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The Boussinesq approximation for buoyant flows
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Abstract

The aim of this paper is to present a simplified, yet rigorous, deduction of the Boussinesq approximated
governing equations for buoyant flows. In order to carry out the core deduction procedure, a simplified
version of the manifold asymptotic analyses available in the literature is discussed. The method adopted
in this study is focussed on the local balance equations valid for a general, not necessarily Newtonian,
fluid. The analysis is carried out by demonstrating the leading order terms in the governing equations
for the asymptotic limit which characterises the approximation. The role played by the effect of viscous
dissipation is also taken into account.

Keywords — Fluid flow; Convection; Buoyancy force; Boussinesq approximation; Pressure; Viscous dissipation.

1 Introduction

There are several instances in fluid dynamics
where an asymptotic analysis of the governing
equations may lead to a simplified framework
which offers an easier scheme for analytical or
numerical solutions. Generally speaking, such
asymptotic analyses lead to an approximation
of the governing equations for the fluid flow.
One of the most well-known asymptotic analy-
ses is that leading to the boundary layer approx-
imation widely employed for the study of ex-
ternal fluid flows and for the evaluation of the
fluid-solid viscous interaction at the interface [1].
Another example is the Boussinesq approxima-
tion for buoyancy-induced flows [2–7].

The Boussinesq approximation is the basis for
the largest part of theoretical works on thermal
convection published so far. The reliability of this
approximation is mainly due to the extremely
good agreement with experimental data. On the
other hand, its foundation as an asymptotic the-
ory has been laid out by several authors in quite
complicated ways where the Boussinesq approx-
imation turns out to be the result of a limit with
multiple parameters tending to zero.

This paper has not the aim of providing a com-
prehensive review of the really huge literature
available on the topic. In fact, there are several ex-
cellent and comprehensive surveys in the litera-
ture [8–17]. The objective to be pursued in this pa-
per is sketching a simplified, but rigorous, logical

path that leads one from the general form of the
local mass, momentum and energy balance equa-
tions to their approximate form. Strictly speak-
ing, this aim is not completely original. In fact,
the idea of the Boussinesq framework as the re-
sult of a limiting condition is already present
in the literature. An example is the paper by
Gray and Giorgini [10], where the limit is carried
out starting from a Newtonian fluid with den-
sity, specific heat, viscosity, coefficient of thermal
expansion and thermal conductivity dependent
both on the temperature and on the pressure. The
Boussinesq approximation is retrieved by defin-
ing eleven dimensionless ε-factors which are con-
sidered as small. The complication in this ap-
proach, common also to other studies published
before and after the paper by Gray and Giorgini
[10], is in the lack of a precise and explicit defini-
tion of the physical assumptions at the bulk of the
approximation scheme. Furthermore, the compli-
cated mathematical framework sometimes tends
to shade the physics underlying the analysis.

In this paper, the main purpose is capturing the
chain of evidence supporting the Boussinesq ap-
proximation, by keeping the mathematical proce-
dure as simple as possible and by declaring from
the beginning the physical assumptions strictly
needed to achieve the approximate governing
equations. Despite the relatively simple struc-
ture of the presentation, no specific hypothesis is
made for the Newtonian or non-Newtonian rhe-
ology of the fluid, or regarding the variability of
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fluid properties such as the viscosity or the ther-
mal conductivity wherever not necessary. The
density, as well as the pressure, the velocity and
the temperature, is treated as a dynamic variable
subject to specific assumptions. A brief discus-
sion about the possible role of the viscous dis-
sipation term in the local energy balance is also
provided.

An important point to be emphasised is that
the limiting procedure leading to the Boussinesq
approximation of the local balance equations for
the fluid flow is an ad-hoc procedure. More pre-
cisely, the limit is taken in a specific way that
leads exactly to those terms recognised a-priori
as qualifying the approximation. This is neither
questionable nor unexpected as every approxi-
mation is focussed on showing up that some spe-
cific terms in the balance equations turn out to be
dominant over other terms, while further terms
share the same order of magnitude. This is par-
ticularly evident if one thinks, for instance, to the
boundary layer approximation for external flows
[1] where the ad-hoc assumption of a scale for the
coordinate perpendicular to the bounding wall
much smaller than the scale of the coordinate par-
allel to the wall is the basis to lay out the approx-
imation.

2 Governing equations

Non-isothermal fluid flows are governed by the
local mass, momentum and energy balance equa-
tions. We limit our analysis to cases where the
buoyancy force typical of convection is due to the
temperature differences. Mass diffusion and con-
vection induced by the concentration differences
of a solute can be treated in a completely similar
manner and will not be considered here for the
sake of simplicity.

The governing equations of fluid flow can be
expressed as [5]

∂ρ

∂t
+∇ · (ρv) = 0,

ρ
Dv
Dt

= −∇P + ρg +∇ · τ ,

ρ
Du
Dt

= −∇ · q + D : τ − P ∇ · v, (1)

with the first Eq. (1) yielding the local mass bal-
ance, the second the momentum balance and the
third the energy balance.

Here, ρ is the density, v is the velocity, t is time,
P is the pressure, g is the constant gravitational
acceleration, τ is the viscous stress tensor, u is the
internal energy per unit mass, q is the heat flux

density and D is the strain tensor whose ij com-
ponent is given by

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (2)

with xi the ith Cartesian coordinate.
Furthermore, the substantial derivative, D/Dt,

and the double scalar product between tensors,
D : τ , are defined as

D
Dt

=
∂

∂t
+ v · ∇, D : τ = Dij τij , (3)

where repeated indices ij are implicitly summed
over. The term D : τ expresses the physical effect
of viscous dissipation.

As a consequence of the first Eq. (1), the third
Eq. (1) can be rewritten as

ρ

[
Du
Dt

+ P
D
Dt

(
1

ρ

)]
= −∇ · q + D : τ . (4)

By employing the thermodynamic equation for
stable equilibrium states,

du = T ds− P d

(
1

ρ

)
, (5)

where s is the entropy per unit mass and T is the
thermodynamic temperature, we can write

Du
Dt

= T
Ds
Dt
− P D

Dt

(
1

ρ

)
. (6)

Here, 1/ρ is the volume per unit mass. Thus,
Eq. (4) reads

ρ T
Ds
Dt

= −∇ · q + D : τ . (7)

3 The Boussinesq scheme

The Boussinesq approximation can be formu-
lated as an asymptotic theory based on five phys-
ical assumptions:

1. The fluid density depends only on the lo-
cal temperature or, equivalently, pressure
changes yield negligible density changes;

2. The local difference between the tempera-
ture, T , and its reference constant value, T0,
is very small;

3. The acceleration experienced by the fluid el-
ements in the flow domain is very small;

4. The viscous stress is very small;
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5. The local difference between the pressure
gradient and the hydrostatic pressure gradi-
ent is very small.

We will introduce and comment each of these as-
sumptions, step by step, pointing out their ef-
fects.

3.1 Small density variations

We assume that the temperature varies very
weakly both in time and in space. Hence, we can
write

T − T0 = ε T ′, (8)

where ε is a small, dimensionless and constant
perturbation parameter. Here and in the follow-
ing, the primed quantities are implicitly assumed
as beingO(1) when, eventually, the limit of a van-
ishing ε is taken.

The density changes are induced only by tem-
perature changes, while pressure variations yield
only negligible effects on the density. An al-
ternative way to formulate this assumption is:
“any convective velocity is much smaller than the
speed of sound in the fluid” [18]. Thus, we can
write

ρ = ρ0 (1− ε θ). (9)

In Eq. (9), ρ0 is a constant expressing the reference
fluid density and θ is a dimensionless function
of T ′ modelling the slight density changes in the
fluid. More precisely, ρ0 is the fluid density eval-
uated at the reference temperature T0. The sim-
plest and most common situation is when θ(T ′)
is given by a linear function,

θ(T ) = β T ′, (10)

where β is the thermal expansion coefficient.
When Eq. (10) is employed, ε has a direct phys-
ical meaning expressed as

ε = β∆Tr, (11)

where ∆Tr is a constant reference temperature
difference depending on the temperature bound-
ary conditions imposed for the flow. A nonlinear
expression of θ(T ′) may be needed to get a proper
model of a density maximum, as it happens for
water in a temperature range around 4 ◦C.

The role of ε is a qualifying point for the Boussi-
nesq approximation, which can be formulated as
an asymptotic regime achieved in the limit ε→ 0.

3.2 Local mass balance

We rewrite the first Eq. (1) by employing Eq. (9),

−ρ0 ε
∂θ

∂t
+ ρ0∇ · v − ρ0 ε∇ · (θ v) = 0. (12)

By letting ε→ 0, we obtain the usual condition of
a solenoidal velocity field, namely

∇ · v = 0. (13)

3.3 Small acceleration and viscosity

Another qualifying point of the Boussinesq ap-
proximation is the small acceleration undergone
in a buoyant flow, which means that the accelera-
tion field

a =
Dv
Dt

, (14)

can be scaled through the parameter ε. Therefore,
we can write

a = εa′. (15)

In fact, Normand et al. [18] explicitly state: “any
accelerations in the fluid are much less than g”,
where g is the modulus of g.

Due to the definition of substantial derivative,
Eq. (3), the assumption of small acceleration can
be mapped into one of large time and small ve-
locity, through the scaling

t = ε−1/2 t′, v = ε1/2 v′. (16)

By using Eq. (16), Eqs. (3), (14) and (15) in fact
yield

a′ =
∂v′

∂t′
+ (v′ · ∇)v′. (17)

On account of Eq. (16), Eq. (13) can be easily
rewritten in terms of v′,

∇ · v′ = 0. (18)

The hypothesis of small viscous stress can be for-
mulated as

τ = ε τ ′. (19)

The idea of small viscous stress as a characteristic
feature of buoyant flows has a direct foundation
in the argument usually set up to justify the onset
of convection cells in a fluid layer heated from be-
low [18]. In fact, the onset of convection emerges
as a phenomenon where the viscous stress com-
petes with the buoyancy force by damping out
the initiation of the flow. Steady convection cells
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may arise only when the buoyancy force turns
out to prevail over the viscous stress [18]. These
considerations are valid also in a mixed convec-
tion regime when an external forcing cooperates
with buoyancy in setting up the flow without
dominating the buoyancy contribution. Hence,
in mixed convection, the viscous stress is to be
considered as small as both the buoyancy and the
external forcing.

We have not specified whether the fluid is
Newtonian or not. Should the fluid be Newto-
nian, one can turn the hypothesis of a small vis-
cous stress into one of small viscosity coefficient.
Indeed, for a Newtonian fluid, we have

τij = 2µDij , (20)

where Eq. (13) has been used and µ is the dy-
namic viscosity. Then, Eqs. (2), (16) and (19) re-
quire that one must consistently assume

µ = ε1/2 µ′, (21)

so that one may write

τ ′ij = 2µ′D′ij , (22)

where D′ is the tensor whose ij component is
given by

D′ij =
1

2

(
∂v′i
∂xj

+
∂v′j
∂xi

)
. (23)

3.4 Hydrostatic pressure gradient

The local momentum balance equation expressed
by the second Eq. (1) contains the gravitational
body force ρg which, on account of Eq. (9), can
be written as

ρg = ρ0 g − ρ0 ε θ g. (24)

Hence, the difference between the pressure gra-
dient, ∇P , and the gravitational body force, ρg,
is given by

∇P − ρg = [∇P −∇(ρ0 g · x)]

+ρ0 ε θ g, (25)

where x = (x1, x2, x3) is the position vector. In
Eq. (25), the term ∇(ρ0 g · x) is the hydrostatic
pressure gradient.

The last hypothesis that defines the basis of
the Boussinesq asymptotic regime is relative to
the difference between the pressure gradient and
the hydrostatic pressure gradient. Such a differ-
ence is to be considered as extremely small every-
where. In mathematical terms, this hypothesis is

formulated as

∇P −∇(ρ0 g · x) =∇p,
∇p = ε∇p′. (26)

In Eq. (26), ∇p is nothing but a shorthand no-
tation for the difference between the pressure
gradient and the hydrostatic pressure gradient.
Equation (26) has very important physical con-
sequences, because the hydrostatic pressure gra-
dient is large or, at the very least, not negligible.
Then, also the pressure gradient,∇P , is a large or
non-negligible vector quantity. This means that
the pressure is markedly non-uniform in the ver-
tical direction, despite the negligibly small com-
pressibility effects on the density distribution.

3.5 Local momentum balance

We now employ the assumptions laid out in Sec-
tions 3.1, 3.3 and 3.4 to rewrite the second Eq. (1),

ρ0 ε

[
∂v′

∂t′
+ (v′ · ∇)v′

]
−ρ0 ε2θ

[
∂v′

∂t′
+ (v′ · ∇)v′

]
= −ε∇p′ − ρ0 ε θ g + ε∇ · τ ′. (27)

We divide Eq. (27) by ε, we simplify and then we
let ε→ 0. Thus, we obtain

ρ0

[
∂v′

∂t′
+ (v′ · ∇)v′

]
= −∇p′ − ρ0 θ g +∇ · τ ′. (28)

As pointed out in Section 3.1, in most buoyant
flows, Eq. (10) holds. Then, Eq. (28) can be rewrit-
ten as

ρ0

[
∂v′

∂t′
+ (v′ · ∇)v′

]
= −∇p′ − ρ0 β T ′ g +∇ · τ ′. (29)

The term −ρ0 β T ′ g is the buoyancy force.

3.6 Local energy balance

The local energy balance equation given by
Eq. (7) can be rewritten by employing the results
collected in Sections 3.1, 3.3 and 3.4. The first con-
sideration is relative to the term T Ds/Dt on the
left hand side of Eq. (7). By utilising the thermo-
dynamic definitions of specific heat at constant
volume and of specific heat at constant pressure,

cv = T

(
∂s

∂T

)
ρ

, cP = T

(
∂s

∂T

)
P

, (30)
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one can write

T ds = cv dT, (31)

for a constant density process. On the other hand,
one has

T ds = cP dT, (32)

for a constant pressure process. The question
whether the Boussinesq approximation is de-
scribed effectively by an isobaric process of the
elementary fluid element or by an isochoric pro-
cess can be easily responded by recognising that:

• The density changes are O(ε) as revealed by
Eq. (9);

• The pressure changes in the vertical direc-
tion are as large as the hydrostatic pressure
changes as revealed by Eq. (26).

Convection cells display a nonvanishing vertical
component of velocity which means a sensible
pressure variation in the process undergone by
the fluid element. Under these conditions, the use
of Eq. (31) is the most satisfactory basis for the
Boussinesq approximation, which becomes even
an exact statement in the case of perfect gases.
This can be easily reckoned by inspecting the
third Eq. (1) after the substitution of Eq. (13), and
by recalling that in the case of a perfect gas we
can write du = cv dT , whatever is the type of pro-
cess undergone by the fluid element. If Eq. (31)
looks like the most reliable basis for the Boussi-
nesq approximation, it cannot be retained as ex-
act in general. We will thus use the symbol c for
the specific heat to be employed in the Boussinesq
approximation having in mind that its value is to
be established experimentally, though it can be
well estimated by equating c with cv . Then, we
rewrite Eq. (7) as

ρ c
DT
Dt

= −∇ · q + D : τ . (33)

We now use Eqs. (8) and (16), together with
Eq. (19), to conclude that

ρ c
DT
Dt

= ε3/2 ρ0 c

(
∂T ′

∂t′
+ v′ · ∇T ′

)
−ε5/2 ρ0 c θ

(
∂T ′

∂t′
+ v′ · ∇T ′

)
,

D : τ = ε3/2 D′ : τ ′, (34)

The heat flux density is expressed through
Fourier’s law, so that

q = −κ∇T, (35)

where κ is the thermal conductivity of the fluid.

3.6.1 Non-negligible viscous dissipation

From Eq. (35), the diffusion term, −∇ · q, in
Eq. (33) is O

(
ε3/2

)
, as the other terms expressed

by Eq. (34), if

κ = ε1/2 κ′. (36)

Thus, we can write

−∇ · q = −ε3/2∇ · q′, (37)

where

q′ = −κ′∇T ′. (38)

By substituting Eqs. (34) and (37) into Eq. (33), we
obtain

ε3/2 ρ0 c

(
∂T ′

∂t′
+ v′ · ∇T ′

)
−ε5/2 ρ0 c θ

(
∂T ′

∂t′
+ v′ · ∇T ′

)
= −ε3/2∇ · q′ + ε3/2 D′ : τ ′. (39)

We divide Eq. (39) by ε3/2 and then we take the
limit ε → 0. The resulting local energy balance
equation is

ρ0 c

(
∂T ′

∂t′
+ v′ · ∇T ′

)
= −∇ · q′ + D′ : τ ′. (40)

Here, there is an implicit assumption that c is
O(1). This assumption, together with that ex-
pressed by Eq. (36), may have a possible alterna-
tive.

3.6.2 Negligible viscous dissipation

On account of Eq. (35), the diffusion term,−∇·q,
in Eq. (33) is O(ε) with

−∇ · q = −ε∇ · q′, (41)

if we introduce the alternative statement

q′ = −κ∇T ′, (42)

where κ is considered O(1). We assume

c = ε−1/2 c′, (43)

instead, which depicts a situation where the fluid
has a large specific heat. We now substitute
Eqs. (34), (41) and (43) into Eq. (33), so that we
obtain

ε ρ0 c
′
(
∂T ′

∂t′
+ v′ · ∇T ′

)
−ε2 ρ0 c′ θ

(
∂T ′

∂t′
+ v′ · ∇T ′

)
= −ε∇ · q′ + ε3/2 D′ : τ ′. (44)
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We divide Eq. (44) by ε and then we take the limit
ε → 0. The resulting local energy balance equa-
tion is

ρ0 c
′
(
∂T ′

∂t′
+ v′ · ∇T ′

)
= −∇ · q′. (45)

Unlike Eq. (40), Eq. (45) does not include any con-
tribution due to viscous dissipation.

4 Analysis of the approximation

In Sections 3.6.1 and 3.6.2, we have drawn two
different paths leading to the approximate local
energy balance expressed by either Eq. (40) or
Eq. (45). If viscous dissipation turns out to be
non-negligible in Eq. (40), this effect is neglected
in Eq. (45). The choice between the two alterna-
tives relies on the identification of the appropriate
scenario. We can devise a fluid with a very small
thermal conductivity where viscous dissipation
may be important and Eq. (40) is the appropri-
ate Boussinesq approximation of the energy bal-
ance. Alternatively, we can devise a fluid with
a very large specific heat where the effect of vis-
cous dissipation is negligibly small and Eq. (45) is
the appropriate energy balance. The physics be-
hind this mathematical result can be focussed on
by considering the Gebhart number, a nondimen-
sional parameter often employed for the analysis
of viscous dissipation in natural or mixed convec-
tion flows,

Ge =
g β L

c
, (46)

whereL is a typical length characterising the flow
domain. If we follow the path drawn in Sec-
tion 3.6.1, c is O(1) so that also Ge is O(1). If
we follow the path drawn in Section 3.6.2, c is
O
(
ε−1/2

)
so that also Ge is O

(
ε1/2

)
and, hence,

Ge� 1.
These findings are consistent with the usual

idea that viscous dissipation is negligible in a
buoyant flow when the Gebhart number is ex-
tremely small. An interesting aspect of the alter-
native views described in Sections 3.6.1 and 3.6.2
is that both views imply a thermal diffusivity of
the fluid,

α =
κ

ρ0 c
, (47)

which turns out to be O
(
ε1/2

)
,

α = ε1/2 α′. (48)

This is a very important point, as the thermal dif-
fusivity is involved in the definition of Prandtl

number,

Pr =
µ

ρ0 α
. (49)

Equations (21) and (48) allow one to write

Pr =
µ′

ρ0 α′
. (50)

Equation (50) means that a finite Prandtl number
corresponds to either choices proposed in Sec-
tions 3.6.1 and 3.6.2.

Another sensible dimensionless parameter for
convection is the Rayleigh number, which is de-
fined as

Ra =
ρ0 g β∆Tr L

3

µα
. (51)

By employing Eqs. (11), (21) and (48), Eq. (51) can
be rewritten as

Ra =
ρ0 g εL

3

ε µ′ α′
=
ρ0 g L

3

µ′ α′
, (52)

which means that the Rayleigh number isO(1). A
similar result is drawn for the Reynolds number,
which is an important parameter in a regime of
mixed convection. Its definition is

Re =
ρ0 Vr L

µ
, (53)

where Vr is a constant expressing the reference
velocity of the forced flow. Such a constant un-
dergoes the same behaviour of every local value
of velocity, expressed by Eq. (16), so that we have

Vr = ε1/2 V ′r . (54)

By using Eqs. (21) and (54), we can rewrite
Eq. (53) as

Re =
ρ0 ε

1/2 V ′r L

ε1/2 µ′
=
ρ0 V

′
r L

µ′
, (55)

meaning that the Reynolds number is O(1).
The approximate local balance equations (18),

(29) and (40), or alternatively (45), are expressed
through primed quantities, which means that
such equations are upscaled with the respect to
their natural units. Such a formulation has been
functional to achieving the limit ε → 0 by select-
ing the dominant terms in each balance equation.
Now, one can restore the natural scales of tem-
perature, velocity and pressure by multiplying
Eq. (18) by ε1/2, Eq. (29) by ε, Eq. (40) by ε3/2, or
Eq. (45) by ε. This operation allows one to retrieve
the usual physical scales for the fluid dynamics
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variables, so that the Boussinesq approximation
yields

∇ · v = 0,

ρ0

[
∂v

∂t
+ (v · ∇)v

]
= −∇p− ρ0 β (T − T0)g +∇ · τ ,

ρ0 c

(
∂T

∂t
+ v · ∇T

)
= −∇ · q + D : τ , if Ge ∼ O(1), (56)

or, as an alternative to the third Eq. (56),

ρ0 c

(
∂T

∂t
+ v · ∇T

)
= −∇ · q, if Ge� 1. (57)

The value of Ge depends on the fluid and on the
typical length scale, L, of the flow domain. Given
that g ≈ 9.807 m/s2, we may assume for liquids
β ≈ 10−3 K−1 or lower, while c ≈ 103 J/(kg K).
Thus, a typical estimate of Ge is

Ge ≈ 10−5 L. (58)

From Eq. (58), we may easily conclude that a
regime Ge ∼ O(1) can be approached only with
L equal to over 10 or even 100 kilometres. This
means that the Boussinesq approximation is un-
likely to display important effects of viscous dis-
sipation unless we are studying buoyant flows
for astrophysical, geophysical or oceanographic
applications. We mention that, for stars, the
value of g is usually much larger than the stan-
dard Earth gravitational acceleration. This argu-
ment does not change significantly if we consider
gases. In fact, for perfect gases, β is the inverse
thermodynamic temperature so that the estimate
β ≈ 10−3 K−1 is still reasonable, while the spe-
cific heat can be smaller than for liquids. An ex-
ample is c ≈ 102 J/(kg K) for some noble gases.
Then, the value of Ge/L can be 10−4 m−1 instead
of 10−5 m−1 as predicted by Eq. (58). More de-
tailed sample evaluations of Ge can be found, for
instance, in Table 1 of Barletta et al. [19].

The qualifying parametric condition for the
asymptotic regime described by the Boussinesq
approximation is ε� 1. By assuming ε expressed
through Eq. (11) and the values of β for both liq-
uids and gases mentioned above, of the order of
10−3 K−1, one may regard ∆Tr of the order of
10 K or smaller to be fairly compatible with the
approximation as it yields ε ≈ 10−2 at its largest.

5 Conclusions

The Boussinesq approximation, widely em-
ployed for the theoretical modelling of buoyant
flows either in natural convection or in mixed
convection has been discussed. The basic phys-
ical assumptions leading to this approximate
framework have been explicitly declared from
the beginning and the limiting procedure has
been described step-by-step in a simplified form
compared to the previous papers. Unlike in other
theoretical studies on the topic, no explicit as-
sumption is made about the fluid rheology or the
variability of fluid properties such as the specific
heat, the coefficient of thermal expansion or the
thermal conductivity. The effect of viscous dissi-
pation can be considered as important when the
fluid thermal conductivity is a small parameter.
This feature, within the Boussinesq approxima-
tion, captures the physics of the viscous dissipa-
tion effect in the description of buoyant flows.
When the fluid is a poor heat conductor, the in-
ternal frictional heating has a chance to influence
the temperature distribution in a significant man-
ner. On the other hand, this is an unlikely case if
the fluid has a large specific heat.
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