the number

of RDMA writes issued which in turn reduces time spent by

the predicate thread posting them.

The usual benefits of batching apply here as well. Batching

can improve predicate thread efficiency (by improving locality

of predicate evaluation) and can also allow a slow node to

catch up with the rest by processing larger batches. In cases

with multiple application subgroups, the original protocol

makes no distinction between the predicates for different

subgroups; that is, the predicate thread evaluates predicates

of all the subgroups fairly. When some of the subgroups

are not sending messages actively, this reduces the efficiency

of the predicate thread, lowering performance. Batching, if

done correctly, can help mitigate this issue by adapting batch

sizes to the workload. Sending multiple application messages

carries an additional benefit, that of sending a larger amount

of application data in a single RDMA write, which results in

better latency scaling as seen in Figure 1 and better wire-level

efficiencies (RDMA data is sent in frames with a capacity

tied to the network speed, and a very small message can leave

much of a frame unused).

Batching is not new, but traditional fixed-size batches are

poorly matched to RDMA, especially in latency-sensitive

settings like network services. If a system ever pauses sending

to accumulate the next batch, the associated delay in sending

proves to be remarkably disruptive. In one experiment, we

explored waiting to send a fixed batch of messages on top

of receive and delivery batching. Performance collapsed and

latency soared even for very small batch sizes.

Accordingly, we expanded the batching architecture into a

unified technique that covers all stages of atomic multicast.

(0, 0)

P

Q

R

Time

(2, 0)

(1, 0)

Ordering Delay

Figure 2: Delays at a sender can impact performance of the system by slowing down other senders.

The application thread generates messages as usual but the

send predicate checks to see if one or more messages are

ready. If so it aggregates them on the fly, and sends a batch.

The receiver predicate looks through the sequence of slots

for each sender, receiving all new messages that it can find.

The delivery predicate delivers all messages that have become

deliverable, in the right order. Opportunistic batching is self-

balancing: a batch can be smaller or larger depending on the

number of events a predicate discovers as it loops. This makes

execution more robust to delays by allowing lagging nodes to

catch up and does not involve waiting of any kind.

To implement these ideas, we modified the predicates de-

scribed in Section II-D as follows:

Send predicate: The new version of predicate issues

RDMA writes that send all the queued data generated in

contiguous ring buffer slots to the other members. If the

queued sends have wrapped around the ring buffer, it issues

two RDMA writes per remote member accordingly. Since

the messages go into discrete slots, each of a fixed size, the

predicate pushes the leftover space in the slots too (if messages

do not take up the entire slot area). We do not anticipate any

downsides to doing so, since the latency for small messages

does not rise appreciably and batching allows us to send

multiple messages in a single RDMA write.

Receive predicate: For every sender, this predicate goes

through the corresponding slots to find all messages that have

arrived, stopping at the first empty slot. The trigger updates

the count of received messages appropriately and pushes the

updated value to the other subgroup members.

Delivery predicate: This predicate takes the minimum of

the received count for the subgroup members to find all

undelivered messages that have been received by all members

in the subgroup. Those messages now become deliverable. The

trigger delivers all those messages, updates the receiver’s SST

row, and then pushes the update.

The solution enables a highly efficient in-place message

construction. In our new approach, a message constructor

first obtains a pointer into a free SMC slot. This can be

done without any locking, and the application thread can

then asynchronously construct the outgoing object. When

finished it marks the message as ready to send, and the send

predicate does the rest. The solution is lock-free, zero-copy,

and it will preserve ordering for single-threaded applications.

In contrast, the one-to-one methodology of Kalia et al. [11]

is also opportunistically batched, but their in-place object

construction scheme is limited to one client request at a time,

and the associated data must fit within an RDMA immediate

data field (8 bytes). Our approach avoids both limitations.

B. Null-sends

Our second optimization is an enhancement to the round-

robin message ordering used in Derecho’s atomic multicast.

We focus on failure-free runs (the epochs described in Sec-

tion II-A), under the assumption that failures are relatively

infrequent and that the delays for reconfiguration (a few

milliseconds) aren’t likely to be a major concern. Recall that

each epoch is associated with a membership view listing

some fixed, agreed upon list of members and known to every

member of the system. Derecho transforms these properties

into an atomic multicast delivery order. Specifically, the system

operates in rounds, and during each round one message from

every sender is delivered. This eliminates competition for

multicast slots, which results in a back-and-forth messaging

pattern in classic Paxos protocols.

The problem we address is that application sending rates can

be variable - it is impossible to guarantee that every sender will

continuously be ready to send the next message on demand.

For example, senders may need to interact with IoT devices

when constructing messages, may be delayed by CPU stalls,

or there could be some sort of locking delay.

In one experiment we even saw a situation in which a

library used a C++ spin-lock rather than a mutex lock. The

intent was that spin-locks would be faster than a mutex,

but in fact the experiment revealed a case where this was

exceptionally slow: the C++ 17 implementation of spin-locks

turns out to be unfair on NUMA hardware and can favor one

thread while disadvantaging other threads. In the particular

case, Linux decided which core each thread would run on,

and the application’s sender thread turned out to be running

very slowly compared to the Derecho thread that checked for

new messages!

We illustrate this issue in Figure 2. We have three nodes, P,

Q, R, that each send a message denoted by green, orange and

pink circles, respectively. The blue arrows denote the send

of a message, while the red arrows denote the send of an

acknowledgement. Sender Q sends its message much later than

P and R. Since the delivery order is P, Q, R, we see that

while P’s message is delivered as soon as each node learns

that it has been received by all the nodes, R’s message has to

wait until Q’s delayed message is delivered. With Derecho’s

ring buffer implementation multiple messages can be sent at

the same time, but delays in sending by a single member

can leave multiple messages stuck waiting at the receivers, if

that delayed sender is next in the round-robin order. The ring

buffers of active senders will soon fill up with undelivered

messages, preventing them from sending more messages.

The obvious way to deal with this issue is to detect

when a sender has fallen behind and then send dummy 0-

sized messages (called nulls) from that sender to expedite

the delivery of application messages from other senders. At

the time of delivery, null messages can simply be discarded

and the resulting sequence of delivered messages will still

be same across the members. The problem is that we detect

the potential delay in receiver logic, and yet a null-send is

logically a sender-side action. Moreover, designing an efficient

null-send scheme that decides when and how many nulls to

send at RDMA speeds has not been explored in the literature:

Prior null-send protocols ran on older TCP networks, where

the processor was so fast relative to the network that small

sending delays did not risk appreciable performance loss.

Sending a null too soon at RDMA speeds and latencies in-

terferes with normal message delivery, because the sender may

have been about to send a legitimate application message. Over

time, this will result in sending too many nulls which, owing

to RDMA’s relatively high 1-Byte latency (Figure 1), will add

up to a significant cost. On the other hand, sending a needed

null even a few microseconds too late is undesirable because

these tiny delays still represent significant lost bandwidth. We

desire four properties:

1) Sender-invariance: Performance with only a subset of

senders sending continuously does not drop appreciably.

2) Low-overhead: Performance does not degrade signifi-

cantly when all senders are sending actively compared to

the same case without any null-send scheme in-place.

3) Correctness: Under all circumstances of senders sending

at different rates (and possibly some senders not sending

at all), the delivery pipeline never stalls.

4) Quiescence: When all senders are inactive, the system

attains a quiescent network state where no nulls are sent.

In Spindle, when a sender node receives a message, it

immediately sends a single null message if this null will

precede the received message in the delivery order. This

determination can efficiently be made by checking the per-

sender index of messages sent and global sequence numbers.

Correctness and Quiescence can be proved as follows.

Denote a message in a subgroup as M(i, k) where i is the

sender rank (in the senders list) and k is the sender index, equal

to the number of messages it has sent in the subgroup. Round

robin delivery imposes a total ordering < on the messages:

M(i1, k1) < M(i2, k2) ⇐⇒ k1 < k2||(k1 = k2 ∧ i1 < i2).
Assume that node i receives a message from a sender with

rank j in round k,M(j, k). Without loss of generality, assume

i < j. The null-send scheme will send a null iff current round

number of sender i, l (equal to the number of messages sent

by i), is such that l < k.

Suppose a null is sent. It is an easy induction to deduce that

l = k− 1 (consider what happened when i received M(j, k−
1)). That is to say, that the null-send keeps every sender within

one round of each other in terms of the number of messages

it has received vs. sent. Thus after M(j, k) has been received

by all nodes, their own round number is greater than or equal

to k. This statement is imprecise for nodes with rank > j but

without loss of generality, we can take j to be the highest

ranked sender. This implies that sends of all messages that

precede M(j, k) have been initiated, meaning that M(j, k)
will be delivered barring failures. Hence no deadlock arises.

We now show that the system reaches a quiescent state when

no application messages are being sent. The complicating

factor is that M(j, k) may itself be null. However, if M(j, k)
is null, it was sent by sender j in response to another message

> M(j, k) received by it. This chain cannot go on forever

and thus will finally terminate in a non-null, application

message. Thus, if no sender is actively sending messages,

no nulls will be sent. This explains why we do not need to

check if the received message is a null. In fact, sending a

null in response to another null may expedite the delivery

of subsequent application messages (this would be useful if

messages arrive in different orders at different nodes). It is

straightforward to combine null-sends with batching: After the

receiver predicate finishes an iteration, it sends the determined

number of nulls as a single integer.

The intention is that Spindle’s null-send scheme should

dynamically adjust to real-time delays, lagging nodes, and

other disruptions, maintaining high levels of performance

when a sender is unintentionally delayed. If an application

deliberately will not send messages from some source for

an extended period of time, it should declare the number of

rounds of inactivity to the subgroup members which can then

appropriately modify the message delivery sequence. If a node

is never going to send again, it can be marked as a non-sender

when it joins the subgroup or later, during a reconfiguration.

Thus, the (small) overheads of the null-send scheme are seen

only in the event of unanticipated delay. Moreover, the null-

send optimization is quite general, and has features that could

be used even in other round-robin protocols that already use

null-sends, such as Ring Paxos [12], [13]. We will return to

this point in Section V.

C. Efficient thread synchronization

Efficient thread synchronization is crucial to high perfor-

mance. For systems that rely on polling (see Section II-D),

we noted one potential inefficiency: when application threads

interact with the polling thread, a lock is required that protects

against concurrency conflicts. Yet, this can delay other critical

operations that use the shared state: when concurrent accesses

are frequent, the entire system slows down. For instance, in

Derecho we found that many predicates interleave access to

SST data with RDMA write operations. RDMA writes are

costly to post: they can consume 20-50% of the time spent in

the entire predicated test and code block.

Accordingly, we restructured all Derecho predicates so as to

place the RDMA write calls only at the end. This can be done

safely when a predicate’s logic does not depend on the shared

state of the SST at a remote node, but only what is present

in the local SST. Then we can safely release the lock before

we proceed to issuing RDMA writes. Any parallel access of

the SST by other threads is safe because of the following two

properties of the SST: (1) simultaneous reads and writes to the

SST are safe since the variables fit within cache-lines and (2)

any updates to the variables being pushed that might occur

between when the predicate releases the lock and when the

push actually occurs are monotonic. Thus, the eventual push

will simply batch the original information with additional data.

D. Delays caused by the receiver

Derecho offers safe and consistent delivery of messages.

The application “acts on” (or consumes) a message only

when it is delivered. The protocol delivers messages in the

critical path - the predicate thread discovers that a message is

deliverable, calls into the application with that message, and

updates and pushes the corresponding delivered num after

the upcall returns. Waiting until all receivers have consumed

the message makes it safe for Derecho to reuse the associated

slot for sending a fresh message.

As a result, delays in the delivery upcall have a dramatic

performance impact, because the predicate thread cannot con-

tinue its run until the upcall returns. To quantify this effect,

we built an application in which message delivery upcalls take

1 µs, 100 µs or 1ms and found that performance decreases

by about 9%, 90%, and 99% on average, respectively. For

larger delays of 100 µs and 1ms, performance degenerates to

one message delivered per delay time. This finding confirms

that the protocol is highly sensitive to the time taken by the

application in processing the message.

To mitigate the impact of delays in delivery, we offer two

viable options: (1) Applications can support a batched delivery

upcall, which consumes all messages that are deliverable.

If processing a batch of delivered messages takes less time

overall, we obtain performance speedups. (2) Applications

can simply move the data into a separate memory area via

memcpy and return from the upcall. For small messages, costs

of memcpy are not terribly high. We evaluate the overhead of

memcpy during delivery in Section IV-D.

IV. EVALUATION

In this section, we evaluate the impact of the Spindle

optimizations discussed in the previous section. The evaluation

focuses on throughput, defined as the amount of application

data delivered per unit time (GB/s, averaged over all nodes).

Each test is run 5 times - we plot the average values and

show error bars corresponding to one standard deviation. We

test on our local cluster consisting of 16 machines connected

with a 12.5GB/s (100Gbps) RDMA Infiniband switch. Each

machine has 16 physical cores and 100GB of RAM.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

5

6

7

8

9

10

11

Subgroup Size

B
an

dw
id
th

(G
B
/s
)

with batching all senders single sender

baseline half senders

Figure 3: Performance for single subgroup with opportunistic

batching. Performance improves by up to 16X.

We evaluate a multitude of scenarios with one or multiple

subgroups with one or all of them sending messages actively,

senders sending continuously or with delays, delays in various

parts of the protocol. For each optimization, we show the

cases most directly impacted by the change. Subsequent opti-

mizations are evaluated on top of the previous optimizations,

showing incremental improvements. Finally, we look at the

overall impact of Spindle on the application that motivated

our effort: an avionics DDS.

A. Opportunistic batching

1) Single subgroup continuous sending: Many systems

have just one replication group, for example to replicate a

component or data or to support event notifications. In this

case, all senders continuously stream messages in a tight loop.

We vary the subgroup size from 2 to 16 using message sizes

1B, 128B, 1KB and 10KB, in three patterns - all senders (every

member is a sender), half senders (only half of the members

are senders) and just one sender. Small message sizes can go

as far as few hundred KBs, but by limiting it to 10KB, we

can leverage the power of aggregation while keeping within

the limit. Consistent with the SMR approach, all members are

receivers in all cases and deliver all sent messages in the same

order. Each sender sends a total of 1 million messages. The

experiment finishes when all messages have been delivered.

Figure 3 plots performance for this test for 10KB messages

and compares it against the baseline performance. As is clear

from the graph, opportunistic batching alone outperforms the

baseline by about 9X for all senders, 6X for half senders and

3X for one sender on average. The peak bandwidth attained

is 8.03GB/s for 11 members, giving a maximum network

utilization of 64.2%. Performance also scales much better with

increasing number of senders, for instance, it is 16X of the

baseline performance with 16 senders. Performance with just

one sender declines with the subgroup size as the algorithm

pays the price of increased coordination overheads.

Consistent with Figure 1, performance is proportional to

the data size for both the baseline and the optimized version.

Hence, the number of messages delivered per second remains

about the same for different small message sizes. Figure 4

confirms this observation for the optimized version. As such,

all subsequent experiments only show data for the 10KB case.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1

Subgroup Size

M
il
li
on

s
of

m
es
sa
ge
s
p
er

se
co
n
d

10 KB 1 KB all senders one sender

128 B 1 B half senders

Figure 4: Rate of delivery for single subgroup with oppor-

tunistic batching. Derecho has a second communication larger,

RDMC, for very large subgroups or messages. Although

RDMC was not evaluated in our work, shifting to it might

be advisable for subgroups with more than 12 members.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

Subgroup Size

B
a
n
d
w
id
th

(G
B
/
s)

so
li
d
li
n
e
s

1

10

100

1000

10000
A
v
er
a
g
e
L
a
te
n
cy

(m
s)

d
a
sh

e
d
li
n
e
s

baseline ✚ delivery

✚ delivery ✚ receive ✚ delivery ✚ receive ✚ send

Figure 5: Performance gains with batching applied to succes-

sively more stages of the pipeline for all senders. Throughput

(left Y-axis) is shown by solid lines, and latency (right Y-axis)

using dashed lines. Both metrics show significant improve-

ments relative to our baseline system.

It is interesting to learn the impact of batching at different

stages of the protocol. Figure 5 shows the incremental effect

of adding delivery, receive and send batching successively.

It is particularly noteworthy that our optimizations improve

both throughput and latency across the full range of subgroup

sizes. In contrast, as noted earlier, traditional forms of sender-

side batching sharply increase latencies, and may significantly

reduce bandwidth by leaving the RDMA network idle while

waiting to accumulate the next batch.

We computed some metrics for the 16 senders case to gain

an insight into the improvements. Comparing the baseline

against the optimized version, we find that the number of

RDMA write requests goes down from 18.2M to 1.1M, time

spent by the polling thread in posting RDMA writes goes down

from 64.84s to 4.29s and the sender thread spends time waiting

to find a free buffer only for 52.7% of the much reduced

experiment time (as opposed to 97.6% of the total runtime

of the baseline).

2) Suitable ring buffer size: Batch sizes for our batching

optimization are influenced by the subgroup window size.

After all, the number of messages that can be sent or received

in one batch is limited by the number of slots. An unreasonably

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

3

4

5

6

7

8

9

10

Subgroup Size

B
an

dw
id
th

(G
B
/s
)

w = 5 w = 50 w = 500

w = 10 w = 100 w = 1000

Figure 6: Performance with different window sizes when all

nodes are sending messages continuously

small window size does not allow for optimal batching, while

an excessively large window size forces the predicate thread

to cover too large a memory area. In this experiment, we

measure the performance of the single subgroup all senders

case, varying ring buffer size.

Figure 6 plots the results. Even a small window size of

5 increases performance by 4.5X average compared to the

baseline with 100 window size! The highest performance is

obtained for a window size of 100. Consequently, all our

experiments for 10KB message size use a window size of

100. It is important to note that performance with window

sizes of 500 or 1000 starts declining after 10 nodes, quite

likely because the polling area increases considerably and large

batches of application messages (if 200 messages of 10KB are

sent in one RDMA write, total data size is a little less than

2MB) do not give good throughput with a simple multicast

send scheme of SMC (sequential send). This suggests that

applications should use a window size around 100 instead of

pinning large buffers with RDMA.

For the single subgroup case, the SST at each node consists

of just two columns for the subgroup state received num and

delivered num which takes 16 bytes of space per row, and

the slots for the SMC. The total space for the slots at each

node is

n ∗ w ∗ (m+ 8)

where n is the number of nodes (rows), w and m are the

window size and maximum message size (8 less than the size

of the slot which also contains a counter) for the subgroup.

For 16 members, 10KB message size, and w = 100, the total

space per subgroup amounts to roughly 16MB. This suggests

that applications can easily scale to tens of subgroups with the

total memory allocated within few hundred MBs.

It is interesting to learn the batch sizes for different steps

of the pipeline. Figure 7 plots the histograms for a window

size of 100 for the single subgroup, 16 senders case. Messages

are typically sent in small batches of less than 5, while most

delivery batches are multiples of 16 suggesting that about

1-5 messages from each sender are typically delivered in

a batch. Different mean batch sizes for send, receive, and

delivery is further proof that a rigid batching scheme with

fixed batch sizes is unlikely to work well in practice, especially

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

Batch Size

F
re
q
u
en

cy
(%

)

(a) Sends

1 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Batch Size

F
re
q
u
en

cy
(%

)

(b) Receives

1 16 32 48 64 80 96
0

5

10

15

20

25

30

35

Batch Size

F
re
q
u
en

cy
(%

)

(c) Deliveries

Figure 7: Batching histograms for the three protocol stages. Receive merges data streams from all senders, forming larger

batches. Delivery computes an extra level of stability over all members, forming even larger batches.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.25

0.5

0.75

1

1.25

1.5

Subgroup Size

B
an

d
w
id
th

(G
B
/s
)

1 subgroup 5 subgroups 20 subgroups

2 subgroups 10 subgroups 50 subgroups

Figure 8: Performance of baseline for single active subgroup

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

Subgroup Size

B
an

d
w
id
th

(G
B
/s
)

with batching 1 subgroup 5 subgroups 20 subgroups

baseline 2 subgroups 10 subgroups 50 subgroups

Figure 9: Performance with opportunistic batching for single

active subgroup.

in heterogeneous environments where nodes are running at

different speeds.

3) Single active subgroup: In this case, all nodes belong to

all subgroups, but each node continuously sends 1M messages

in just one of them. Our goal here is to expose inefficiencies

inherent in the baseline which evaluates all subgroups’ predi-

cates fairly and show how opportunistic batching compensates

for those inefficiencies.

In the baseline implementation (Figure 8), performance

consistently decreases with increasing number of subgroups.

Adding a single inactive subgroup degrades performance by

18% on average, while the performance with 50 subgroups is

one-tenth of the performance with the sole active subgroup.

On the other hand, Figure 9 plots the results for the optimized

version. We see that adding more subgroups does not decrease

performance invariably but even increases it in some cases.

This is an artifact of batching: delays can sometimes lead to

more efficient executions, due to larger average batch sizes.

Clearly, there is a lot of potential in a more adaptive batching

scheme that adjusts according to the circumstances. Even with

50 subgroups, the performance declines much more graciously

compared to the baseline. This stability should help developers

feel confident that a decision to use overlapping subgroups will

not harm application performance.

For the baseline, for a sample run with 16 nodes, the

percentage of time spent evaluating the active subgroup’s

predicates goes down from 54% for 2 subgroups to less

than 15% for 50 subgroups. With opportunistic batching, this

number is about 99% for 2 subgroups, 90% for 10 subgroups

and 48% for 50 subgroups. The average batch sizes for sends,

receives and deliveries increase from {1.72, 22.18, 35.19}
for 1 subgroup (Figure 7) to {6.20, 49.36, 127.74}, {21.67,

79.15, 334.48} and {50.45, 207.46, 638.57} for 2, 10 and

50 subgroups, respectively. This shows the adaptability of

opportunistic batching to real-time delays.

Opportunistic batching also vastly improves performance

for the multiple active subgroups case, where multiple sub-

groups are actively sending messages. However, performance

drops considerably with increasing number of subgroups. We

infer that the predicate thread spends an increasing amount

of time posting RDMA writes for the different subgroups,

delaying timely sending of application messages. Our opti-

mization of efficient thread synchronization resolves most of

these overheads, hence, we evaluate this case in Section IV-C.

B. Null-send scheme

1) Delayed sending: In any real system, there may be un-

predictable delays in sending. In this experiment, we simulate

such a case for the all senders case by introducing a fixed

delay after each send at either one or half of the senders.

Senders that are not delayed send as fast as possible. We

tried several different delays: 1) 1 µs, a minimal delay close

to the network latency, 2) 100 µs, much larger than network

latency, yet realistic for applications, 3) a lengthy delay. In

each case, the delay is implemented with a busy-wait loop.

We measure bandwidth after a fixed number of messages

have been delivered. As detailed in Section III-B, the baseline

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

3

4

5

6

7

8

9

10

11

12

Subgroup Size

B
an

dw
id
th

(G
B
/s
)

1 µs delay lengthy delay (≫ 1ms) single sender delayed

100 µs delay no delayed senders half senders delayed

Figure 10: Data for sender delay test with null-sends.

protocol does nothing to adjust for these kinds of delays. This

is the primary test for the null-send scheme.

Figure 10 plots the results, which are surprising. For every

case other than where half senders are delayed indefinitely,

performance increases, peaking at 10.0GB/s. This is because

small delays lead to larger average batch sizes and large delays

lead to more efficient bandwidth utilization by the remaining

senders. This shows that the system adapts very well to real-

time delays.

In case of 16 nodes sending 1M messages each with 1

sender delayed by 100 µs, the delayed sender sends one or

more nulls in 517K iterations of the receiver predicate while

a continuous sender sends them in only 189K iterations.

The average inter-delivery time between consecutive messages

from a continuous sender and a delayed sender comes down

drastically and in fact, decreases from 3.779 µs for 2 nodes to

1.617 µs for 8 nodes and 1.192 µs for 16 nodes. This confirms

that nulls accelerate delivery of application messages.

2) Continuous sending: Nulls may be inserted even when

all senders are sending continuously because of inevitable

small relative motion between the members in sending and re-

ceiving messages. This could potentially either reduce perfor-

mance if nulls interfere with application messages or increase

performance if nulls compensate for batching-induced delays.

In a real setting, where sending patterns are more varied, null-

sends will improve performance as established by the previous

experiment.

In this experiment, we measure the impact of null-sends

when all senders are sending continuously in a subgroup.

We compare Derecho with only opportunistic batching against

Derecho with null-sends on top of opportunistic batching.

Figure 11 compares performance. For all senders, per-

formance is initially worse because there is less scope for

improvement, and therefore nulls have a minor but deleterious

impact. With larger subgroup sizes, small delays become

more prominent. Here null-sends accelerate message delivery

leading to improved performance. The drop for smaller nodes

is significant for all senders (up to 25%) and almost negligible

for half senders. No nulls can ever be sent for one sender; the

graph confirms that no overhead is introduced.

3) Additional Null-Send experiments: We also conducted

additional experiments that exposed the null-sending scheme

to increasing complex and disruptive delays, such as by

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

5

6

7

8

9

10

Subgroup Size

B
an

d
w
id
th

(G
B
/s
)

batching and null send all senders one sender

batching only half senders

Figure 11: Impact of null-sends on continuous sending.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subgroup Size

B
a
n
d
w
id
th

(G
B
/
s)

fully optimized Derecho batching only

batching and nulls baseline

Figure 12: Impact of efficient synchronization.

declaring all members of a shard as senders, but then having

just one member do all the sends. For reasons of brevity,

we omit details, but in all cases the mechanism successfully

compensated, allowing the active senders to run at full speed,

while filling any gaps caused by inactive senders. Null-sends

are not always the entire solution: in Sec. III-B we mentioned

a case in which an unfair C++ spin-lock caused a library to

malfunction in a way that drastically slowed some senders.

The null-send mechanism prevents such slowdowns from

propagating to other senders, but doesn’t fix the slowdown

itself. Still, the resulting pattern highlighted the slow sender.

This focused our attention, and ultimately enabled to track

down the root cause, at which point we were able to modify

the library in question to use a mutex lock, restoring full

performance.

C. Efficient thread synchronization

We evaluate the effect of restructuring predicates to move

RDMA writes to the end and release locks before issuing the

writes. We evaluate the performance for the single subgroup,

all senders and the multiple active subgroups cases.

Figure 12 plots the results for single subgroup. The opti-

mization, on top of batching and nulls, improves performance

considerably by about 1.4X average. The maximum network

utilization of 77.6% is reached for 4 members which stays

very stable all the way to 16 members.

Figure 13 plots the results for multiple active subgroups,

comparing them with the baseline. The results show excel-

lent scaling with the number of subgroups. The performance

remains relatively stable for all subgroup sizes.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Subgroup Size

B
a
n
d
w
id
th

(G
B
/
s)

fully optimized Derecho 1 subgroup 5 subgroups 20 subgroups

baseline 2 subgroups 10 subgroups 50 subgroups

Figure 13: Final performance with all optimizations for mul-

tiple active subgroups.

22 24 26 28 210 212 214 216 218 220

0

1

2

3

4

5

6

Message size (in Bytes)

B
a
n
d
w
id
th

(G
B
/
s)

Latency
Bandwidth

22 24 26 28 210 212 214 216 218 220

0.8
1.32

10

100

Message size (in Bytes)

L
a
te
n
cy

(µ
s)

Figure 14: Performance of memcpy with data size.

D. Delays caused by memcpy

RDMA is based on the zero-copy idea: memory copy

within a node is much slower than remote copy over a

network. High RDMA speeds impose considerable strains on

application memory management. In our optimized Derecho

implementation, for instance, sends and delivery must finish

quickly to stay close to the optimal performance. It may not be

practical to avoid memory copy when generating a message in

the ring buffers (for example, if the application receives data

out of band from external clients) or to give up ownership

of a message immediately after delivery. However, memory

copy is not that expensive for small messages. Figure 14

measures the latency and bandwidth of memcpy on one of

our machines. The latency remains low up to a few KBs, then

quickly deteriorates for large message sizes.

For this reason, we evaluate a pragmatic approach where

the application copies data from external buffers into library-

provided slots before sending and copies data out of the ring

buffers in delivery. We again evaluate the single subgroup case

for 10KB messages. For smaller messages sizes of 1B and

128B, memcpy carries much less overhead.

Figure 15 shows that there is a decline for all senders,

though the bandwidth still remains consistently around

7.5GB/s. Performance declines slightly for half senders, while

there is almost no decline for the single sender case as the

memcpy induced delays are likely absorbed into the coordi-

nation overheads. We also evaluated this case for the extreme

case of 1B messages and observed no performance loss.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subgroup Size

B
a
n
d
w
id
th

(G
B
/
s)

memcpy in send and delivery all senders one sender

no memcpy half senders

Figure 15: Performance with memcpy in send and delivery.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subgroup Size

B
a
n
d
w
id
th

(G
B
/
s)

fully optimized Derecho all senders one sender

baseline half senders

Figure 16: Final throughput numbers for a single subgroup.

E. Final results

Figure 16 shows the final numbers. As noted, although our

optimizations were focused on throughput, Figures 5 and 17

both show substantial improvement in latency. Note that the

logarithmic Y-axis scale magnifies error bars for small latency

values.

F. DDS evaluation on Spindle + Derecho

We now consider how the Spindle optimizations affect a

prototype DDS system we built with the purpose of getting a

stronger form of consistency than what existing implemen-

tations can offer. We mapped the OMG DDS API, Data-

Centric Publish-Subscribe (DCPS), to the underlying Derecho

system by forming a single Derecho “top-level” group that

includes all publishers and subscribers. Then, for each topic,

we form subgroups containing only the processes that publish

or subscribe to that topic (the actual Spindle DDS also supports

“external clients” that connect to the DDS via TCP or RDMA,

requiring an extra relaying step, but we did not evaluate that

mode of use). The user then defines data types and publish

and subscribe topics as replicated objects of those types.

Importantly, the Spindle-DDS permits developers to construct

messages “in place”, and then mark them as ready to send.

Had we used a model in which the application allocates space

elsewhere to create its messages, the resulting overheads would

have sharply reduced performance.

We tested performance for a single DDS topic with a single

publisher and varying number of subscribers. We defined a Se-

quence data type, which represents a simple byte sequence, to

be exchanged among the entities. The publisher continuously

publishes 1 million topic samples of type Sequence, each of

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10−1

100

101

102

103

104

Subgroup Size

L
at
en
cy

(m
s)

fully optimized multicast all senders one sender

baseline half senders

Figure 17: Final latency numbers for a single subgroup.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

50

100

250

500

1000

1500

4000

6000

Number of subscribers

B
an

d
w
id
th

(M
B
/s
)

Spindle Unordered Volatile storage

Baseline Atomic multicast Persistent storage

Figure 18: DDS performance improvements with Spindle

optimizations for all 4 QoS levels.

10KB size. To stress the network performance, publishers and

subscribers are all on different nodes.

An OMG DDS can offer different levels of consistency

by combining different parameters (QoS policies). Our DDS

has four: 1. Unordered: Data is delivered to the application

without waiting for stability and discarded after delivery. This

is relevant for applications that do not need any kind of

ordering or reliability. 2. Atomic multicast: This maps directly

to Derecho’s atomic multicast, and data is discarded after

the delivery upcall. 3. Volatile storage: Incoming data is

copied and saved on the receiver node’s memory (this allows

a joining subscriber to catch up). 4. Logged storage: Data is

additionally appended to a log file on SSD storage, and is used

for debugging, and in applications that track the evolution of

a reported measurement over time.

Figure 18 compares bandwidth for our baseline DDS im-

plementation with one that uses the Spindle optimizations.

We see that Spindle improves performance for all four cases

relative to the baseline. Whereas Spindle-DDS has nearly the

same performance for unordered and atomic multicast mode,

notice that the pre-Spindle baseline’s performance decreases

considerably with each additional QoS level. This validates

our effort to reduce communication overheads. Interestingly,

Spindle’s performance improvements even carry over to the

volatile and persistent storage modes, despite the fact that

these are limited by memory copying and disk I/O costs. The

finding supports our hypothesis that whole stack optimization

yields a steadier end-to-end data stream even when a variety

of potential bottlenecks are present.

V. RELATED WORK

There has been other work on using RDMA to accelerate

state machine replication [4]–[6] and key-value storage [10],

[11], [14], [15]. The separation of control from the data plane

originated in BarrelFish and Arrakis [9], [16] and the iX µ-

kernel [17] employs a similar separation of layers. Derecho

introduced its own optimizations, but also incorporated older

ideas, such as control-plane and data-plane separation and

opportunistic delivery batching. Spindle goes much further,

exploring and optimizing overheads stemming from layering

real applications over the high-speed communication substrate.

We would argue that only a full-stack perspective can yield a

zero-copy lock-free and delay-free solution capable of running

at the full capacity of a modern RDMA device.

Earlier we compared Spindle with the work of Kalia

et. al. [11]. Other similar studies [18] tackle the challenge

of systematically improve the performance of RDMA-based

server interactions through a combination of different opti-

mizations. Those works optimize RPC-style and one-to-one

streaming applications for RDMA systems dominated by one-

to-one interactions. However, our work revealed that more

complex systems expose more subtle causes of inefficiencies

that arise, for instance, from multiple software layering of

applications over middleware over RDMA, and in some cases

are triggered by background events that cause delays. There

are also interesting similarities to µTune [19], a thread-level

coordination package for low-latency, high-throughput gRPC-

based µ-services: for example, authors recommend a single

polling thread for message discovery, to avoid contention. This

is an important assumption in Spindle too, and common in

modern RDMA systems.

One of the Spindle optimizations involves sending null

messages to avoid delays if a sender is not ready to send

a new multicast when its turn arises. This idea was first

explored in the Totem [20] and Transis [21] systems, and

similar mechanisms have been used in modern Ring Paxos

protocols [12], [13]. However, Spindle takes null-sending

much further, first by identifying a step in the critical path

where the need to send a null can efficiently be recognized,

but also allowing early transmission of non-null messages to

maximize wire utilization. When combined with opportunistic

batching, we obtain far higher performance.

VI. CONCLUSION

We presented Spindle, a methodology for whole-stack op-

timization in complex, layered middleware designed to lever-

age RDMA communications. Key innovations include unified

opportunistic batching, null sends, and zero-copy lock-free in-

place message construction. Our methods give a speedup of up

to 20X over a baseline implementation for a single replication

subgroup and achieve up to 77.6% network utilization of a

100Gbps network, while also dramatically reducing multicast

latency. We applied Spindle to an OMG DDS, but our opti-

mizations would be equally relevant in other kinds of systems.

ACKNOWLEDGMENTS

The authors wish to express gratitude to the anonymous

reviewers for their constructive comments and suggestions.

This work was supported by AFRL under the SWEC program,

Microsoft, Nvidia/Mellanox and Siemens.

REFERENCES

[1] “OMG Data Distribution Standard.” [Online]. Available: https:
//www.dds-foundation.org/omg-dds-standard

[2] K. P. Birman and T. A. Joseph, “Communication support for
reliable distributed computing,” in Proceedings of the Asilomar

Workshop on Fault-Tolerant Distributed Computing. London, UK,
UK: Springer-Verlag, 1990, pp. 124–137. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645425.652315

[3] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, p.
299–319, dec 1990. [Online]. Available: https://doi.org/10.1145/98163.
98167

[4] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song, E. Tremel,
R. V. Renesse, S. Zink, and K. P. Birman, “Derecho: Fast state machine
replication for cloud services,” ACM Trans. Comput. Syst., vol. 36,
no. 2, Apr. 2019. [Online]. Available: https://doi.org/10.1145/3302258

[5] M. Poke and T. Hoefler, “DARE: High-performance state machine
replication on RDMA networks,” in Proceedings of the 24th

International Symposium on High-Performance Parallel and Distributed

Computing, ser. HPDC ’15. New York, NY, USA: ACM, 2015, pp. 107–
118. [Online]. Available: http://doi.acm.org/10.1145/2749246.2749267

[6] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui, “APUS:
Fast and scalable Paxos on RDMA,” in Proceedings of the

Eighth ACM Symposium on Cloud Computing, ser. SoCC ’17.
Santa Clara, CA, USA: ACM, Sept. 2017. [Online]. Available:
http://www.cs.hku.hk/research/techreps/document/TR-2017-03.pdf

[7] V. Gavrielatos, A. Katsarakis, and V. Nagarajan, “Odyssey: The impact
of modern hardware on strongly-consistent replication protocols,” in
Proceedings of the Sixteenth European Conference on Computer

Systems, ser. EuroSys ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 245–260. [Online]. Available:
https://doi.org/10.1145/3447786.3456240

[8] “Data plane development kit.” [Online]. Available: https://www.dpdk.org

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A
new os architecture for scalable multicore systems,” in Proceedings

of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, pp. 29–44. [Online]. Available:
https://doi.org/10.1145/1629575.1629579

[10] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
Remote Memory,” in Proceedings of the 11th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 14).
Seattle, WA: USENIX Association, 2014, pp. 401–414. [Online].
Available: https://www.usenix.org/conference/nsdi14/technical-sessions/
dragojevi\’c

[11] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines
for high performance RDMA systems,” in 2016 USENIX Annual

Technical Conference (USENIX ATC 16). Denver, CO: USENIX
Association, Jun. 2016, pp. 437–450. [Online]. Available: https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[12] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma, “Throughput
optimal total order broadcast for cluster environments,” ACM Trans.

Comput. Syst., vol. 28, no. 2, Jul. 2010. [Online]. Available:
https://doi.org/10.1145/1813654.1813656

[13] P. Jalili Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring paxos:
A high-throughput atomic broadcast protocol,” in 2010 IEEE-IFIP

International Conference on Dependable Systems & Networks (DSN),
June 2010.

[14] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
efficiently for key-value services,” in Proceedings of the 2014

ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New
York, NY, USA: ACM, 2014, pp. 295–306. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626299

[15] ——, “Fasst: Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram rpcs,” in 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, Nov. 2016, pp. 185–201. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/kalia

[16] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, Nov. 2015.
[Online]. Available: https://doi.org/10.1145/2812806

[17] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “Ix: A protected dataplane operating system for high
throughput and low latency,” in Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation, ser.
OSDI’14. USA: USENIX Association, 2014, pp. 49–65.

[18] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle, “Darpc: Data
center rpc,” in Proceedings of the ACM Symposium on Cloud

Computing, ser. SOCC ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 1–13. [Online]. Available:
https://doi.org/10.1145/2670979.2670994

[19] A. Sriraman and T. F. Wenisch, “µTune: Auto-Tuned Threading for
OLDI Microservices,” in Proceedings of the 12th USENIX conference

on Operating Systems Design and Implementation, 2018.
[20] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and

C. A. Lingley-Papadopoulos, “Totem: A fault-tolerant multicast group
communication system,” Commun. ACM, vol. 39, no. 4, p. 54–63, Apr.
1996. [Online]. Available: https://doi.org/10.1145/227210.227226

[21] D. Dolev and D. Malki, “The transis approach to high availability
cluster communication,” Commun. ACM, vol. 39, no. 4, p. 64–70, Apr.
1996. [Online]. Available: https://doi.org/10.1145/227210.227227

