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What’s the Matter with the Deductive Nomological Model?

Daniele Molinini

Abstract. The philosophical discussion about mathematical explanation has
inherited the very same sense of dissatisfaction that philosophers of science ex-
pressed, in the context of scientific explanation, towards the famous deductive-
nomological model. This model is regarded as unable to cover cases of mathe-
matical explanations and, furthermore, it is largely ignored in the relevant lit-
erature. Surprisingly enough, the reasons for this ostracism are not su�ciently
manifest among philosophers of mathematics. In this paper, I consider a possi-
ble extension of the deductive nomological model to the case of mathematical
explanations in science and I claim that there are at least two good reasons to
judge the deductive-nomological picture of explanation as inadequate in that
context: it cannot deal with mathematical operations or procedures which
play a key role in explanatory practices but which do not come under the form
of statements; it is not a su�ciently good indicator of the intuitions coming
from the scientific practice, thus imposing a picture of explanation which is
not authentic.

1. Introduction

The expression ‘mathematical explanation’ is generally used to indicate two
distinct classes, or senses, of explanation: mathematical explanations in empirical
sciences (MES) and mathematical explanations in mathematics (MEM). In both
these explanations mathematics is regarded as playing an essential role in the ex-
planation provided, i.e. mathematics unveils the reason why a particular state of
a↵airs is true, althought MES and MEM denote di↵erent things: the former are ex-
planations in empirical sciences that make use of mathematics, whereas MEM refer
to explanatory practices that take place within the realm of mathematics itself.

The existence of mathematical explanations, both in the sense of MES and of
MEM, is now largely recognized in the literature [17]. There is no consensus, how-
ever, on how they work and whether they can be captured through a model. A pos-
sible strategy in the investigation of these explanations has been to assess a model
of scientific explanation, such as Kitcher’s unification model or Van Fraassen’s prag-
matic account, on a case of mathematical explanation (MES or MEM) which has
been recognized as genuinely explanatory by the scientists in their practice [10, 21].
It is therefore natural to ask what is the result of such an assessment in the case
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2 DANIELE MOLININI

of the well-known deductive-nomological (D-N) model of scientific explanation ad-
vanced by Carl Hempel and Paul Oppenheim in their famous essay “Studies in the
Logic of Explanation” [12].

An examination of the contemporary studies on explanation shows that the
philosophical discussion about mathematical explanation has inherited the sense
of dissatisfaction that philosophers of science expressed, in the context of scientific
explanation, towards the D-N model. With the only exception of a few papers, in
fact, the –exponentially growing up– literature on mathematical explanation either
rules out the possibility to use such a model for cases of MES and MEM, or sim-
ply ignores it, thus contributing to sanction its ine�cacy (Cf. [1] and [7]). The
consequence of this attitude is that any potential amendment to the model is cast
aside from the beginning. Nevertheless, the reasons for this profound skepticism
are not clear enough and they remains rather unexplored. As it was said above,
other models of scientific explanation have been thought to extend to mathematical
explanation and they have been subjected to an accurate analysis. These assess-
ments have pointed to some problems of the models and therefore they disclosed
the reasons why these models (or their extensions) are not good candidate to cover
mathematical explanation in the classes MES and MEM. More importantly, they
have permitted to progress in the philosophical analysis of scientific and mathemat-
ical explanation. On the other hand, there is no trace of such an evaluation for the
case of the D-N model in the context of mathematical explanation. Why is such a
a classical theory of explanation in trouble when faced with a case of mathemati-
cal explanation? Surprisingly, although philosophers manifest a negative attitude
towards the use of the model in the context of mathematical explanation, the lit-
erature has remained rather silent in this regard.

One reason for this philosophical peacefulness may be that there is an extraor-
dinarily obvious reason for it. But what exactly is such an obvious reason? The D-N
model was introduced as model of scientific explanation by Carl Hempel and Paul
Oppenheim in 1948. These authors conceived explanation as a mere logical deduc-
tion (the explanandum is deduced from laws of nature and initial conditions) whose
constituents have to satisfy certain logical and empirical conditions of adequacy:

• Logical conditions of adequacy:

R1 The explanandum must be a logical consequence of the explanans.

R2 The explanans must contain general laws, and these must actually be
required for the derivation of the explanandum and use no accidental
generalizations.

R3 The explanans must have empirical content: that is, it must capable,
at least in principle, of test by experiment and observation.

• Empirical condition of adequacy:

R4 The sentences constituting the explanans must be true.

On this account, it seems therefore meaningless to speak of ‘mathematical ex-
planation’. And this simply because according to this picture of explanation what
is primary to explanation are laws of nature and initial (empirical) conditions,
whereas mathematics has no explanatory import. Of course, this does not mean
that Hempel and Oppenheim denied that mathematics contributes to explanation.
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Mathematics helps in formulating laws of nature, which are the central ingredient
of the D-N model, and therefore it has an essential role in explanation. However,
the D-N model mirrors the idea that the explanatory power is not conveyed by the
mathematics involved, thus ruling out the possibility of any genuine mathematical
explanation. This would be the obvious reason why the D-N model is banned from
the debate on mathematical explanation (Cf. [7, p. 172]).

Although this ‘obvious reason’ is perfectly reasonable (and, I think, unques-
tionable), this point remains implicit in much of the debate on mathematical ex-
planation. Besides, it does not exclude that the D-N model may be modified and
improved in order to capture genuine cases of MES or MEM. Whether a model of
scientific explanation is dismissed as good candidate in the case of mathematical
explanation, the reason for this choice should be made clear in all its aspects. This
was the case for Kitcher’s unification model or Van Fraassen’s pragmatic approach
evaluated in the context of mathematical explanation, however this is not what
happens for the D-N model. Nevertheless, the dissatisfaction with respect to this
model, or better towards such a picture of explanation, remains.

The main purpose of this paper is to make this dissatisfaction more explicit
and, consequently, more satisfactory. I will suggest that the D-N model cannot be
extended, at least if we retain the original conception of explanation put forward by
Hempel and Oppenheim, to cover cases of mathematical explanation. And this for
two (related) di�culties that the D-N picture of explanation faces in the context
of mathematical explanations in science and in mathematics: (a) it cannot deal
with mathematical operations or procedures which do not come under the form of
statements; (b) it is not a su�ciently good indicator of the intuitions coming from
the scientific practice, thus imposing a picture of explanation which is not authentic
(at least if we have faith in the intuitions of our scientists and mathematicians).
In the following section I will consider a possible extension of the D-N account for
mathematical explanations. My discussion will be based on a paper by Alan Baker,
in which such an idea is sketched (i.e. the idea that the D-N model can extend
to mathematical explanations if properly modified). In section 3 I will point to
the limitations that the extended version of the D-N model has in the context of
mathematical explanation. The last section of the paper contains my conclusions.

2. Extending the D-N model to Mathematical Explanations

A number of classical counterexamples undermine the claim that the D-N model
provides su�cient conditions for successful scientific explanation1. These counterex-
amples are implicitly based on the following intuition: what is taken to be genuinely
explanatory is what is taken to be explanatory in science, and more precisely what
is taken to be a bona fide explanation by the working scientists. Roughly, the
authority in declaring something an explanation is the authority of practicing sci-
entists. For instance, one deduction in the famous asymmetry problem is regarded
as explanatory in science and within a scientific context, whereas the other is not2.
This provides the philosopher of science with some evidence that he is confronted
with a genuine explanation. A model of explanation must, whether correct, reflect
this intuition. In fact, this is why such counterexamples constitute a real problem

1The loci classici for these counterexamples are [23], [6] [19].
2Here I assume the reader is familiar with the classical problem of asymmetry, first put

forward by Sylvain Bromberger [6].
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for the D-N model.
Whether we come to mathematical explanation, and we examine how the the

D-N model is discussed in that context, we find the same sense of dissatisfaction
that philosophers feel towards the model in the case of scientific explanation. When
an empirical phenomenon or a mathematical fact is accounted for through math-
ematics, and the mathematical machinery is recognized by scientists as yielding
explanatory power, philosophers of science want their model of explanation to rec-
ognize this case as a bona fide explanation3. This would permit them to mirror
the intuitions of scientists and account for the evidence. However, it is simple to
see why the D-N model fails to detect as explanatory such cases of mathematical
explanation, thus betraying their expectations. According to condition R3, the
explanans must have empirical content. Thus mathematical explanans are auto-
matically ruled out as genuine explanations by the D-N model. But, once again, to
accept this conclusion would be quite unfavorable from a philosophical standpoint.
Indeed, it would force us to deny that we are confronted with a genuine explanation
and that mathematics plays any explanatory role – regardless whether the case is
taken to be a genuine explanation by working scientists and mathematics is con-
sidered to play an explanatory role.

In short, to accept the D-N model in its original form simply means to deny
that mathematical explanations (MES and MEM) exist. Nevertheless, the intu-
itions from the scientific practice seem to suggest that this is not true. And, after
all, accounting for these intuitions through some conceptual framework is what phi-
losophy of science is supposed to do, or at least one of its main tasks. There is,
however, one question that we still want answered and that has not been addressed
yet, namely: What about a possible implementation of the D-N model in the con-
text of mathematical explanation? In the following paragraphs of this section I am
going to consider this question.

In his paper “Are there genuine mathematical explanations of physical phe-
nomena?” [1], Alan Baker presents a case of MES from evolutionary biology. The
specific biological phenomenon concerns the life-cycle of an insect called periodical

cicada. Baker observes how biologists o↵er an explanation of the prime-numbered-
year cicada life-cycle in terms of specific ecological facts, general biological laws and
a number theoretic result: “prime periods minimize intersections compared to non-
prime periods”4. The explanations given by the practice biologists use this mathe-
matical result as an essential element in giving their explanation and mathematics
results therefore essential to the structure of the general explanation. According to
Baker, the cicada case represents a genuine MES.

In the third part of his paper, Baker consider as possible candidates to cover
his example of MES three accounts of scientific explanation: the causal model,
the D-N model and Van Fraassen’s pragmatic model. The causal account is soon
rejected as a possible account for MES because of its incompatibility with any gen-
uine mathematical explanation. On the other hand, Baker claims that the D-N
account and the pragmatic account “both support the claim that the cicada case
study is an example of a genuinely explanatory application of mathematics to sci-
ence” [1, p. 235]. Although he does not further substantiate this claim, I take it as

3There are, of course, exceptions. For instance, Juha Saatsi denies that intuitions from the
practice of scientists provide such evidences [18, p. 153].

4The number theoretic result is actually a consequence of two lemmas. See [1, p. 232].
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starting point for a discussion of an extension of the D-N model to mathematical
explanations. In passing, let me observe that it seems quite surprising that here
Baker suggests to rehabilitate, for a case of mathematical explanation, a model of
scientific explanation which was addressed to explanations and predictions taking
the form of logical derivations from observational statements. However, our stupe-
faction does not exclude that such a move might reinforce previous criticisms, or
even have positive repercussions on the study of mathematical explanations.

In what sense is it possible for the D-N model to cover the cicada explanation?
Baker remarks that the explanation-schema employed by the biologists has a layout
similar to the inferential layout proposed by the D-N model. However, the premise
which contains the statement “prime periods minimize intersection” in the cicada’s
explanation scheme refers to a mathematical theorem, which does not have empir-
ical content and does not represent a law of nature, thus violating conditions R2

and R3. To circumvent this di�culty, he suggests that the D-N model would need
an extension based on the “broadening of the category of laws of nature to include
mathematical theorems and principles” [1, p. 235]. Although Baker does not push
further this idea, if we follow his suggestion condition R2 of the original D-N model
would assume the following form:

R2
⇤ The explanans must contain general laws, which include mathematical
theorems (i.e. analytic truths), and these must actually be required for
the derivation of the explanandum.

Furthermore, also the logical condition of adequacy R3 should be modified in
order for the model to admit mathematical explanations:

R3
⇤ The explanans must have empirical or mathematical content.

What about conditions R1 and R4? When we come to the empirical condition
of adequacy R4, it might be thought that this condition should be left out in the
case in which the explanans contain mathematical statements. However, observe
that it poses no problem once we adopt a view on truth-values of mathematical
statements that appeals to the standards of mathematics itself. If we adopt such a
point of view, known as mathematical naturalism [15], when we defend the truth of
a mathematical claim we do not need to appeal to standards outside of mathemat-
ics. Rather, we assume that mathematics provide their own sui generis standards
of justification, in the same way that physics does. On this account, the singular
sentence ‘Mt. Everest is snowcapped’ is as true as the mathematical statement
‘7 + 5 = 12’. Of course, to preserve R4 with the name of ‘empirical condition of
adequacy’ would be misleading in the context of our extension to mathematical ex-
planations. This is why I will refer to this condition simply as R4* (‘The explanans
must be true’). Finally, let’s leave R1 unchanged and, for convenience sake, name
it R1* (‘The explanandum must be a logical consequence of the explanans’).

Call D-N*, or D-N Extended, the resulting account of explanation, whose cri-
teria of explanation are fixed by conditions R1* ... R4*. On the D-N* account, a
phenomenon or a mathematical fact is said to be explained when it is possible to
deduce a statement (the explanandum E*) from some statements (the explanans)
according to the conditions of adequacy R1* ... R4*. Of course, with respect to
the D-N model, here the explanandum can be a statement describing an empirical
phenomenon or a mathematical statement such as, for instance, ‘ For every real
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x > 0 and every integer n > 0 there is one and only one positive real y such that
yn = x ’. The two situations correspond to a case of MES and MEM, respectively.

The important aspect of this extension is that, although some amendments
have been introduced to cover mathematical explanations, the original and fun-
damental intuition behind the D-N model has been preserved: to have a genuine
explanation is to have a sound deductive argument which makes use of at least one
lawful connection. As specified by R2*, the law-like generalizations considered here
include mathematical theorems.

3. What’s the Matter?

In the previous section I pursued further Alan Baker’s suggestion and I showed
how the D-N model could be modified to handle mathematical explanations inside
its structure. I called D-N* this extension, which has not been explored yet. To
extend the basic intuition of the deductive-nomological model has required some
changes to the criteria for sound explanation, however it has preserved the ba-
sic intuition of the original account proposed by Hempel and Oppenheim. In the
present section I shall o↵er two examples (of MES and MEM, respectively) that are
intended to show that (and why) the D-N* account lacks the resources to correctly
account for mathematical explanations within its deductive structure. The reason
for its failure will serve as a reinforcement of the dissatisfaction seen in the first
section.

It is now time to check the e↵ectiveness of the D-N* model on cases which
have been recognized as bona fide mathematical explanations. I will consider two
examples of mathematical explanation, one for MES and one for MEM in turn.
What I am going to show is that a quick assessment of the model on these exam-
ples highlights two (related) di�culties that the Hempelian picture of explanation
faces in the context of mathematical explanations in science and in mathematics:
(a) it cannot deal with mathematical operations or procedures which do not come
under the form of statements but which are regarded as playing an explanatory
role; (b) it is not a su�ciently good indicator of the intuitions coming from the
scientific practice, thus imposing a picture of explanation which is not authentic.
The two di�culties disclose two general problems: the D-N* model does not pro-
vide necessary conditions for mathematical explanation, i.e. there are cases which
are regarded as bona fide mathematical explanations but which do not qualify as
explanations according to the D-N* model; the D-N* model does not provide suf-
ficient conditions for mathematical explanation, i.e. there are sets of statements
that qualify as explanations according to the D-N model yet the scientists do not
normally think of them as explanatory.

First of all, what about Baker’s case of cicadas? Is the D-N* model able to
recognize this case as a bona fide mathematical explanation? In cases of MES
such as that of cicadas the explanandum, i.e. the sentence which describes the
phenomenon to be explained, is a logical consequence of the explanans (via a 5-
steps deductive argument analyzed by Baker). Thus criterion R1* is satisfied. In
addition, it is straightforward to see that R2*, R3* and R4* are fulfilled too, thus
making possible for the D-N* to consider the cicada example as a bona fide math-
ematical explanation. After all, we have built our extension of the original D-N
model upon Baker’s considerations concerning that particular case of MES. How-
ever, not all MES exhibit the structure of the cicada explanation. There are MES
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which are recognized as such in scientific practice and in which the mathemati-
cal component of the explanation does not come in the form of a theorem, i.e. a
mathematical statement (as required by R2*). For instance, in their paper “The
Explanatory Power of Phase Spaces” [14], Aidan Lyon and Mark Colyvan consider
such an example of MES. They take into account a particular physical systems
called ‘Hénon-Heiles system’. This systems is formed by a particle moving in the
bidimensional potential U(qx, qy) =

1
2 (q

2
x + q2y) + qxq2y � 1

2q
3
y. We want to explain

the behaviour (regular or not) of the system for di↵erent energies. Let’s therefore
take the sentence describing the (regular or chaotic) motion of the system as our
explanandum. Now, it turns out that there are two mathematical routes to study
the behaviour of the system. We can study the system through the Lagrangian
analysis, or we can adopt the Hamiltonian formulation which comes with a partic-
ular mathematical structure called ‘phase space’. The Lagrangian formulation is
obtained by introducing the Lagrangian function L = T �U , where T is the kinetic
energy of the system, and successively obtaining the equations of the motion from
the so called Lagrange’s equations. In this formulation, a system with n degrees
of freedom possesses n (second-order) di↵erential equations of motion, while the
state of the system is represented by a point in an n-dimensional configuration
space whose coordinates qi are called ‘generalized coordinates’. The Hamiltonian
formulation, on the other hand, is “based on a fundamentally di↵erent picture”
[9, p. 335] and permits to describe the motion in terms of first-order equations of
motion, known as Hamilton’s canonical equations of motion. These equations de-
scribe the behavior of the system point in a particular space, the phase space, which
has 2n-dimensions and whose coordinates are the 2n independent variables which
appear in the canonical equations of motion. In other words, in the Hamiltonian
formulation of mechanics the dynamics of our Hénon-Heiles system is defined by
the evolution of points (‘trajectories’) in the phase space5.

The fact that the Hénon-Heiles system exhibits regular or chaotic motion is
deduced visually from a representation in the phase space. By considering the total
energy of the system E constant, we lower the dimensionality of the phase space by
one. Next we take a 2-dimensional cross section of this hypersurface in the phase
space and we map the intersections of the trajectories with the plane by using a
function called Poincaré map. Finally, we look at the dots made by the solutions
(orbits of the system) on the Poincaré section and we can visually grasp qualitative
informations about the dynamics of the system at that particular energy. Thus the
phase space, with its mathematical apparatus, is regarded to have an explanatory
role:

The explanatory power is in the structure of the phase space and the
Poincaré map. So it seems that this is a case where using the phase
space is essential to our understanding and ability to explain certain
features of the world [14, p. 14]

Now, it is important to note again that the Hamiltonian procedure involving
phase space is not the only alternative for the study of the system. However,
to analyze the system via the Lagrangian route seems not to convey the sense
of explanatoriness that we obtain from the use of the phase space theory in the
Hamiltonian formalism:

5Of course, there are technicalities I am glossing over here for the purposes of exposition. See
[14] for the full treatment.
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[...] although there is a Lagrangian formulation of the theory in ques-
tion that does not employ phase spaces, the cost of adopting such an
approach is a loss of explanatory power [14, p. 2]

From Lyon and Colyvan’s example two important points emerge: first, even
though mathematics comes as an essential ingredient, it is not a particular theorem
(i.e. a mathematical law) which participates in the explanation; second, although
two mathematical procedures are acceptable as to study the physical phenomenon
(regular or chaotic motion of the particle moving in the potential), only one of them
carries explanatory power. Consequently, in the context of this example, the D-N*
is confronted with the following problem: the model cannot deal with mathematical
operations or procedures (such as the use of the Hamiltonian formalism including
phase space and Poincaré map) which do not come under the form of statements,
and therefore it does not recognize the explanation as genuine6. What is more,
even if we would have such mathematical procedures under the form of statements,
the D-N* model would lack in resources to discriminate between the explanatory
mathematical procedure and the non-explanatory one. In fact, these procedures
(the Lagrangian and the Hamiltonian) are both formally correct from a mathemat-
ical point of view, and therefore the D-N* would consider both equally explanatory
on the basis of criterion R1* (both are good ingredients of the logical deduction).
But, again, note that scientists consider as bona fide mathematical explanation
only one mathematical procedure, that which uses the Hamiltonian formalism. As
a consequence, to regard the Lagrangian treatment of the Hénon-Heiles system as
equally explanatory, as the D-N* model suggests, would go against the opinion of
scientists and would not do justice to their intuitions.

In the previous lines I showed that the D-N* model does not recognize as ex-
planatory the example of MES in question because of di�culty (a). Furthermore,
I claimed that even if the D-N* model would be capable of bypassing di�culty
(a), it would suggest a picture of explanation which does not fit with the intuitions
coming from the scientific practice. In other words, di�culty (b) remains. The
second example I want to consider is a case of mathematical explanation, and in
particular a case of MEM, where the di�culty (b) is even more pronounced. To
anticipate the point, the D-N* model identifies every formal proof in mathematics
as a genuine explanation. Every formal proof, in fact, inevitably follows a logical
deductive schema in which the basic concept is that of a statement being a logical
consequence of some other statements. Moreover, when we consider such a proof
conditions R2*, R3* and R4* are fulfilled as well. But, once again, does the D-N*
model accurately mirror the intuitions coming from the practicing mathematicians?
It seems that this is not the case, and this exactly because mathematicians do not
consider every correct formal proof as an explanation of a mathematical result.
There are several examples of MEM which have been discussed in the literature
and which might be used here to illustrate this point ([17] provides a survey of
various cases). Nevertheless, for the purposes of this paper it will be su�cient to
consider just one case.

In his paper “Explanatory Unification and the Causal Structure of the World”,
Philip Kitcher points out that explanatory asymmetries arise also in the domain
of mathematics and are not a privilege of the causal debate on explanation [13, p.

6Note the di↵erence between Lyon and Colyvan’s example and the example chosen by Baker,
where the mathematics involved was expressed by a single theorem.
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425]7. To illustrate his point he considers the proof of a property of finite groups by
means of one specific axiomatization of the theory of finite groups. In that case, one
particular axiomatization containing the existence of the inverse and idempotent
elements is preferred by the mathematicians in order to ‘explain’ why finite groups
satisfy the division property. On the other hand, the reverse derivation, i.e. the
derivation of the existence of an idempotent element and of inverses from the divi-
sion property, is regarded as a less natural and non-explanatory derivation (though
formally valid). The former derivation is regarded by the mathematicians as ex-
planatory on the basis of its capacity of providing more general results, whereas
the other derivation does not provide such possibility:

It is not hard to see a reason for the distinguishing of the derivations:
the preferred derivation can be generalized to achieve more wide-ranging
results [...] the explanatory derivation is similar to derivations we could
provide for a more general result; the nonexplanatory derivation cannot
be generalized, it applies only to the local case [13, p. 425]

We want to analyse now the situation through the lenses of the D-N* model.
What we discover pretty soon is that, analogously to what happens when the D-N
is confronted with cases of explanatory asymmetries in the empirical sciences, such
as in the classical asymmetry example of the flagpole and the shadow put forward
by Bromberger [6], the D-N* model lacks resources to discriminate between the
two (formally valid) proofs and pick out the bona-fide mathematical explanation.
Indeed, according to the D-N* model, both the mathematical deductions meet
criteria R1* ... R4*, and are therefore recognized as genuine mathematical expla-
nations. Certainly proving theorems is the canonical means of obtaining knowledge
of mathematical facts. However, it seems that if we limit our picture of the cog-
nitive activity informing mathematical reasoning to include just deductively valid
arguments from indubitable premises, then we will not have any access to the sorts
of reasons that we are interested in here. This is why the D-N* model, which is
based on such a picture, does not discriminated between the explanatory derivation
and the non-explanatory one in the example put forward by Kitcher.

The general moral of the previous lines is that the D-N* model does not ac-
curately mirror important aspects of scientific practice and, furthermore, it does
impose a picture of explanation which is not authentic. By adopting the D-N*
we are left with a schema which is nothing more than a purely logical deduc-
tion. Consequently, explaining an outcome E (a statement describing an empirical
phenomenon or a mathematical statement) is just a matter of showing that it is
expectable on the basis of lawful connections (where laws also include mathemati-
cal theorems). Although this would be at odds with the evidence coming from the
scientific practice, as the two previous examples show, it might be thought that
this observation cannot be used to criticize the D-N*. In fact, once we adopt the
Hempelian perspective that explanation is logical deduction, we do not need to
resort to such ‘evidences’ from scientific practice. It should be noted, however, that
the import of such evidences is considered by many philosophers as of primary im-
portance for the philosophical analysis of the notion of explanation in science and

7In passing, let me note that this is the first time, at least to my knowledge, that such an
analogy, i.e. the analogy between explanatory asymmetries in empirical science and explanatory
asymmetries in mathematics, is brought to light.
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mathematics [16]. And, once again, it seems very natural to think that accounting
for such evidences is one of the main task of philosophy of science.

4. Conclusions

Despite the great interest in the linkage between scientific explanation and
mathematical explanation, an extensive discussion of models of scientific explana-
tion in the context of mathematical explanation has not been o↵ered and work is
just beginning. In this paper I showed how the D-N model of scientific explana-
tion can be thought to extend to mathematical explanation when the conditions
of adequacy on which it depends are properly modified. My analysis was intended
to clarify the reasons why the picture of explanation which comes with the D-N
model is insu�cient to cover mathematical explanations. In fact, these reasons are
not explicitly stated in the literature on explanation, although it is often assumed
that the D-N model cannot cover mathematical explanations.

It was not my intention here to discuss every possible way to extend the D-N
model to mathematical explanation. I have picked out only one possible exten-
sion, which I named D-N*. By pointing to di�culties (a) and (b), I showed how
the D-N* su↵ers problems of necessity and su�ciency: there exist mathematical
explanations that don’t fit the model but are regarded as bona-fide explanations
by the scientists; there are mathematical explanations that fit the model but that
are not considered as genuine explanations in the scientific practice. Moreover, I
put forward a diagnosis of such di�culties. The failure of the D-N* model, as in
the case of the original model, has do to with the inability of logic alone to mirror
particular non-logical features of the case studies which carry explanatory import.
In the two examples considered in the previous section these non-logical features
are the capacity mathematics has of making possible to infer visually some infor-
mation on a diagram and its capacity of providing more general results. Making
logical deduction the hallmark of explanation preserves the basic intuition of the
D-N model but amounts to the imposition of a defining characteristic feature on
what ought to be counted as ‘mathematical explanation’. The resulting picture
of explanation is incomplete and not satisfactory. And my general feeling is that
every e↵ort to extend the D-N model picture of explanation to MES and MEM
would face impediments similar to those highlighted here and would therefore be
unsuccessful.

Of course, my dissatisfaction with the D-N and the D-N*, or better with the
specific picture of explanation which stands behind these models, is based on the
following assumption: the intuitions coming from the scientific practice, although
not providing normative and rigid standards of explanation, supply philosophers
with some guidelines in the study of explanation. And these intuitions should be
mirrored by our philosophical accounts of explanation. Nevertheless, this is some-
thing which I regard as natural (and widely accepted) not only in the context of
explanation, but more generally in the context of philosophy of science. I would
be happy about the following situation: the D-N* model, or any other account of
explanation, identifies a mathematical explanation as genuine and that particular
explanation is recognized as a bona fide explanation in the scientific practice as well.
This situation would be, I think, an indicator of the fruitfulness of the philosophical
investigation which lies behind that account of explanation. On the other hand, I
regard neither reasonable nor philosophically fructuous that a philosophical model
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of explanation does impose on the scientists a normative criterion of explanation
that the scientists would not accept.

As a whole, my results confirm the dissatisfaction which philosophers of science
feel towards the use of the D-N model in the context of mathematical explanation.
Furthermore, they highlight the reasons why the picture of explanation which stands
behind that account is problematic, thus making our sense of dissatisfaction more
satisfactory.
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