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ELLIPTIC THREEFOLDS WITH HIGH MORDELL-WEIL RANK

ANTONELLA GRASSI AND TIMO WEIGAND

Abstract. We present the first examples of smooth elliptic Calabi-Yau threefolds with

Mordell-Weil rank 10, the highest currently known value. They are given by the Schoen

threefolds introduced by Namikawa; there are six isolated fibers of Kodaira Type IV. We

explicitly compute the Shioda homomorphism and the induced height pairing. Compacti-

fication of F-theory on these threefolds gives an effective theory in six dimensions which

contains ten abelian gauge group factors. We compute the massless matter spectrum. In

particular, we show that the charged singlet matter need not reside at enhancement loci of

Type I2, as previously believed. We relate the multiplicities of the massless spectrum to

genus-zero Gopakumar-Vafa invariants and other geometric quantities of the Calabi-Yau.

We show that the gravitational and abelian anomaly cancellation conditions are satisfied.

We prove a Geometric Anomaly Cancellation equation and we deduce birational equival-

ence for the quantities in the spectrum. We explicitly describe a Weierstrass model over P2

of the Calabi-Yau threefolds as a log canonical model and compare it to a construction by

Elkies and classical results of Burkhardt.

1. Introduction

The Mordell-Weil group of sections of an elliptically fibered Calabi-Yau variety is of con-
siderable interest also in physics: it has a special role in establishing an upper bound on the
number of massless particle species in a consistent theory of quantum gravity. In fact, the
rank of the Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X determines
the rank of the abelian (non-Cartan) gauge algebra in compactifications of F-theory (see for
example [7, 39]). It is thereby directly related to aspects of quantum gravity. Consistency
conditions of certain BPS strings in F-theory compactifications [18] imply various bounds on
the rank of the abelian gauge group in minimally supersymmetric compactifications [24]. The
results of [24] hence yield interesting implications for algebraic geometry: the bound predicted
by physics implies that on an elliptic K3 surface 0 ≤ rk(MW(K3)) ≤ 18 and for elliptically
fiberd Calabi-Yau threefolds X → B, rk(MW(X)) ≤ 20 if B 6= P2 and rk(MW(X)) ≤ 24 if
B = P2 (though it has been conjectured that both bounds can be sharpened further). For
elliptic K3 surfaces the bounds are in agreement with known bounds in mathematics [6] and
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all such possible Mordell-Weil ranks are explicitly realized [22], [19]. Even for K3, however, it
is not feasible to find explicit generators for the Mordell-Weil group for all such cases.

For elliptic Calabi-Yau threefolds, by contrast, no bound to the rank of the Mordell-Weil
group is known in the mathematics literature. This highly motivates the search for elliptic
fibrations for Calabi-Yau threefolds with high Mordell-Weil rank. In Section 2 we present
smooth elliptic fibrations Xi → B with rk(MW(Xi)) = 10, the highest currently known value,
and we investigate their properties as elliptic varieties. The discriminant of the elliptic fibration
is supported on six cuspidal curves on the base B, the generic singular fibers are of Kodaira
Type II and enhance to Kodaira Type IV over the six cusp points of the cuspidal curves
(Theorems 2.10, 2.9).

The Xi come from “the Namikawa examples" [27, 31] studied by Namikawa and Rossi for
their deformation properties. They are resolutions of threefolds of the form X̄

def
= B ×P1 B′,

with B and B′ certain rational elliptic surfaces. These were first introduced by Schoen in [33],
and are often referred to as “the Schoens". Depending on the type and relative location of
the singular fibers of the two rational elliptic surfaces, X̄ can be smooth or singular, with
singularities of different types. Schoen first studied particular configurations such that X̄ is
birational to a smooth Calabi-Yau. The Schoens have interesting arithmetic properties and
they have been studied also in many other contexts, from birational geometry to string theory.
In the particular context of studying the Mordell-Weil rank of Calabi-Yau threefolds, the
authors of [25], building on [15], present several examples of Schoen varieties with a Mordell-
Weil rank of up to 9. We conjecture that the Namikawa-like examples lead to the maximal
possible Mordell-Weil rank within the class of Schoen manifolds, as we point out before Section
3.1.

The geometry of a Calabi-Yau is closely related to the massless particle spectrum and the
relations that the quantities in the spectrum must satisfy, the anomaly cancellation conditions.
This connection brings us to four questions: 1) to establish a dictionary for the correspondence,
2) to find a geometric counterpart for the “anomaly cancellation conditions", 3) to calculate
explicitly the geometric quantities in the spectrum and 4) to extract the geometric properties
implied by the anomalies. In Section 4 we address 1) and 2): we review the results from physics
which provide the dictionary for the correspondence, as well as for the anomaly cancellation
conditions in subsection 4.1; in subsection 4.2 we define a geometric counterpart formula for
the gravitational anomaly cancellation condition, the Geometric Anomaly Equation 4 (along
the lines of [12] where we write a more general formula).

To address 3), that is to evaluate the spectrum for the Namikawa threefolds, the gravit-
ational and gauge anomalies, and the Geometric Anomaly Equation 4, we need to explicitly
determine the Poincaré pairing between H2(Xi,Z) and H2(Xi,Z) (Propositions 3.5 and 3.6)),
the Shioda map (Corollary 3.11), the height pairings (Corollary 3.12), the relative genus-zero
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Gopakumar-Vafa invariants of holomorphic curves (Proposition 3.8) and other geometric in-
variants of the elliptic Calabi-Yau Xi (Corollaries 3.14 and 3.13). The computations leading
to the spectrum are involved.

The results allow us to compute the spectrum (Property 5.1) and the U(1) charges (Pro-
position 5.2). In particular the analysis exemplifies that the charged singlet matter need not
reside at enhancement loci of Type I2, as previously believed. We verify that the anomaly
cancellation conditions in physics are satisfied (Proposition 5.3) by proving the mathematical
counterparts of the gravitational and U(1) anomaly equations [29], along the lines of what
was stated in [12]. As a consequence we obtain birational invariants of the non Q-factorial
singularities of the Weierstrass model X̄ → B (Corollary 5.5), which answers 4).

In the last Section 6 we analyse a family of Weierstrass models WNDE → P2, construc-
ted by Elkies [8], with rk MW(WNDE/P2) = 10; one particular model shares similarities with
the Namikawa threefolds. WNDE is numerically Calabi-Yau, but Elkies does not make any
statement about its minimal resolution. We compare the Weierstrass models over P2 of the
Namikawa-Rossi threefolds with the ones constructed by Elkies by explicitly describing a Wei-
erstrass model WP2 → P2 of the Namikawa Calabi-Yau as a suitable log canonical model
(Corollary 6.1, Theorem 6.3 and Corollary 6.4). Then we take the first steps in addressing
the question of whether WNDE → P2 is birationally Calabi-Yau, by building on classical res-
ults of Burkhardt, leaving the construction of a elliptic Calabi-Yau with rk(MW) = 10 in [8]
conjectural.

Acknowledgements. We thank M. Rossi for correspondence, and M. Liu and S. Verra for
helpful conversations. We also thank the referees for useful comments. The work of A.G. is
partially supported by PRIN “Moduli and Lie Theory”. A.G. is a member of GNSAGA of
INDAM. The work of T.W. is supported in part by Deutsche Forschungsgemeinschaft under
Germany’s Excellence Strategy EXC 2121 Quantum Universe 390833306.

2. The Namikawa-Rossi Construction

Let r : B → P1 be a smooth rational elliptic surface with section and 6 cuspidal fibers, that
is 6 fibers of Kodaira Type II. B is defined by the Weierstrass equation y2z = x3 + bz in
the projective bundle P(E) = P(OP1(3)⊕OP1(2)⊕OP1), where b ∈ H0(P1,OP1(6) is a general
section. Let r′ : B′ → P1 be a different copy of the same surface, with Weierstrass equation
u2w = v3 + bw.

Lemma 2.1. [27, 31] The threefold X̄ def
= B ×P1 B′ is a Calabi-Yau threefold, singular at 6

points {P1, · · · , P6} of local analytic equation x̄3 − v̄3 − ȳ2 + ū2 = 0.
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Lemma 2.2. [27, 31] The threefold X̄ def
= B ×P1 B′ ⊂ P(E)× P(E)× P1 is endowed with an

automorphism τ of order 6 induced by the automorphism of the ambient space:

τE : P(E)× P(E)× P1 → P(E)× P(E)× P1

([x, y, z], [v, u, w], [λ0, λ1]) 7→ ([x, y, z], [εv,−u,w], [λ0, λ1]),

with ε a primitive cube root of the unity.

Definition 2.3. Let Di
def
= X̄ ∩ {(τE)i([x, y, z], [x, y, z], [λ0, λ1])}, 0 ≤ i ≤ 5.

D0 is then the diagonal.

Lemma 2.4. [27,31] Each divisor Di contains the singular locus {P1, · · · , P6} of X̄.

(1) The local equation around a fixed point Pj ∈ X̄, j = 1, · · · , 6, can be written as

xv[(1 + ε)v − εx] = yu .

(2) The local equations of Di, Di+1, Di+3, Di+4, with the indices taken mod 6, around
Pj ∈ X̄ can be taken respectively to be{

x = 0

y = 0
,

{
v = 0

u = 0
,

{
x = 0

u = 0
,

{
v = 0

y = 0
.

[Note a change in notation with respect to [31], in particular for Di+4.]

Remark 2.5. Note in fact that ∀ i, 0 ≤ i ≤ 5, we can write the local equation around a fixed
point Pj ∈ {P1, · · · , P6} of X̄ as

(x̄− v̄) · (x̄− εv̄) · (x̄− ε2v̄) = (ȳ + ū) · (ȳ − ū)

with {
y = ȳ + (−1)iū

u = ȳ − (−1)i+1ū
,

{
x = x̄− εiv̄
v = x̄− εi+1v̄

.

Theorem 2.6. [27,31]
The threefold X̄ def

= B ×P1 B′ is a Calabi-Yau threefold, singular at 6 points {P1, · · · , P6}
of local analytic equation x̄3 − v̄3 − ȳ2 + ū2 = 0.

(1) b2(X̄) = 19 and ρ(X̄) = 19, where ρ(X̄) denotes the rank of the Picard group.
(2) The singularities are terminal and not Q-factorial.
(3) There are 6 Weil divisors Di, 0 ≤ i ≤ 5, defined in Definition 2.3, which are not

Cartier.
(4) There exist 6 different small projective resolutions ϕi : Xi → X̄, 0 ≤ i ≤ 5. Each Xi

is a smooth Calabi-Yau threefold.
(5) Xi is obtained by the consecutive blow up of the divisors Di and then of the strict

transform of Di+1. The small resolution can be described using the local equations in
Lemma 2.4.
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(6) The exceptional loci of any resolution ϕi : Xi → X̄ are six disjoint pairs {Pi,Aj ,Pi,Bj },
1 ≤ j ≤ 6, of P1s with normal bundle OP1(−1) ⊕ OP1(−1), intersecting in one point.
The threefolds Xi are connected to each other by flops of the exceptional curves.

(7) χtop(Xi) = 36, h1,1(Xi) = ρ(Xi) = 21, h2,1(Xi) = 3.

Lemma 2.7. Let π̄ : X̄ → B be the elliptic fibration on the singular threefold induced by the
projection on B: X̄ = B ×P1 B′

π̄→ B
r→ P1. Let {r−1(pj)}1≤j≤6 ∈ B denote the 6 cuspidal

fibers of r, pj ∈ P1. Let {pj ∈ r−1(pj)}1≤j≤6 be the cuspidal points of these fibers in B. Then:

(1) π̄(Pj) = pj, i.e. the image of the singular point Pj ∈ X̄ is the cuspidal point of the
singular fiber r−1(pj), 1 ≤ j ≤ 6.

(2) The support of the discriminant locus of the elliptic fibration π̄ is the disjoint union of
the 6 cuspidal curves {r−1(pj)}1≤j≤6 .

(3) All the singular fibers of π̄, that is the fiber over the points qj ∈ r−1(pj), are cuspidal
curves (Kodaira type II).

(4) The Weil divisors Di are smooth and are rational sections of the fibration π̄.

Proof. The statements follow from the construction and the Lemmas 2.2 and 2.4. �

Definition 2.8. Let ϕi : Xi → X̄ be one of the resolutions in Theorem 2.6, 0 ≤ i ≤ 5.

For 0 ≤ k ≤ 5, Di
k denotes the strict transform of the divisor Dk by ϕi.

Theorem 2.9. Let π̄ : X̄ → B and Xi be as above and let π̄ ◦ ϕi
def
= πi : Xi → B be

one of the induced elliptic fibrations, 0 ≤ i ≤ 5. The elliptic fibration πi : Xi → B has
rk(MW(Xi/B)) = 10.

Proof. The statement follows from Theorem 2.6 and from the Tate-Shioda-Wazir Theorem [38].
The Tate-Shioda-Wazir Theorem in fact states:
rk(MW(Xi/B)) = ρ(Xi)− ρ(B)− 1 = 21− 10− 1 = 10. �

The elliptic fibration of the smooth Calabi-Yau threefolds is described explicitly as follows:

Theorem 2.10. Let π̄ : X̄ → B and Xi be as above and let π̄ ◦ ϕi
def
= πi : Xi → B be one of

the induced elliptic fibrations, 0 ≤ i ≤ 5.

(1) Di
k is a section of the fibration πi. Di

i and Di
i+1 are independent elements of the free

part of the Mordell-Weil group.
(2) For all i, j, π−1

i (pj), the fiber of πi over a singular point pj ∈ B of the discriminant,
consists of 3 rational curves Pi,Aj , Pi,Bj , Pi,0j .

(3) Pi,Aj , Pi,Bj , Pi,0j intersect mutually transversely at a point (as a fiber of Kodaira type
IV ). Pi,0j is the strict transform of the cuspidal curve π̄−1(qj); Pi,Aj , Pi,Bj are the
exceptional P1 for the first and the second blow up respectively.
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(4) If q is a smooth point of the discriminant, π−1
i (q) is a cuspidal curve (Kodaira type

II).

Proof. (4) follows from Lemma 2.7. Theorem 2.6, Lemmas 2.7, 2.4 and 2.2 provide the local
equations around each singular point as well as the geometric description of the singular Calabi-
Yau and a resolution. We then can write the local equations of the smooth Calabi-Yau, and
of Pi,Aj , Pi,Bj , Pi,0j .

(1) follows from the analysis of these local equations and from Theorem 2.9. A direct
computation in the local equations proves (2) and (3). The linear independence of the sections
Di
i and Di

i+1 can also be checked explicitly from the intersection numbers in Proposition
3.5. �

The explicit description of the fibration in Theorem 2.10 gives directly χtop(Xi) = 36.

Remark 2.11. In the Namikawa examples studied, both elliptic rational surfaces B and B′

in the fiber product X̄ = B ×P1 B′ are engineered to have six Type II fibers over the same
points, which leads to 6 isolated singular points in X̄. The resulting high Mordell-Weil rank
of ten MW(X̄/B) is a consequence of the fact that the 6 singular points are non Q-factorial
and that there are no other Q-factorial singularities. The resolutions produce two additional
independent curve classes in the fiber of the resolved threefold Xi, and no (Weil) divisor.
Hence the Mordell-Weil group of the resolved threefold Xi is generated by the eight generators
present also on a generic Schoen manifold (with B 6= B′ general rational elliptic surfaces),
together with two more generators associated with two independent rational sections dual to
the two additional fibral curve classes from the resolution (in the Type IV fibers). This is to
be compared with the special threefolds studied explicitly in [25,33] with a Mordell-Weil rank
of 9: There, B and B′ have I1 fibers over the same 12 points, which leads to 12 isolated non
Q-factorial singular points in X̄. But the resolution gives rise to one extra curve class in the
fiber, leading to 8 + 1 = 9 independent generators of the Mordell-Weil group. We believe that
the collision of six Type II fibers in the Namikawa threefold gives rise to the maximal possible
number of independent curve classes in the fiber without inducing a singularity in codimension
one, whose resolution would subtract from the Mordell-Weil group.

3. The Geometry of the spectrum

The geometry of the Calabi-Yau and its invariants are directly related to the massless
particle spectrum. We review the correspondence in Section 4.

To define the dictionary between the Spectrum and the geometry, to evaluate the spectrum,
the gravitational and gauge anomalies in physics, and the corresponding formula (4) in geo-
metry, we need to determine the pairing between H2(Xi,Z) and H2(Xi,Z), the Shioda map,
the height pairings and other geometric invariants of the Calabi-Yau.
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3.1. Cohomology, homology, pairings, Gopakumar-Vafa invariants.
From now on we fix a smooth resolution Xi as in Theorem 2.10 and Theorem 2.9 and an

index i.

Definition 3.1. (i) Let f and sk, 0 ≤ k ≤ 8, respectively denote the classes of the fiber,
the zero-section and the generators of the Mordell-Weil group MW(B/P1); they form
a basis of H2(B).

(ii) Similarly, let s′l, 0 ≤ l ≤ 8 denote the classes of the linearly independent sections of
r′ : B′ → P1 in H2(B′).

Definition 3.2.
Let Sl

def
= (π̄′)∗(s′l), 0 ≤ l ≤ 8, where π̄′ : X̄ = B ×P1 B′ → B′. We also denote by Sl its

isomorphic image in Xi.

We take S0 to be the zero section; the sections {S1, · · · , S8} are independent generators
of the Mordell-Weil group MW(X̄/B). S0 is then the zero section of the Mordell-Weil group
MW(Xi/B) and {S1, · · · , S8, D

i
i, D

i
i+1} are independent sections, by Lemma 2.4.

Definition 3.3. Let E denote the class of the fiber of πi,
ŝk = S0 · πi∗(sk), 0 ≤ k ≤ 8,
f̂ = S0 · πi∗(f), and
ˆ̀
l = Sl · πi∗(s0), 1 ≤ l ≤ 8 .

We can then conclude:

Proposition 3.4. Fix any index i, 0 ≤ i ≤ 5 and j, 1 ≤ j ≤ 6. With the notation as in
Theorem 2.10 and Definitions 3.1, 3.2 and 3.3:

(1) {πi∗(f), πi
∗(sk), Sl, D

i
i, D

i
i+1}, with 0 ≤ k ≤ 8, 0 ≤ l ≤ 8, is a basis of the

Neron-Severi group NS(Xi) ' H2(Xi,Z) ' c1(Pic(Xi)).
(2) {E , f̂, ŝk, ˆ̀

l, Pi,Aj , Pi,Bj }, 0 ≤ k ≤ 8, 1 ≤ l ≤ 8 is a basis of H2(Xi,Z).
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Proposition 3.5. Fix any index i, 0 ≤ i ≤ 5, and j, 1 ≤ j ≤ 6. With the notation as
in Theorem 2.10 and in Definitions 2.8, 3.1, 3.2 and 3.3, we find the following intersection
numbers:

E f̂ ŝ0 ŝk ŝk′ ˆ̀
l

ˆ̀
l′ Pi,Aj Pi,Bj Pi,0j

π∗i (f) 0 0 1 1 1 1 1 0 0 0

π∗i (s0) 0 1 −1 0 0 −1 −1 0 0 0

π∗i (sk) 0 1 0 −1 0 0 0 0 0 0

S0 1 0 −1 −1 −1 0 0 0 0 1

Sl 1 0 0 0 0 −1 0 0 0 1

Di
i 1 1 −1 0 0 0 0 −1 0 2

Di
i+1 1 1 −1 0 0 0 0 0 −1 2

Di
i+3 1 1 −1 0 0 0 0 1 0 0

Di
i+4 1 1 −1 0 0 0 0 0 1 0

In the table, k 6= k′, 1 ≤ k, k′ ≤ 8 and l 6= l′, 1 ≤ l, l′ ≤ 8. Above the double line there are
generators of NS(Xi); we will need also the intersections below the double line.

Note that Di
i · (P

i,0
j + Pi,Aj + Pi,Bj ) = Di

i · E = 1 as it should be for a section and a fiber
(similarly for Di

i+1).

Proof. We need to verify the following intersections:

(1) Di
i · P

i,0
j = Di

i+1 · P
i,0
j = 2,

(2) Di
i · P

i,A
j = Di

i+1 · P
i,B
j = −1,

(3) Di
i · P

i,B
j = Di

i+1 · P
i,A
j = 0,

(4) Di
i+4 · P

i,0
j = Di

i+3 · P
i,0
j = 0,

(5) Di
i+4 · P

i,A
j = Di

i+3 · P
i,B
j = 0,

(6) Di
i+4 · P

i,B
j = Di

i+3 · P
i,A
j = 1,

(7) Sk · Pi,0j = 1, 0 ≤ k ≤ 8,
(8) Sk · Pi,Aj = 0, Sk · Pi,Bj = 0, 0 ≤ k ≤ 8.

(7) and (8) follow from Lemma 2.7. Theorem 2.6 and Lemma 2.4 provide the geometric
description and the local equations around each singular point and of Di, Di+1, Di+3, Di+4.
We then can write the local equations of the smooth Calabi-Yau, of Di

i, D
i
i+1, D

i
i+3, D

i
i+4. For

illustration, we exemplify (1), (2), (3) in Appendix B. (4), (5) and (6) follows from a similar
analysis of these local equations. We note also that in a neighborhood of the resolutions of
each singular point Di

i ∩Di
i+1 = Pi,Aj ∪ Pi,Bj

�



ELLIPTIC THREEFOLDS WITH HIGH MORDELL-WEIL RANK 9

In Section 3.2 we verify the cancellation of the abelian anomalies with the Shioda-map and
height pairings. To that end, we need to describe the intersections of the elements in NS(Xi).

Proposition 3.6. With the same hypothesis as in Proposition 3.4:

(1) Sk · Sk = −f̂ ∀k.
(2) S0 ·Di

i = S0 ·Di
i+1 = S0 ·Di

i+3 = S0 ·Di
i+4 = ŝ0.

(3) Sk ·Di
i = Sk ·Di

i+1 = Sk ·Di
i+3 = Sk ·Di

i+4 = Fk is a section of the abelian fibration
Xi → P1 such that πi∗(Fk) = sk.

(4) Di
i ·Di

i+1 = ŝ0 +
∑
j(P

i,A
j + Pi,Bj ).

(5) Di
i ·Di

i+3 = ŝ0 + Ĉ and Di
i+1 ·Di

i+4 = ŝ0 + Ĉ.
C = πi∗(Ĉ) is a smooth curve of genus 4 such that [C]2 = 9, C · s0 = 0 and C · f = 3.

(6) Di
i ·Di

i = 2πi
∗(f) ·Di

i + 3ŝ0 − Ĉ.
(7) Di

i+1 ·Di
i+1 = 2πi

∗(f) ·Di
i+1 + 3ŝ0 − Ĉ.

In homology: [C] = [3s0 + f)].

Proof. (1) follows from an argument in [9] (see (7.30) on p. 730). (2), (3) and (4) follow from
the analysis of Lemma 2.2 and Lemma 2.4.
Di
i and Di

i+3 (Di
i+1 and Di

i+4 respectively) intersect in the zero locus y = v = 0 in X̄.
The intersection locus has two components, z = w = 0 and a remaining curve C̄. The first
component is in the resolution Xi in the class ŝ0; the strict transform of C̄, Ĉ, is a smooth
curve. Its projection to B intersects the general fiber f in three distinct points, and in one
point at the six cusps (where b = 0). That is, C is a 3 : 1 cover of P1 totally ramified at
6 points. It is then a curve of genus 4, by the Riemann-Hurwitz formula. The adjunction
formula applied to (C, B), implies that C2 = 9. This proves (5).

To prove (6) and (7) we need the following Lemma 3.7 combined with (1)–(5): �

Lemma 3.7. With the same hypothesis as in Proposition 3.4:

(1) Di
i = 2π∗i (f) + 2π∗i (s0) + 2S0 −Di

i+3,
(2) Di

i+1 = 2π∗i (f) + 2π∗i (s0) + 2S0 −Di
i+4.

Proof. We apply the pairings listed under the double lines in the Table in Proposition 3.5 and
solve the systems. �

Proposition 3.8. The genus-zero Gopakumar-Vafa invariants on the sublattice of curve
classes generated by Pi,Aj and Pi,Bj are

n{0,[Pi,A
j ]} = 1, n{0,[Pi,B

j ]} = 1, n{0,[Pi,A
j +Pi,B

j ]} = 1

and 0 otherwise.

Proof. This follows from [2,3]. Note that each of these curves is super-rigid [4, page 291]. �
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3.2. The Shioda map and height pairings.

Definition 3.9. We denote the independent elements of the Mordell-Weil group MW(Xi/B)

as Sa, a = 1, . . . , 10 with Sl = Sl, 1 ≤ l ≤ 8, and S9 = Di
i, S10 = Di

i+1.

Definition 3.10. With the notation as in Definition 3.2, the image of the set of independent
sections Sa, 1 ≤ a ≤ 10, within MW(Xi/B) under the Shioda homomorphism

σ : MW(Xi/B)→ NS(Xi)⊗Q

introduced in [29,36,38] is defined to be

σ(Sa)
def
= Sa − S0 − πi∗πi∗((Sa − S0) · S0) .

The associated height pairings take the form

ba,b
def
= −(πi)∗(σ(Sa) · σ(Sb))

and are valued in H2(B).

Proposition 3.5 enables us to prove the following Corollaries:

Corollary 3.11. With the notation as in Definition 3.10, the Shioda map images take the
form
σ(Sl) = σ(Sl) = Sl − S0 − πi∗(f), 1 ≤ l ≤ 8,
σ(S9) = σ(Di

i) = Di
i − S0 − πi∗(s0 + f),

σ(S10) = σ(Di
i+1) = Di

i+1 − S0 − πi∗(s0 + f).
They have the following intersections in Xi:
σ(S9) · σ(S9)= ŝ0 − Ĉ + f̂ + E,
σ(S10) · σ(S10) = ŝ0 − Ĉ + f̂ + E,
σ(S9)·σ(S10) = ŝ0 − ŝ0 − ŝ0 − πi∗(f) ·Di

i − ŝ0 − f̂ + ŝ0 + f̂ − ŝ0 + ŝ0 − E + E − πi∗(f) ·Di
i+1 + f̂ + E =

= −ŝ0 + f̂ − πi∗(f) ·Di
i − πi∗(f) ·Di

i+1 + E,
σ(Sk) · σ(Sk) = −3πi

∗(f) · Sk + f̂,
σ(Sk) · σ(Sk′) = −πi∗(f) · Sk′ − πi∗(f) · Sk + f̂, k 6= k′,
σ(Sk) · σ(S9) = ŝk − ŝ0 − πi∗(f) · Sk − πi∗(f) ·Di

i + f̂ + E,
σ(Sk) · σ(S10) = Sk · S10 − ŝ0 − πi∗(f) · Sk − πi∗(f) ·Di

i+1 + f̂ + E.

Corollary 3.12. The associated height-pairings are
b9,9 = −s0 + C − f ,
b10,10 = −s0 + C − f ,
b9,10 = s0 + f ,
bk′,k = f, k 6= k′,
bk,k = 2f ,
bk,9 = s0 − sk + f ,
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bk,10 = s0 − sk + f.

Proof. Note that by construction (πi)∗(ŝk) = sk ∈ H2(B). �

Corollary 3.13. The only non-vanishing intersection numbers of the height pairings of Co-
rollary 3.12 are, for 1 ≤ k, l ≤ 8:
b9,9 · bk,l = b10,10 · bk,l = 2(1 + δkl),
b9,k · b9,l = −(1 + δkl),
b9,9 · b9,9 = b10,10 · b10,10 = 4,
b9,9 · b10,10 = 4,
b9,10 · b9,10 = 1,
b9,9 · b9,10 = b10,10 · b9,10 = 2.

Corollary 3.14. The only non-vanishing intersections of the height-pairings of Corollary 3.12
with (−KB), the class of the anti-canonical divisor on the base B, are

(−KB) · b9,9 = (−KB) · b10,10 = 2,
(−KB) · b9,10 = 1.

4. The spectrum, charges, anomaly cancellation and geometric invariants

4.1. General results from F-theory. Compactification of F-theory on Xi gives rise to an
effective supergravity theory in six dimensions with N = (1, 0) supersymmetry. Before provid-
ing the details of the effective theory, we collect general results for F-theory compactifications
on elliptic threefolds that have been derived in the physics literature. For derivations and the
original references we refer to the survey articles [7, 37,39].

For simplicity of presentation and consistently with the Namikawa-Rossi example, we as-
sume that π : Y → B is a smooth elliptically fibered Calabi-Yau threefold with base B and
zero-section S0. Without loss of generality we assume that the fibration is equidimensional
and that B is smooth. We also assume that the Weierstrass model of Y , Ȳ → B has no singu-
larities appearing in codimension one, that is, in physics language, the associated non-abelian
gauge group associated in F-theory is trivial.

We denote by Sa a set of independent sections in the Mordell-Weil group MW (Y/B) with
Shioda map images σ(Sa) and height-pairings ba,b = −π∗(σ(Sa) · σ(Sb)), as in Definition 3.10.

Result (Physics) 4.1 (Gauge group and spectrum). The (abelian) gauge group G of F-theory
compactified on Y defined above is G =

∏r
a=1 U(1)a, where r is the rank of the Mordell-Weil

group MW (Y/B). The massless physical spectrum comprises

(1) V = h1,1(Y )− h1,1(B)− 1 = rk(MW (Y/B)) vector multiplets,
(2) T = h1,1(B)− 1 tensor multiplets,
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(3) H = Hunch + Hch hypermultiplets, where Hunch = h2,1(Y ) + 1 is the number of
uncharged multiplets and Hch the number of hypermultiplets charged under G,

(4) one universal gravity multiplet.

(1), (2) and (4) immediately provide a correspondence between the massless spectrum and
the birational invariants of the elliptic Calabi-Yau Y . As for (3) we have:

Result (Physics) 4.2 (Charged matter multiplicities). The charged hypermultiplets Hch in
(3) are in 1-1 correspondence with the holomorphic curves in the fiber of Y with vanishing
intersection with the zero-section S0 (the exceptional fibers of the Weierstrass model). Hch is
computed by either

a) their Gopakumar-Vafa invariants at genus zero or
b) the localised deformations of the singular fibration Ȳ → B.

Proof. Via duality with M-theory compactified on Y , massless hypermultiplets charged under
G in F-theory are in 1-1 correspondence with the possible wrappings of M2-branes on the
exceptional fibers. The Gopakumar-Vafa index of a curve C at genus zero counts the number of
hypermultiplets obtained by wrapping M2-branes on C [10]. See e.g. [20,23,28] for applications
in F-theory on threefolds. The correspondence with the localised deformations of Ȳ follows
from [16]. �

Result (Physics) 4.3 (U(1)a charges). The U(1)a charges of the massless hypermultiplets
associated with the exceptional fibers are computed as the intersections of the respective fibers
with the Shioda map images σ(Sa).

Proof. For a derivation via duality with M-theory see [29] as well as the reviews [7, 39]. �

Result (Physics) 4.4 (Anomalies). [13,29] The gravitational, mixed gravitational−U(1)a−
U(1)b and abelian U(1)a−U(1)b−U(1)c−U(1)d anomalies are cancelled by the six-dimensional
Green-Schwarz mechanism if the following equations hold:

H − V + 29T = 273(1)

(−KB) · ba,b =
1

6

∑
I

NIq
I
aq
I
b(2)

ba,b · bc,d + ba,c · bd,b + ba,d · bc,b =
∑
I

NIq
I
aq
I
b q
I
c q
I
d .(3)

ba,b on the the lefthand side of (2) and (3) is defined in Section 3.2, Definition 3.10.

In (2) and (3), the righthand side computes the anomaly coefficient for the quartic 1-loop
anomalies with two and four abelian external legs, respectively, in a six-dimensional N = (1, 0)

supergravity with NI massless hypermultiplets of U(1)a charge qIa. The lefthand side of (2)
and (3) represents the contribution to the anomaly from the Green-Schwarz counterterms.
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4.2. The geometry of the anomaly cancellations. From a more general conjecture in
[12] it follows that for the smooth elliptically fibered Calabi-Yau threefold Y → B equ. (1)
translates into the relation

(4) 30K2
B +

1

2
χtop(Y ) =

∑
Q′

cQ′ ,

where
∑
Q′ cQ′ = Hch are the hypermultiplets charged only by the abelian factors U(1)a.

The Geometric Anomaly Equation (4) states that the hypermultiplets charged only by the
abelian factors localise at singular points Q′ of the discriminant with multiplicity cQ′ , giving
Hch =

∑
Q′ cQ′ .

5. F-theory on the Namikawa-Rossi threefold

We now apply these general results to F-theory compactified on the Namikawa-Rossi threefold.

Proposition 5.1. Let Xi be a smooth minimal resolution of the Namikawa-Rossi threefold and
consider F-theory compactified on Xi. The gauge group is a product of rk(MW(Xi/B)) = 10

abelian gauge group factors, G =
∏10
a=1 U(1)a. Each U(1)a gauge potential is associated with

the Shioda map image of one of the independent elements {Sa} = {Sl,S9,S10} of MW(Xi/B),
as computed in Corollary (3.11). Furthermore

(1) V = h1,1(Xi)− h1,1(B)− 1 = rk(MW(Xi/B)) = 10,
(2) T = h1,1(B)− 1 = 9,
(3) Hunch = 4 , Hch = 18 and H = Hunch +Hch = 22.

Proof. (1) and (2) follow by constructions and from the Shioda-Wazir formula; h2,1(Xi)+1 = 4

by Theorem 2.6. The holomorphic curves in the fiber of Xi with vanishing intersection with
the zero-section S0 (the exceptional fibers) are components of the fibers of the points of the
singular locus of the discriminant: π−1

i (pj) = (Pi,0j +Pi,Aj +Pi,Bj ), 1 ≤ j ≤ 6, with the notation
as in Theorem 2.10. Each such fiber contains 3 such holomorphic curves in class Pi,Aj , Pi,Bj
and Pi,Aj +Pi,Bj . By Result 4.2 (a), their genus-zero Gopakumar-Vafa invariants of Proposition
3.8 invariants compute Hch. Each of the six singularities of the singular fibration X̄ defined
in Theorem 2.6 can be deformed to 3 nodes [31, Proposition 7]. Each node contributes +1

to Hch, yielding Hch = 3 × 6 = 18 as well, by Result 4.2 (b). The deformation do not lift to
global deformations of the resolution Xi [27, 31]. �

Proposition 5.2. Let Xi be the Namikawa-Rossi threefold. Let qa denote the U(1)a charges
for the hypermultiplets associated with the exceptional fibers Pi,Aj , Pi,Bj and Pi,Aj +Pi,Bj . Then
the non-zero U(1)a charges are computed as the respective intersections with the Shioda map
images σ(Sa):
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PAj PBj PAj + PBj
q9 -1 0 -1
q10 0 -1 -1
ql 0 0 0

Proof. We apply Proposition 3.11 and 3.5 to evaluate the charges as in Result 4.3. �

Proposition 5.3. F-theory on the Namikawa-Rossi manifold satisfies the anomaly cancella-
tion conditions as collected in Result 4.4.

Proof. We evaluate the purely gravitational and the abelian and mixed gravitational-abelian
anomaly conditions in turn.
Gravitational Anomalies The condition for cancellation of the purely gravitational anomalies,
equ. (1), is manifestly satisfied because H = Hunch +Hch = 4 + 18 = 22, V = 10 and T = 9.

(Mixed) Abelian anomalies On the righthand side of (2) and (3), applied to F-theory on Xi,
the index I becomes a multi-index I = (C, j), where C ∈ {A,B,A+B} and j ∈ {1, . . . , 6} label
the curves Pi,Aj , Pi,Bj and Pi,Aj + Pi,Bj appearing in the table in Proposition 5.2. NI counts
the number of massless hypermultiplets associated with each of these curves and coincides,
by Result 4.2 (a), with the corresponding genus-zero Gopakumar-Vafa invariant computed in
Proposition 3.8.

With this and the charges as in the table in Proposition 5.2, and 1 ≤ l ≤ 8, 1 ≤ a ≤ 10,
equ. (2) becomes the requirement that

U(1)2
9 − grav : (−K)B · b9,9 = 2(5)

U(1)9 − U(1)10 − grav : (−K)B · b9,10 = 1(6)

U(1)10 − U(1)10 − grav : (−K)B · b10,10 = 2(7)

U(1)l − U(1)a − grav : (−K)B · bl,a = 0 ,(8)

and equ. (3) becomes

U(1)4
9 : b9,9 · b9,9 = 4(9)

U(1)3
9 − U(1)10 : b9,9 · b9,10 = 2(10)

U(1)2
9 − U(1)2

10 : b9,9 · b10,10 + 2b9,10 · b9,10 = 6(11)

U(1)9 − U(1)3
10 : b9,10 · b10,10 = 2(12)

U(1)4
10 : b10,10 · b10,10 = 4(13)

U(1)l − U(1)a − U(1)b − U(1)c : bl,a · bb,c + bl,b · bc,a + bl,c · ba,b = 0.(14)

These equations are manifestly satisfied with the help of Corollaries 3.14 and 3.13. �

Proposition 5.4. The Namikawa-Rossi manifolds satisfy the Geometric Anomaly Cancella-
tion equation (4).
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Proof. Indeed, K2
B = 0, χtop(Xi) = 36 by Theorems 2.6, 2.9 and

∑
Q′ cQ′ = 6 × 3 = 18, by

Proposition 3.8. �

Corollary 5.5.
∑
Q′ cQ′ is a birational invariant of the minimal model of the elliptic fibration.

Proof. In fact the left hand side of the equation (4) is a birational invariant of the minimal
model [12]. �∑

Q′ cQ′ is a birational invariant of the non Q-factorial terminal singularities of the Weier-
strass model X̄, in the sense that it is a birational invariant of the Q-factorialization.

6. The Weierstrass model over P2, Elkies’ birational example

In this Section we take the first steps in addressing the question of whether the model
WNDE → P2 constructed in [8] is birationally Calabi-Yau. We prove that the Weierstrass
models over P2 of the Namikawa-Rossi threefolds are not the ones constructed by Elkies.

6.1. Summary of [8]: In the 2018 seminar talk [8] Elkies gave a construction of a family of
elliptically fibered threefolds in Weierstrass form, WNDE → P2, with rk(MW(WNDE/P2)) = 10

and KWNDE
≡ 0. [8] does not address the question of whether the minimal resolutions are

Calabi-Yau threefolds.
The starting point of the construction is what Elkies calls an “excellent family", that is

elliptic fibrations which depend on the parameter ζ:

(15) y2 = x3 + (p4ζ
4 + p10ζ)x+ ζ9 + p6ζ

6 + p12ζ
3 + p18 .

In Elkies’ construction the variables (x, y, ζ) have weights (6, 9, 2) and the coefficients pj are
the invariant forms of degree j in P4 for the Shephard-Todd unitary reflection group ST33 in
C5 [35], which we discuss below. Then Elkies obtains elliptic threefolds WNDE by restricting
the coefficients pj to a general P2 and by taking ζ to be a quadratic form in that P2.

The discriminant locus of each fibration WNDE → P2 is then a curve of degree 36, and
KWNDE ≡ 0; h1(OWNDE) = 0, h2(OWNDE) = 0 by construction. The threefolds WNDE are
potentially birational Calabi-Yau. However, it is easy to construct Calabi-Yau Weierstrass
models with the same numerical properties with log canonical singularities which are not
birationally equivalent to a Calabi-Yau with terminal singularities. The example of [8] might
a priori fall into this class.

Elkies’ excellent family extends Shioda’s excellent families for rational elliptic surfaces.
Here “excellent" refers to the explicit generators of the Mordell-Weil group of sections [34].
The particular structure of the excellent family implies that rk MW(WNDE/P2) = 10.
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The coefficients pj are of geometric interest in their own right; in fact ST33 ' Z/2Z ×
PSp(4,F3), where PSp(4,F3) ' G25920 is the Burkhardt group [14]. Shephard and Todd [35]
prove that the invariants pj of ST33 are the same invariants as for the Burkhardt group G25920.
The latter were originally computed by Burkhardt [5]. In particular Burkhardt shows that
possible coefficients p18 are either the product of lower degree invariants or an irreducible
polynomial of degree 18, or a linear combination thereof.

As will become clear in the following section, Elkies’ special choice ζ = 0 in the family (15)
could be a candidate for the Weierstrass model of the Namikawa-Rossi manifolds. We will now
give an explicit construction of the Weierstrass models and then compare to Elkies’ model for
ζ = 0.

6.2. Weierstrass models over P2 of the Namikawa threefolds.

Proposition 6.1. Let Xi be one fixed smooth resolution of the Namikawa threefolds as in
Theorem 2.6 with elliptic fibration πi : Xi → B. Let π̄i be the morphism induced by the
contraction B → P2 of the rational curves {s0, · · · , s8}:

Xi

B P2

πi
π̄i

Then there exists a diagram

Xi X ′i Zi

B P2

πi
π̄i

ψ1 ψ2

πZi

such that the following holds:

(1) ψ1 : Xi 99K X ′i, with X ′i smooth, is a birational map constructed as the composition of
the 81 flops of the rational curves πi∗(sk) ·S`, 0 ≤ ` ≤ 8, 0 ≤ k ≤ 8. The discriminant
locus of π̄i consists of 6 irreducible cuspidal curves which intersect pairwise trans-
versely in 9 distinct smooth points {z0, · · · z8}. The fiber over each zj is the surface
ψ1∗(πi

∗(sk)) ' P2, 0 ≤ k ≤ 8.
(2) The elliptic fibration X ′i → P2 has 11 linearly independent sections (i.e. the rank of

MW(X ′i/P2) is 10), the strict transforms of the sections of πi:
S′l,P2

def
= ψ1∗(S`), 0 ≤ ` ≤ 8, D′

i
i
def
= ψ1∗(D

i
i) and D′ii1

def
= ψ1∗(D

i
i+1) .

(3) ψ2 : X ′i → Zi is a composition of 9 birational contractions with exceptional loci
{ψ1∗(πi

∗(sk)) ' P2, 0 ≤ k ≤ 8}. The Calabi-Yau Zi has 9 canonical (but not ter-
minal) isolated singularities.
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(4) Zi is rigid.
(5) The elliptic fibration Zi → P2 has 11 linearly independent sections (i.e. the rank of

MW(Zi/P2) is 10).
(6) The elliptic fibration πZi : Zi → P2 is equidimensional.
(7) For every k, the singular fiber π−1

Zi
(zk) consists of 9 rational curves meeting at the

point of canonical singularity of Zi.

Proof. The statements (1) and (3) follow from the contraction theorems and the existence
of log flips for threefolds, stated in Appendix A for convenience: To obtain the flops in (1)
in Theorem A.2 we take Y = P2, D = επi

∗(sk) for a fixed k, 0 ≤ k ≤ 8, ε � 1 and
R = πi

∗(sk) · S`, 0 ≤ ` ≤ 8. Each of these log-flips is a flop. For each of the contraction
morphism in (3), we take in Theorem A.1 D = ψ1∗(π

∗
i (sk)) ' P2 and R any line in P2. (4)

follows from [32], [1] and the survey [30]. (2), (5), (6) and (7) follow from the construction. �

We now give an intrinsic description of the Weierstrass model over P2 of the Namikawa-Rossi
manifolds.

Lemma 6.2. Let S′0,P2 = ψ1∗(S0) be a fixed section for π̄′i : X ′i → P2. There exists a crepant
birational morphism ψ3 such that the following diagram commutes:

X ′i WP2

P2

π̄′
i

ψ3

πWP2

πWP2
: WP2 → P2 is the Weierstrass model of X ′i with marked section SP2

def
= ψ3∗S

′
0,P2 .

In addition, KX′
i

+ S′0,P2 = ψ3
∗(KWP2

+ SP2).

Proof. The existence of the Weierstrass model and of the commutative diagram such that
S′0,P2 = ψ3

∗(SP2) is proved in [26]. The morphism ψ3 is crepant because, with ΛP2 the support
of the discriminant, OX′

i
' KX′

i
' (π̄′i)

∗(KP2 + ΛP2) and OWP2
' (π̄WP2

)∗(KP2 + ΛP2) ' KWP2

since π̄′i and πWP2
have the same discriminant. �

The construction of the Weierstrass model in Lemma 6.2 is not explicit, so we use the
construction of the relative log canonical model instead.

Theorem 6.3. Let h be a general line in P2, F ′P2

def
= (π̄′i)

∗(h) and 0 < a ≤ 1. The
Weierstrass model WP2 → P2 of the Namikawa-Rossi threefold is the relative log canon-
ical model of (X ′i, S

′
0,P2 + aF ′P2) described in Proposition 6.1. WP2 is obtained from Xi by

the composition of ψ1, ψ2 and the birational contractions of the flops of the rational curves
πi
∗(sk) · S`, 0 ≤ ` ≤ 8, 0 ≤ k ≤ 8, the 6 pairs of curves {Pi,Aj ,Pi,Bj }.
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WP2 is also the relative log canonical model of (Z ′i, ψ2∗S
′
0,P2 + aψ2∗F

′
P2).

Xi

(X ′i, S
′
0,P2 + aF ′P2)

(WP2 , ψ3∗S
′
0,P2 + aψ3∗F

′
P2) (Z ′i, ψ2∗S

′
0,P2 + aψ2∗F

′
P2) (Z`c, (ψ4ψ2)∗S

′
0,P2 + a(ψ4ψ2)∗F

′
P2)

P2

ψ1

ψ3
ψ2

πWP2

πZi

φ ψ4

π̄

Proof. For 0 ≤ a ≤ 1, (X ′i, S
′
0,P2 + aF ′P2) is a log canonical pair. General results from the

minimal model program together with the existence of abundance in dimension 3 [17] ensure the
existence of the log canonical model (Z`c, S`c+aF `c)) for the pair (X ′i, S

′
0,P2+aF ′P2), 0 < a ≤ 1,

relative to the fibration π̄′i. KZ′
i

+ ψ2∗S
′
0,P2 + aψ2∗F

′
P2 is πZi

-nef. Abundance [17] gives the
birational morphism ψ4 to the log canonical model (Z`c, ψ4∗S

′
0,P2 +aψ4∗F

′
P2) (Definition A.4).

ψ4 contracts the flops of the rational curves πi∗(sk)·S`, 0 ≤ ` ≤ 8, 0 ≤ k ≤ 8 and the 6 pairs of
curves {Pi,Aj ,Pi,Bj }. KWP2

+ψ3∗S
′
0,P2 +aψ3∗F

′
P2 is πWP2

-ample. (X ′i, S
′
0,P2 +aF ′P2) is a common

log resolution of the three log canonical pairs (WP2 , ψ3∗S
′
0,P2 + aψ3∗F

′
P2), (Z ′i, ψ2∗S

′
0,P2 +

aψ2∗F
′
P2) and (Z`c, ψ4∗S

′
0,P2 + aψ4∗F

′
P2). The morphisms ψ2, ψ3 and ψ4 are isomorphisms

onto their images when restricted to S′0,P2 + aF ′P2 . Then KX′
i

+ S′0,P2 + aF ′P2 ' (ψ2)
∗
(KZ′

i
+

ψ2∗S
′
0,P2 +aψ2∗F

′
P2) and KX′

i
+S′0,P2 +aF ′P2 ' (ψ4 · ψ2)

∗
(KZ`c + (ψ4ψ2)∗S

′
0,P2 +a(ψ4ψ2)∗F

′
P2)

by construction while KX′
i
+S′0,P2 + aF ′P2 ' ψ3

∗(KWP2
+ψ3∗S

′
0,P2 + aψ3∗F

′
P2) by Theorem 6.2.

In particular (WP2 , ψ3∗S
′
0,P2 + aψ3∗F

′
P2) satisfies the conditions to be a log canonical model,

Definition A.4. We conclude as in Section I.4.1. in [40] by recalling that the log canonical
model is unique [21, Theorem 3.52 ]. �

Summarizing:

Corollary 6.4. πWP2
: WP2 → P2 has affine equation y2 = x3 + β(s, t), where β(s, t) is the

equation of the 6 general cuspidal curves in the pencil of P2 which give rise to the smooth general
rational elliptic surface with 6 type II fibers r : B → P1. The 6 cuspidal curves intersect in
the points {z0, · · · , z8}. The Weierstrass model is non-minimal of type (∗, 6, 12) at each of the
points {z0, · · · , z8} ⊂ P2. WP2 has Q-factorial canonical, but not terminal singularities in the
fibers over {z0, · · · , z8} ⊂ P2. WP2 has non Q-factorial terminal singularities in the fibers over
the 6 cuspidal points. The singular locus of the reduced discriminant consists of 15 points.

Proof. The affine equation is y2 = x3 + β(s, t) because j(WP2) = 0. The zero locus of β(s, t)

is the reduced discriminant, which by (1) in Proposition 6.1 and Theorem 6.3 consists of the
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6 type II fibers in pencil in P2 which give rise to the smooth general rational elliptic surface
r : B → P1. The type of the Weierstrass model then follows, in fact if y2 = x3 + αx + β

is a local Weierstrass equation and δ is the equation for the discriminant then the triplet
(ν(α(P )), ν(β(P )), ν(δ(P ))) is given by the vanishing orders at P of α, β and δ. It is non-
minimal by definition. The contraction ψ2 gives rise to canonical but non-terminal singularities,
by part (3) in Proposition 6.1, while the contraction ψ4 results in non Q-factorial terminal
singularities (see the proof of Theorem 6.3). �

6.3. Comparison with Elkies’ construction.
We now compare the Weierstrass model WP2 of the Namikawa-Rossi threefolds, which we

described explicitly in Theorem 6.3 and Corollary 6.4, to Elkies’ Weierstrass model (15) for
ζ = 0, WNDE,0 : y2 = x3 + p′18. It is clear that if p′18 is taken to be irreducible, the two
Weierstrass models are different. For more general invariants p′18 one must answer the question
whether the defining equation β(s, t) appearing in WP2 in Corollary 6.4 is the restriction of
an invariant of the Burkhardt group to P2. We pursue this investigation in an upcoming
paper [11].

Appendix A. Review of background material

We review some foundational results in birational geometry which can be found for example
in [21]. Applications to relative log canonical models of elliptic fibrations can be found in
Chapter I of [40].

Theorem A.1 (Contraction morphism). Let π : Z → Y be a morphism, Z a threefold, D an
effective Q-divisor. If (Z,D) has Q-factorial klt singularities and KZ + D is not π-nef, that
is (KZ + D) · R < 0, for some extremal ray R ∈ NE(Z/B), then there exists a morphism
φ̄ : Z → Z̄, contracting all the curves in the numerical equivalence (homology) class of [R]

such that the following diagram is commutative:

(Z,D) (Z̄, D̄)

Y

π

φ̄

π̄

Z̄ is a normal variety and dim NE(Z/B) > dim NE(Z̄/B).

Theorem A.2 (The flops). Let (Z,D) a variety with Q-factorial klt singularities. Let φ̄ be
a (KZ + D) contraction of an extremal ray R as in Theorem A.1. Assume that φ̄ is small.
Then there exists a log flip ψ : (Z,D) 99K (Z ′, D̄′) of R. That is, KZ′ + D′ is π-nef (i.e.
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(KZ′ +D′) ·R′ > 0, ∀ R′ ∈ NE(Z ′/Z̄)) and the following diagram is commutative

(Z,D) (Z ′, D̄′)

(Z̄, D̄)

φ̄

ψ

φ̄′

(Z ′,D′) has Q-factorial klt singularities.

There is also a relative version.

Definition A.3. Let Z, Y be normal varieties, f : X → Z a birational morphism and (Z,D)

a pair such that KZ +D is Q-Cartier. Let {Ej} be the collection of the exceptional divisors;
then the formula

KY + (f−1)∗(D) ≡ f∗(KX +D) +
∑
j

a(Ej , Z,D)Ej

defines a(Ej , Z,D).
(Z,D) is a log canonical pair if and only if infj a(Ej , Z,D) ≥ −1.

Definition A.4. Let (Z,D) be a log canonical pair and π : Z → Y a proper morphism.
(Z`c,D`c) is the log canonical model over Y if in the following diagram:

(Z,D) (Z`c,D`c)

Y

π

φ

π̄

(1) π̄ is proper
(2) φ−1 has no exceptional divisor
(3) φ∗(D) = D`c

(4) KZ`c +D`c is π̄-ample
(5) for every φ-exceptional divisor E ⊂ Z, a(E,Z,D) ≤ a(E,Z`c,D`c).

Appendix B. Derivation of intersection numbers

In this appendix we exemplify the derivation of the intersection numbers presented in Pro-
position 3.5. These intersections are in a neighborhood of the resolution of each singular point.
We derive (1), (2) and (3) in the proof using geometry, the local equations around a singular
point of the threefold and its resolution around the exceptional loci.

With the notation from Theorem 2.10 and Definition 2.8 we recall that the section Di
i+1 on

Xi is by construction the strict transform ofDi+1 on X̄ by the resolution ϕi. In a neighborhood
of the exceptional loci, Di

i ∩ Di
i+1 = ∪jPi,Aj ∪ Pi,Bj . We note also that Di+1 inherits from
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r : B → P the structure of a rational elliptic surface with six fibers of type II. ϕi|Di
i+1

induces
two blow ups of the type II fibers at the cuspidal points. Di

i+1 is then a non minimal rational
elliptic surface with exceptional curves ∪jPi,Aj ∪ Pi,Bj . Let E0,Di

i+1
be the strict transform of

the cuspidal fiber in Di
i+1, and EDi

i+1
be the general fiber (note that πi(EDi

i+1
) = f ∈ B).

Then EDi
i+1
≡ (E0,Di

i+1
+ 2Pi,Aj + 3Pi,Bj )|Di

i+1
with (Pi,Aj · Pi,Aj )|Di

i+1
= −2, (Pi,Bj ·

Pi,Bj )|Di
i+1

= −1, for any 1 ≤ j ≤ 6. The three component curves E0,Di
i+1

, Pi,Aj and Pi,Bj
intersect in one point.

Hence we obtain the following intersection numbers:

Di
i · P

i,A
j = (Di

i · P
i,A
j )|Di

i+1
=

1

2
(Pi,Aj + Pi,Bj ) · (EDi

i+1
− E0,Di

i+1
− 3Pi,Bj )|Di

i+1

=
1

2
(0− 2− 3 + 3) = −1 ,

Di
i · P

i,B
j =

1

3
Di
i · (EDi

i+1
− E0,Di

i+1
− 2Pi,Aj )|Di

i+1

=
1

3
(Pi,Aj + Pi,Bj ) · (EDi

i+1
− E0,Di

i+1
− 2Pi,Aj )|Di

i+1

=
1

3
(0− 2− 2(−2 + 1)) = 0 .

Either from the local equations of the resolved Calabi-Yau, or from the above intersections
together with Di

i · E = 1 we find also

Di
i · P

i,0
j = 2 .

The intersection numbers with Di
i+1 follow similarly, noting however that the strict trans-

form of Di after the first blow up acquires A1 singularities, which are then resolved in the
second blow up.
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