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Abstract
The aim of this work is to present a general and simple strategy for the construction of
compactly supported fundamental spline (piecewise-polynomial) functions for local
interpolation, that are defined over quadrangulations of the real plane with extraor-
dinary vertices. The proposed strategy — which extends the univariate framework
introduced in Antonelli et al. (Adv Comput Math 40:945–976, 2014) and Beccari et
al. (J Comput Appl Math 240:5–19, 2013)—consists in considering a suitable combi-
nation of bivariate polynomial interpolants with blending functions that are the natural
generalization of odd-degree tensor-product B-splines. These blending functions are
constructed as basic limit functions of the bivariate, primal subdivision schemes devel-
oped simultaneously in Stam (Comput Aided GeomDes 18:397–427, 2001) and Zorin
et al. (Comput Aided GeomDes 18:483–502, 2001). As an application example of our
constructive strategy we present the compactly supported C2 fundamental functions
for local interpolation that arise by considering as blending functions the basic limit
functions of the celebrated Catmull–Clark subdivision scheme proposed in Catmull
and Clark (Comput Aided Des 46:103–124, 2016).
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1 Introduction

Local interpolation methods aim at constructing a smooth interpolant F : � → R

(� ⊂ R
s) that locally depends on the given set of vertices {p j ∈ R, j ∈ J } to be

interpolated at the parameter values {x j ∈ �, j ∈ J }. Locality is an extremely crucial
property in applications since, in several situations, one may want to update the inter-
polant because new data has occurred, or to modify it only in a circumscribed region.
The main challenge of local interpolation methods is to construct basis functions � j

that allow one to explicitly write F as

F(x) =
∑

j∈J

p j � j (x), x ∈ �. (1)

For F to satisfy the property F(x j ) = p j for all j ∈ J , we need that � j are funda-
mental functions for interpolation (i.e., for � j : Rs → R that means � j (x j ) = 1 and
� j (xi ) = 0 for all i �= j). Moreover, for F to depend locally on the interpolation
points, we need each � j to be compactly supported and its support to be a compact
set of the parametric domain �. Finally, the smoothness of F will be the minimum
smoothness of all the involved fundamental functions, and what one normally wants
is that it is the smoothest possible for a selected support width.

In the univariate context (s = 1) the most popular open problem of the last two
decades has been the derivation of univariate subdivision schemes that allow one to
construct fundamental functions for interpolation that compare favorably with those
achievable via piecewise polynomial (or even piecewise exponential-polynomial)
functions either in terms of support width, polynomial/exponential-polynomial repro-
duction or global smoothness (see, e.g., [6, 7, 9, 11]). Very recently in [10] it was
shown that non-uniform univariate subdivision schemes have the potential to gener-
ate fundamental functions for interpolation that are smoother than those of uniform
schemes with the same support size of the subdivision rule. Precisely, it was shown
that C2 basic limit functions can be generated by a non-uniform 4-point scheme, thus
increasing the smoothness of the classical uniform 4-point scheme with the same
support size [9] by one.

In the bivariate context (s = 2), starting from the pioneering proposals in [17, 18],
several uniform subdivision schemes have been proposed to construct compactly sup-
ported C2 fundamental functions for interpolation that are defined on regular domains
isomorphic to Z

s . Alternative approaches other than subdivision schemes were also
proposed (already from the end of the eighties) to build compactly supported C2 fun-
damental solutions for cardinal interpolation in the context of shift invariant spaces [5,
8]. However, none of the above approaches has yet been adequately extended to obtain
compactly supported C2 basis functions which are fundamental for interpolation of
arbitrary quadrilateral meshes (see Fig. 1).

Definition 1 Let � be a simply connected subset of R2 with a polygonal boundary.
Then we say that � is an arbitrary quadrangulation of the plane if it is partitioned into
polygons where all faces are four sided, edges are shared by at most two faces and
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Fig. 1 Example of a quadrangulation with one extraordinary vertex of valence 5

only intersect at vertices, and an arbitrary number of edges can intersect at the same
vertex.

Definition 2 Let x j be an inner vertex of �. If x j is the intersection point of four
edges, then x j is termed regular, otherwise it is called irregular or extraordinary. The
number of edges that are incident to x j is called the valence of x j .

While generating globally C2 basis functions for interpolation that are defined on a
compact subset of � which includes only regular vertices turns out to be a trivial task,
the construction of C2 fundamental functions including also extraordinary vertices
within their compact support is quite a complex issue.Motivated by the lack of general
results and aware of the difficulties that arise from facing the general case, the goal of
our paper is to propose an effective and simple strategy to build globally C2 bivariate
fundamental functions for local interpolation defined over arbitrary quadrangulations
of the real plane. The first possible approach that we could consider to reach our goal
is certainly to generalize the non-uniform univariate refinement rules proposed in [10]
to quadrilateral meshes with extraordinary vertices. However, the current knowledge
gaps on the design of extraordinary rules capable of achieving C2 smoothness at
extraordinary vertices [16] prevent this road from being considered viable. Another
constructive strategy that turns out to be unsatisfactory to our purposes is also the one
recently introduced in [14] for generating basis functions for interpolation that are
locally supported over portions of quadrilateral meshes with extraordinary vertices.
Indeed such a strategy yields basis functions that are not globally C2 as we would like
to get. Taking into account our past experience and our previously achieved results, the
most feasible way is certainly to consider an appropriate extension of the univariate
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proposal presented in [1, 3]. Indeed in such papers we provided a very general method
for constructing the entire class of univariate, piecewise-polynomial local interpolants
that lends itself well to a bivariate generalization. In [2] the univariate method has
been already generalized to interpolate the vertices of quadrilateral meshes that are
either (i) regular or (ii) containing isolated extraordinary vertices. However, case (ii)
was handled with an ad-hoc approach which consists in replacing the N mesh faces
sharing an extraordinary vertex with N parametric surface elements connected with
continuity of type G1 (i.e., continuity of the tangent plane) or G2 (i.e., continuity of
curvature). Additionally, the approach in [2] requires information like first derivatives,
and possibly second derivatives, along the edges of the region to be filled, that are
often unavailable in practice. Therefore, starting from these past results, we aim to
devise a more general strategy for constructing local interpolants to the vertices of
a given quadrilateral mesh, which does not require any restriction on the number of
its extraordinary vertices, and which can guarantee C2 continuity at extraordinary
vertices without any additional input data such as first and second derivatives. The
first task towards the construction of globally C2 surfaces of arbitrary topology is
to build compactly supported globally C2 basis functions for interpolation that are
defined over arbitrary quadrangulations of the real plane. This will be the precise
purpose of this paper where we focus on fundamental functions for interpolation that
may contain in their compact support extraordinary vertices. The construction of the
fundamental functions will rely on a suitable linear combination between bivariate
polynomials interpolating subsets of the given data points, and compactly supported
blending functions selected within the class of globally C1 basic limit functions of
spline-based bivariate subdivision schemes. In this combination, the polynomials will
be designed to ensure that the interpolation constraints are satisfied, while the blending
functions will blend together the polynomials in such a way that the smoothness of the
resulting fundamental functions will be of one order higher than that of the blending
functions.

More precisely, the paper is laid out as follows. Section2 provides a brief review
of the strategy introduced in [1, 3] to construct piecewise-polynomial univariate fun-
damental functions for local interpolation. Section3 presents a generalization of the
univariate strategy to build bivariate fundamental functions for local interpolation. Sec-
tion4 discusses the main properties (i.e., interpolation, compact support and global
smoothness) of the bivariate fundamental functions produced by the new strategy we
propose. Section5 presents the globally C2 fundamental functions generated by using
the Catmull–Clark basic limit functions as a specific example of blending functions.
Moreover, Sect. 5 illustrates examples of globally C2 parametric surfaces built-upon
such fundamental functions, that interpolate the vertices of a quadrilateral mesh with
an extraordinary vertex. Finally, Sect. 6 identifies issues that deserve further investi-
gation.

2 A brief review of the univariate strategy

In [1, 3] it was devised a general strategy for the construction of piecewise-polynomial
univariate fundamental functions for local interpolation that may attain arbitrary
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smoothness, degree and support width. In the following we denote by {xi } a strictly
increasing and finite sequence of nodes placed on the real line, and by � j the funda-
mental function centered at the parameter value x j , i.e. the fundamental function that
satisfies� j (xi ) = δi, j . The idea introduced in the above mentioned papers consists in
defining � j as a linear combination between univariate polynomials that interpolate
subsets of the data points (xi , δi, j ) and compactly supported blending functions. In
this combination, the polynomials are designed to ensure that the interpolation con-
straints are satisfied, while the blending functions blend together the polynomials in
such a way that � j has the desired support width and smoothness. Hereinafter, the
univariate polynomial interpolating a finite number of consecutive data (xk, δk, j )with
k ≥ � is denoted by P�, whereas the blending function having compact support with
first endpoint x� is denoted by ��. For the sake of simplicity (but also because it is the
only background we need to introduce the bivariate strategy of Sect. 3), in this review
we assume that the blending functions are polynomial B-spline basis functions of arbi-
trary degree, and that their knots coincide with the interpolation nodes {xi }. Due to
this choice, the support width of the blending functions is an integer. The combination
of P� and �� that gives rise to � j reads as

� j (x) =
∑

�

P�−σ (x)��(x), σ ∈ Z. (2)

Here, the integer σ can be arbitrarily selected keeping in mind that the nodes xi
not interpolated by P�−σ cannot lie in the support of ��. This yields the bounds
−1 ≤ σ ≤ m − w + 1 with m denoting the degree of each polynomial P� and the
integerw the support width of each blending function�� involved in (2). Among these
admissible choices of σ , the only value that guarantees the achievement of centrally
symmetric functions, in case of symmetric sequences of nodes, is

σ =
⌊
m − w

2

⌋
.

Examples of centrally symmetric fundamental functions for local interpolation are
shown in Fig. 2. In general, independently of the admissible value assigned to σ ,
the fundamental function � j defined in (2) has been shown to fulfill the following
properties.

Proposition 1 (Interpolation)[3, Prop.1]. If the polynomials P�−σ multiplying the
non-vanishing blending functions �� at the node xi are all interpolating the value
δi, j , then � j satisfies the condition � j (xi ) = δi, j .

Proposition 2 (Compact Support)[3, Prop.4]. If eachP�−σ is a univariate polynomial
of degree m and each blending function �� has support width w, then the support
width of � j is m + w.

Proposition 3 (Smoothness)[3, Prop.2]. Under the assumptions of Proposition 1 and
2, if every blending function �� is Ck, then � j is Ck+1.
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Fig. 2 Left: the C2 fundamental function supported on [−3, 3] that is obtained by using our constructive
approach with the quadratic B-splines as blending functions. Right: theC3 fundamental function supported
on [−3, 3] that is obtained by using our constructive approachwith the cubicB-splines as blending functions.
In both figures the interpolating polynomials blended by the B-splines (dashed graphs) are the dotted graphs

The illustrative example in Fig. 2 left (respectively, right) shows the degree-5 fun-
damental function with compact support [−3, 3], that is obtained when selecting
�� as a degree-2 (respectively, degree-3) polynomial B-spline and P� as a degree-3
(respectively, degree-2) polynomial interpolating a subset of four (respectively, three)
consecutive points (xk, δk, j ), k ≥ �. Since the assumption of Proposition 1 is fulfilled,
� j is a fundamental function for interpolation. Moreover, according to Proposition 2,
since m = 3 and w = 3 (respectively, m = 2 and w = 4), then the support width of
� j is 6. Finally, according to Proposition 3, since �� is C1 (respectively, C2) then � j

is C2 (respectively, C3).

3 The bivariate strategy

The goal of the bivariate strategy is the construction of compactly supported, smooth
fundamental functions for interpolation that are defined on an arbitrary quadrangula-
tion of the plane denoted with � (see Definition 1). For the sake of simplicity, in this
preliminary paper we assume that the compact support of each fundamental function
may contain one extraordinary vertex at most. Moreover, to extend the idea introduced
in Sect. 2, we assume that each fundamental function is obtained by combining bivari-
ate polynomial interpolants with compactly supported bivariate blending functions.
Since we deal with a domain whose boundary is a closed polygonal line, without loss
of generality we may assume that � is defined in such a way that any arbitrary vertex
x� used below to denote the center of a blending function, is always an inner vertex
of � with a sufficient number of connected rings of faces around it, that allows for the
following definitions.

Definition 3 The 0-ring neighbourhood of the vertex x� ∈ � is the vertex itself.

Definition 4 For all k ∈ N, the k-ring neighbourhood of x� ∈ � is the union of its
(k − 1)-ring neighbourhood with all the quadrilateral faces of � that are incident to
any vertex of the (k − 1)-ring neighbourhood.
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Table 1 Graphical illustration of the 1-ring neighbourhoodR1
�
of a vertex x� ∈ � of valence 3, 4, 5, 6

Definition 5 Let x� ∈ �. We denote byRk
� (k ∈ N0 = N∪ {0}) the k-ring neighbour-

hood of x�.

For the sake of clarity, in Table 1 we illustrate the 1-ring neighbourhood of a vertex
of � of valence 3, 4, 5, 6.

Mimicking the univariate proposal, the bivariate fundamental function centered at
x j is denoted by � j,n and defined by the formula

� j,n(x) =
∑

�

P�,n(x) ��,n(x), n ∈ N. (3)

Here, ��,n denotes a bivariate blending function that is centered at the vertex x� ∈ �

and has compact support Rn+1
� , namely the (n + 1)-ring neighbourhood of x�. For

each x� we also introduce the notation

Ln
� = {i ∈ N : xi ∈ Rn

�}

to refer to the index set identifying all the vertices of� inRn
� . Moreover, for a suitable

positive integer d, we denote with P�,n a bivariate polynomial of total degree d which
satisfies the #Ln

� interpolation constraints

P�,n(xk) = δk, j for all k ∈ Ln
� , (4)

and approximates in the least-squares sense the points (xk, 0) with xk ∈ �� \ Rn
� ,

where �� is a suitable subset of � (see section 3.2).
The challenging task is now to identify suitable blending functions and bivariate

polynomial interpolants that, combined together, can providewell-performing� func-
tions. As already highlighted in the introduction, the most desirable solution is the one
that guarantees � functions having the highest possible smoothness for the selected
support. In the following we introduce a family of blending functions (see section 3.1)
and bivariate polynomial interpolants (see section 3.2) that, in the simplest case (i.e.,
in the case n = 1), allow us to get a family of fundamental functions � j,1 that are
compactly supported on R3

j and globally C2.

3.1 Blending functions to be used in the bivariate strategy

In order to construct a compactly supported bivariate function ��,n that is either
centered at an extraordinary vertex or containing an extraordinary vertex within its
support, and can play as a blending function in our approach, we consider the natural
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extension of the univariate odd-degree B-spline that is generated by the family of
bivariate, primal subdivision schemes developed simultaneously by Stam [20] and
Zorin and Schröder [21]. Indeed, the n-th member of this family is a subdivision
scheme that gets back the degree-(2n + 1) tensor-product B-spline in the regions
containing only regular vertices (also called regular regions), and yields smooth limit
surfaces for any arbitrary quadrilateral mesh. Precisely, as shown in these papers, for
all valences, the function ��,n is compactly supported onRn+1

� , and its smoothness is
C2n(R2) if all the vertices within its support are valence-4 vertices, but only C1(R2)

in case extraordinary vertices are within the support. Indeed, independently of the
choice of n, the smoothness achieved at the extraordinary vertex is always C1 only.
Additionally, exactly as the univariate B-splines, these functions are strictly positive
within their support and constitute a partition of unity.

A very famous subcase of the above family of primal subdivision schemes is given
by the Catmull–Clark subdivision scheme [4]. This is exactly the first family member
(corresponding to the choice n = 1), which generates basic limit functions ��,1 that
are compactly supported on R2

� , coincide with the cubic C2(R2) tensor-product B-
spline in the regular regions, and are only C1(R2) when extraordinary vertices are
within the support. The analytic evaluation of the Catmull–Clark basic limit functions
can be achieved by means of the procedure introduced in [19]. The illustration of
the basic limit functions ��,1 centered at an extraordinary vertex of valence 3, 5, 6
is displayed in the central column of Fig. 5, while the right column of Fig. 5 shows
examples of basic limit functions ��,1 centered at a valence-4 vertex x� that lies
on the first ring around an extraordinary vertex of valence 3, 5, 6 respectively. All
other blending functions centered at valence-4 vertices that lie on outer rings of the
extraordinary vertex are not displayed since entirely defined on regular quadrilateral
grids.

3.2 Polynomial interpolants to be used in the bivariate strategy

As we will prove in the next section, requiring that each polynomial P�,n involved
in (3) satisfies the interpolation conditions (4) guarantees that the function � j,n has
the desired interpolation properties, i.e. that � j,n(xk) = δk, j , for all xk ∈ �. To
make sure that a polynomial P�,n provides enough degrees of freedom to satisfy the
constraints (4), it is necessary to build it of a suitable degree d such that

dim(�d) = (d + 1)(d + 2)

2
≥ #Ln

� , (5)

where �d denotes the space of bivariate polynomials of degree less than or equal to
d. In general, for a fixed degree d, the number of degrees of freedom which comes
out from the above condition is higher than the number of interpolation constraints,
and thus additional conditions should be introduced to identify each P�,n . To this end,
we have found convenient to require that the polynomial P�,n approximates in the
least-squares sense other points (xk, 0) with xk ∈ ��\Rn

� , where �� is a given subset
of �. Though the set �� can be arbitrarily chosen, in practice it is advisable to select
it so that the fundamental function � j,n obtained from (3) will preserve symmetries
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in the data. There are of course many symmetry-preserving strategies for fixing ��,
amongst which, we have chosen to set �� = Rn+1

� , i.e. to approximate all the points
(xk, 0) with xk ∈ Rn+1

� \Rn
� . From the theoretical results in [12, Section 1.2] the

existence of such a polynomialP�,n is guaranteed whenever d is sufficiently high, and
the fact that we exploit the degrees of freedom to approximate all the points (xk, 0)
in the least-squares sense allows us to determine a specific polynomial. Note that, if
� /∈ Ln

j , then the polynomialP�,n satisfying the conditions (4) has to interpolate points
that are all of the form (xk, 0). In this case we take P�,n to be identically zero in order
to guarantee that � j,n is compactly supported onR2n+1

j (see Proposition 4).

4 Properties of the bivariate fundamental functions for local
interpolation

This section is devoted to prove the main properties of the fundamental functions� j,n

that are generated by the approach proposed in Sect. 3.

Proposition 4 Assume that, for all �, the blending functions ��,n are compactly sup-
ported onRn+1

� and the bivariate polynomials P�,n are constructed as in section 3.2.
Then, the function � j,n obtained from (3) is compactly supported on R2n+1

j .

Proof To prove that � j,n is equal to zero when evaluated at any x̄ ∈ � \ R2n+1
j , we

start recalling that the sum in (3) runs over all � such that x� ∈ � and x� is surrounded
by a sufficient number of connected faces, i.e. rings, so as to allow the definition of the
polynomials and blending functions. Since for any � /∈ Ln

j , the polynomial P�,n has
been taken identically zero by construction, it turns out that, in (3), all the blending
functions nonvanishing at x̄ ∈ �\R2n+1

j are multiplied by zero polynomials and

� j,n(x̄) = 0. At any x̄ on the boundary ofR2n+1
j , the functions ��,n , � ∈ Ln

j , which
multiply nonzero polynomials, are zero in view of their compact support and hence
(3) is equal to zero too. Finally, at any parameter value x̄ in the interior of R2n+1

j , in
general, (3) will be nonzero since not all products P�,n(x̄) ��,n(x̄) will vanish. 	

Remark 1 Due to Proposition 4, equation (3) can be rewritten as

� j,n(x) =
∑

�∈Ln
j

P�,n(x) ��,n(x), n ∈ N. (6)

Proposition 5 � j,n is a fundamental function for local interpolation, i.e., � j,n(xi ) =
δi, j for all xi ∈ R2n+1

j .

Proof On account of the fact that P�,n(x j ) = 1 for each � ∈ Ln
j and of the partition of

unity property of the blending functions {��,n}, relation (6), evaluated in x j , yields

� j,n(x j ) =
∑

�∈Ln
j

��,n(x j ) = 1.
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According to Proposition 4, we know that � j,n(xi ) = 0 for each xi on the boundary
ofR2n+1

j . Moreover, � j,n(xi ) = 0 also for each xi �= x j in the interior ofR2n+1
j due

to the fact that P�,n(xi ) = 0 for all � ∈ Ln
j . 	


Proposition 6 For all j and n, the fundamental function � j,n is globally C2(R2).

Proof We recall from section 3.1 that the blending functions {��,n} are C2n(R2)

everywhere, except at the parameter value xk that is an extraordinary vertex of �,
where they are C1 only. There follows that � j,n is C2n everywhere by construction,
except at the extraordinary vertex, if such a vertex is contained in its support.

Suppose hence that the extraordinary vertex, which we denote by xk (to stress that
it is not necessarily the vertex where � j,n is centered), is contained in the support of
� j,n . In this case, we will prove that � j,n is C2 at xk . To this end, we first observe
that, by construction, � j,n is C1 at xk since all blending functions are globally C1.
To show that � j,n is even C2 at xk , we recall that � j,n is C2n (and thus at least
C2) everywhere else. Hence it suffices to show the continuity of the second partial
derivatives of � j,n(x) at xk with respect to two independent domain directions which
we denote by x1 and x2.

Indeed, using the partition of unity property of the blending functions, we can write
that, in any arbitrary patch around the extraordinary vertex, � j,n(x) has the following
expression:

� j,n(x) = Ph,n(x) �h,n(x) +
∑

�∈Ln
j ,� �=h

P�,n(x) ��,n(x)

= Ph,n(x)

⎛

⎜⎝1 −
∑

�∈Ln
j ,� �=h

��,n(x)

⎞

⎟⎠ +
∑

�∈Ln
j ,� �=h

P�,n(x) ��,n(x)

= Ph,n(x) +
∑

�∈Ln
j ,� �=h

(P�,n(x) − Ph,n(x)
)

��,n(x).

Hence, in any arbitrary patch around the extraordinary vertex, we can write

∂2

∂x21
� j,n(x) = ∂2

∂x21
Ph,n(x)

+
∑

�∈Ln
j ,� �=h

∂2

∂x21

(P�,n(x) − Ph,n(x)
)

��,n(x)

+ 2
∑

�∈Ln
j ,� �=h

∂

∂x1

(P�,n(x) − Ph,n(x)
) ∂

∂x1
��,n(x)

+
∑

�∈Ln
j ,� �=h

(P�,n(x) − Ph,n(x)
) ∂2

∂x21
��,n(x). (7)
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The first three addends in the right-hand side of (7) are products of continuous
functions. Due to the fact that

(P�,n(x) − Ph,n(x)
) → 0 when x tends to xk , we

can conclude that ∂2/∂x21 � j,n(x) is a continuous function at xk . The continuity of
∂2/∂x22 � j,n(x) and ∂2/∂x1∂x2 � j,n(x) at xk can be proven in a similar way, so
concluding the proof.

We additionally observe that the equality in (7) also shows that, in general,� j,n(x)

cannot be smoother than C2 at xk , due to the fact that the blending functions {��,n}
are C1 only at the extraordinary vertex xk . 	

Remark 2 As stated in Proposition 6 the fundamental function � j,n is globally C2.
This is due to the fact it is C2n+1 everywhere except at the extraordinary vertex where
it is only C2. Thus, the smoothness of the fundamental function is indeed of one order
higher than that of the blending functions everywhere.

5 An illustrative example and the solution to a long-standing
problem

In this section we illustrate the bivariate fundamental functions for local interpolation
that are obtained by our general strategy when selecting as blending functions the
basic limit functions of the Catmull–Clark subdivision scheme (namely those of the
case n = 1) and as bivariate polynomial interpolants the ones constructed as described
below. Due to space limitations, our in-depth analysis and experimentation will focus
on valences 3, 5, 6 only.

As to the polynomial interpolants, since when n = 1 condition (5) must hold for
#L1

� = 2N� + 1 with N� ∈ {3, 4, 5, 6} denoting the valence of x�, we should require
that dim(�d) ≥ max{2N�}+1. In our experiments we have worked with polynomials
P�,1 of total degree d = 4, as it is a reasonably low degree that allows us to satisfy the
condition (5) for all valences up to 6. Hence, for a vertex x� of valence N� ≤ 6, we have
computed the 15 coefficients of the degree-4 polynomial P�,1 by solving a weighted
least-squares fitting problem with big weights assigned to the 2N� + 1 interpolation
points with parameter values inR1

� . Examples of degree-4 bivariate polynomials that
interpolate the 2N�+1 points (xk, δk,�), xk ∈ R1

� and approximate in the least-squares
sense the 4N� points (xk, 0), xk ∈ R2

�\R1
� when the valence of x� is N� ∈ {3, 5, 6},

are shown in Fig. 3. In order to handle higher valences one could work in an analogous
way, but with polynomials of suitably high degree.

In light of the fact that, in our construction, the bivariate polynomial interpolants
are blended by the basic limit functions of the Catmull–Clark subdivision scheme, and
the latter ones are C2 everywhere when defined on regular regions, we can guarantee
that the fundamental function that is centered at a valence-4 vertex and contains in its
support only valence-4 vertices (see Fig. 4 left) is C3 everywhere. Differently, when
the fundamental function is centered at a valence-4 vertex but the vertices of its 2-ring
neighbourhood are not all valence-4 vertices (see, e.g., Fig. 4 right), it is no longer C3

everywhere, but only globally C2, since the linear combination in (3) involves also
blending functions (like the ones in the second and third column of Figure 5) that
instead of being C2 everywhere are only globally C1.
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Fig. 3 Degree-4 bivariate polynomials that interpolate the 2N� +1 points (xk , δk,�), xk ∈ R1
�
and approxi-

mate in the least-squares sense the 4N� points (xk , 0), xk ∈ R2
�
\R1

�
when the valence of x� is N� ∈ {3, 5, 6}

Fig. 4 Left: fundamental function for local interpolation that is defined on a regular subregion of � and is
C3 everywhere. Right: globallyC2 fundamental function that is centered at a valence-4 vertex and contains
a valence-5 vertex in its support

Analogously to Fig. 4 right, in Fig. 5 (first column) we display other globally C2

fundamental functions, namely the ones centered at extraordinary vertices of valence
3, 5, 6. Next to each fundamental function we also show some of the globally C1

blending functions that contribute to their construction through formula (3).

Remark 3 It is important to emphasize that the globally C2 fundamental functions
here presented offer a solution to a long-standing problem, faced unsuccessfully by
numerous researchers in the last decades. For example, the fundamental functions we
have constructed compare favourably with the globally C1 basic limit functions of the
interpolatory subdivision scheme proposed in [15] as well as in all references therein.
Moreover, they also compare favourably with the globally C1 basis functions for
interpolation recently introduced in [14] for polygonal domains of arbitrary topology.

Remark 4 If one would like to use smoother blending functions with the same sup-
port, one option could be to replace the basic limit functions of the Catmull–Clark
subdivision scheme with those proposed in [13]. There, thanks to the introduction of
a multisided patch covering the extraordinary region, G2 smoothness with adjacent
patches and C2 smoothness within the patches is guaranteed.

The concluding examples in Fig. 6 show in the first column a globally C2 paramet-
ric surface passing through all the vertices {p j ∈ R

3, j ∈ J } of a quadrilateral mesh
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Fig. 5 First column: globally C2 fundamental functions for local interpolation centered at an extraordinary
vertex of valence 3, 5, 6. Second column: globallyC1 basic limit functions of theCatmull–Clark subdivision
scheme centered at an extraordinary vertex of valence 3, 5, 6. Third column: examples of globally C1 basic
limit functions of the Catmull–Clark subdivision scheme that are centered at a valence-4 vertex but contain
a valence 3, 5, 6 vertex in their support

(second column) with a valence 3 (first row) and valence 6 (second row) extraordinary
vertex. The parametric interpolants have been obtained by applying component-wise
the explicit representation in (1) where the fundamental functions � j,1 to be used as
building blocks, are globally C2 functions defined on the corresponding quadrangu-
lation � in the third column.

6 Future work

As a continuation of this work we want to extend the construction of the globally C2

fundamental functions (defined on arbitrary quadrangulations of a planar domain) so
that a globallyC2 parametric surface passing through all the vertices of a given quadri-
lateral mesh of arbitrary topology (with no restriction on the number of extraordinary
vertices) is obtained.
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Fig. 6 Globally C2 interpolants (first column) passing through all the vertices {p j ∈ R
3, j ∈ J } (black

dots) of the quadrilateral mesh (second column) with a valence 3 (first row) and a valence 6 (second row)
extraordinary vertex. Third column: corresponding quadrangulations � containing a sufficient number of
rings to completely define the parametric interpolants
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