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1 Introduction

In the standard model (SM), the electroweak symmetry breaking is postulated via the
Brout-Englert-Higgs mechanism [1–6]. This mechanism predicts the existence of a scalar
particle, the Higgs boson (H). A particle compatible with this boson was discovered by the
ATLAS [7] and CMS [8, 9] Collaborations at the LHC using proton-proton (pp) collision
data collected in 2011 and 2012 at centre-of-mass energies of 7 and 8TeV, respectively.
Since 2012, the couplings of the Higgs boson to heavy quarks, leptons, and gauge bosons
have been measured, including the coupling to τ leptons [10–12], and the most recent
measurement of its mass value yields 125.38± 0.14GeV [13].

The SM H is even under charge-parity (CP) inversion. A sizeable deviation from a pure
CP-even interaction of the H with any of the SM particles would be a direct indication
of physics beyond the SM. Therefore, the CP structure of the couplings of the H is of
paramount interest. The CMS and ATLAS Collaborations have studied the couplings
of the H to vector gauge bosons, including tests of CP violation [14–27]. These studies
excluded pure pseudoscalar (CP-odd) interactions of the H with the W and Z bosons
(referred to collectively as V bosons).

There are strong theoretical motivations to search for CP-violating effects in couplings
of the H to fermions rather than V bosons. In couplings to V bosons, CP-odd contri-
butions enter via nonrenormalisable higher-order operators that are suppressed by powers
of 1/Λ2 [28–30], where Λ is the scale of the physics beyond the SM in an effective field
theory. Therefore, these are expected to only yield a small contribution to the coupling. A
renormalisable CP-violating Higgs-to-fermion coupling may occur at tree level. The τ lep-
ton and top quark Yukawa couplings, Hττ and Htt, respectively, are therefore the optimal
couplings for CP studies in pp collisions [31], and measurements of these two couplings are
complementary. Recently, both the CMS [32] and ATLAS [33] Collaborations presented
first measurements of the CP structure of the H coupling to top quarks. The CMS result
rejects the purely CP-odd hypothesis with a significance of 3.2 standard deviations, σ,
while the ATLAS analysis rejects it with a significance of 3.9σ. The CMS and ATLAS
Collaborations have also studied the CP-nature of the H interaction with gluons [21, 34]
which was found to be consistent with the SM expectation, albeit with limited sensitivity.
Such studies may also be interpreted in terms of the H coupling to top quarks, under the
assumption that the interaction is mediated predominantly via top quark loops.

The CP-properties of the H → ττ process is commonly described in terms of an ef-
fective mixing angle αHττ , which is virtually equal to 0◦ in the SM. The measurement of
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Mode e±νν µ
±νν h±ν h±π

0ν h±π
0
π

0ν h±h∓h±ν
Type τe τ

µ
τh τh τh τh

B(%) 17.8 17.4 11.5 25.9 9.5 9.8
Resonance — — — ρ(770) a1(1260) a1(1260)
Symbol e µ π ρ a1pr

1 a3pr
1

Table 1. Decay modes of τ leptons used in this analysis and their branching fractions B [38]. Where
appropriate, we indicate the known intermediate resonances. The last row gives the shorthand
notation for the decays used throughout this paper.

a nonzero αHττ would therefore directly contradict the SM predictions, and have implica-
tions for beyond the SM physics models, such as two-Higgs-doublet models [35], including
supersymmetry. For example, in the minimal supersymmetric model CP violation in the
Higgs-to-fermion couplings is expected to be small and therefore the measurement of a
sizeable mixing angle would disfavour such scenarios. In contrast, in the next-to-minimal
supersymmetric model, αHττ can be as large as 27◦ [36]. Feasibility studies have indicated
that the LHC experiments can measure αHττ to a precision of about 5–10◦ with 3 ab−1 of
data [29, 37].

In this paper we present the first measurement of the CP structure of the H coupling to
τ leptons. This analysis uses the pp data sets collected by the CMS detector at

√
s = 13TeV

in 2016, 2017, and 2018. These correspond to integrated luminosities of 35.9, 41.5, and
59.7 fb−1, respectively. This analysis targets the most sensitive τhτh, τ

µ
τh and τeτh decay

channels, where a τ lepton decaying to hadrons is denoted as τh, and a τ lepton decaying to
a muon or an electron as τ

µ
or τe (or collectively as τ`), respectively. The decays into light

leptons are accompanied by two neutrinos, while the hadronic modes involve one neutrino.
These particles are not directly detected but result in a transverse momentum imbalance
which can be used to partially constrain the ττ system. In total, this analysis covers about
70% of all possible τ lepton pair decay modes. Table 1 summarises the τ lepton decay
modes used in this analysis, their branching fractions, and the shorthand symbols that we
use to denote them in the rest of this paper. The charged hadrons are denoted by the
symbol h±, which consist mainly of charged pions but include a smaller contribution from
charged kaons. Throughout this paper we will assume that all h± are charged pions (π±)
since the CMS detector is not able to distinguish between different types of h±.

This paper is organised as follows. The parameterisation of the CP properties of the τ

Yukawa coupling is discussed in section 2. In section 3 the experimental setup is outlined,
and this is followed by a discussion of the data sets and simulated samples in section 4.
Subsequently, the event reconstruction is presented in section 5. Thereafter, in section 6
the CP-sensitive observables used to extract the results are outlined. In section 7 the
event selection is presented. The estimation of the backgrounds is discussed in section 8.
The techniques used to distinguish the signal from the background events are outlined
in section 9. In section 10 various distributions that are used to extract the results are
displayed and discussed. In section 11 the systematic uncertainties are presented. The
results are discussed in section 12, and a summary of the analysis is given in section 13.
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2 Parametrisation of the CP properties of the τ Yukawa coupling

We parameterise the Lagrangian for the τ Yukawa coupling in terms of the coupling strength
modifiers κτ and κ̃τ that parameterise the CP-even and CP-odd contributions, respec-
tively [31]:

LY = −
mτ

v
H(κτ ττ + κ̃τ τiγ5τ). (2.1)

In this equation, mτ is the mass of the τ lepton, τ denotes the Dirac spinor of τ lepton
fields, and the vacuum expectation value of the Higgs field, v, has a value of 246GeV.
The effective mixing angle αHττ for the Hττ coupling is defined in terms of the coupling
strengths as

tan(αHττ ) = κ̃τ
κτ
, (2.2)

while the fractional contribution of the CP-odd coupling fHττ

CP is obtained from the mixing
angle as fHττ

CP = sin2(αHττ ). A mixing angle of αHττ = 0 (90)◦ corresponds to a pure scalar
(pseudoscalar) coupling. For any other value of αHττ , the H has a mixed coupling with
CP-even and CP-odd components, with maximal mixing at a value of ±45◦.

The angle φCP denotes the angle between the τ lepton decay planes in the H rest frame.
An illustration of the decay planes in the single pion channel is depicted in figure 1. The
relation between αHττ and φCP may be inferred from the decay of a H via τ leptons to two
outgoing charged particles [39] as

dΓ
dφCP

(H → τ
+

τ
−) ∼ 1− b(E+)b(E−)π

2

16 cos(φCP − 2αHττ ). (2.3)

In this equation, the outgoing charged particles have an energy E± in their respective τ

rest frames. The functions b are spectral functions [40] that encapsulate the correlation
between the τ spin and the momentum of the outgoing charged particle. We note that the
spectral functions for the leptonic and various hadronic decays are different.

Figure 2 shows the normalised distribution of φCP at the generator level, calculated in
the rest frame of the H, for the scalar, pseudoscalar, and maximally mixed values of αHττ ,
as well as the φCP distribution from Drell-Yan processes. The simulated event samples
that are used to generate these distributions are discussed in section 4. These distributions
are for the scenario where both τ leptons decay to a charged pion and a neutrino.

There is a phase shift between different mixing scenarios such that the difference in
φCP equals two times the difference in αHττ , as given by eq. (2.3). It is important to note
that the distribution of φCP for the Drell-Yan background is constant; we will exploit this
symmetry to reduce statistical fluctuations in the background estimates, as explained in
section 9.

The observable φCP was originally introduced in the context of e+e− collisions [41, 42]
where the τ lepton momenta can be reconstructed and thus φCP can be calculated in the H
rest frame. In hadronic collisions the momenta of the neutrinos cannot be well constrained,
except for the configuration in which both τ leptons decay via the a3pr

1 mode to three
charged pions — where the momenta of the τ leptons can be further constrained from the

– 3 –



J
H
E
P
0
6
(
2
0
2
2
)
0
1
2

Figure 1. The decay planes of two τ leptons decaying to a single charged pion. The angle φCP is
the angle between the decay planes. The illustration is in the H rest frame.
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Figure 2. The normalised distribution of φCP between the τ lepton decay planes in the H rest
frame at the generator level, for both τ leptons decaying to a charged pion and a neutrino. The
distributions are for a decaying scalar (CP-even, solid red), pseudoscalar (CP-odd, dash blue), a
maximal mixing angle of 45◦ (CP-mix, dash-dot-dot green), and a Z vector boson (black dash-dot).
The transverse momentum of the visible τ decay products pτ

T was required to be larger than 33GeV
during the event generation.
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reconstruction of the τ lepton production and decay vertices. Therefore, the methods for
estimating φCP have been extended and optimised for hadronic collisions [37], as discussed
in section 6. Throughout this document, we will denote the angle between the τ decay
planes as φCP, irrespective of the frame in which it is calculated.

3 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal
diameter, providing a magnetic field of 3.8T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by
the barrel and endcap detectors. Muons are detected in gas-ionisation chambers embedded
in the steel flux-return yoke outside the solenoid. Events of interest are selected using a
two-tiered trigger system. The first level (L1), composed of custom hardware processors,
uses information from the calorimeters and muon detectors to select events at a rate of
around 100 kHz within a fixed latency of about 4 µs [43]. The second level, known as
the high-level trigger, consists of a farm of processors running a version of the full event
reconstruction software optimised for fast processing, and reduces the event rate to around
1 kHz before data storage [44]. A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the relevant kinematic variables, can
be found in ref. [45].

4 Simulated samples

The signal and relevant background processes are modelled with samples of Monte Carlo
simulated events. The signal samples with a H produced through gluon-gluon fusion (ggH),
vector boson fusion (VBF), or in association with a W or Z vector boson (denoted as WH or
ZH, or VH when combined) are generated at next-to-leading order (NLO) in perturbative
quantum chromodynamics (QCD) with the powheg 2.0 [46–52] event generator. The
H production mechanism is configured to only produce scalar Higgs bosons, as opposed
to pseudoscalar Higgs bosons or mixed couplings. The latter scenarios would also affect
various properties of the production, e.g. the production rate and the topology of associated
jets, such as the azimuthal angle ∆φjj between the two leading jets, when present [53]. We
note that in our analysis of αHττ we are not sensitive to the modifications to the ggH
and VBF+VH production rates as we treat them as unconstrained parameters that are
allowed to float freely in the fit to data. We also do not use the ∆φjj or similar variables
to define event selection criteria or as inputs to discriminants; whereas modifications to
other kinematic variables must be negligibly small in order to avoid experimental bounds
from dedicated measurements (e.g. ref. [21]). For the ggH production process, we used
dedicated simulations [49, 54] to confirm that modifications to the CP properties of the
Yukawa couplings between the Higgs and top and bottom quarks did not significantly
influence either the signal acceptance or the distributions of discriminants used to extract
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our results. We observed that such effects are typically at the O(1%) level or smaller and
are negligible compared to theoretical uncertainties on the signal modelling. Therefore,
our measurement of αHττ is not sensitive to the assumptions made about the CP-nature
of the production interactions.

The distributions of the Higgs boson’s transverse momentum (pT) and of the jet multi-
plicity are reweighted to match the predictions at next-to-NLO (NNLO) accuracy obtained
from full phase space calculations with the powheg nnlops (version 1) generator [55, 56].
The decay of the H does not depend on its production. The description of the decay of the
H to τ leptons is obtained using the pythia generator version 8.230 [57]. These samples
are simulated without accounting for the τ spin correlations. After the samples have been
generated, the tauspinner package [58] is used to calculate event weights that can be
applied to the simulated signal samples to model τ polarisation effects for a boson with
CP-mixing angles of 0, 45, and 90◦. There is no normalisation effect from the reweighting
procedure, i.e. the integrated H → ττ cross section of the signal samples is invariant under
rotations in αHττ . All 2016 samples are generated with the NNPDF3.0 [59] NLO parton
distribution functions (PDFs), while the NNPDF3.1 [60] NNLO distributions are used for
2017-2018.

The MadGraph5_amc@nlo [61] generator (version 2.6.0) is used for processes in-
volving a Z or W boson and up to four outgoing partons generated with the matrix element,
and these processes are denoted Z + jets and W + jets, respectively. Processes involving W
bosons originating from top quark decays are not considered in these samples. They are
simulated at leading order (LO) with the MLM jet matching and merging approach [62].
The same generator is used at NLO for diboson production, whereas powheg 2.0 (1.0) is
used for top quark-antiquark pair production [63] and single top quark production (asso-
ciated with a W boson) [64, 65]. The generators are interfaced with pythia to model the
parton showering and fragmentation, as well as the decay of the τ leptons. The pythia
parameters that affect the description of the underlying event are set to the CUETP8M1
tune [66] in 2016, and CP5 tune [67] in 2017-2018.

Monte Carlo generated events are processed through a simulation of the CMS detector
that is based on Geant4 [68], and are reconstructed with the same algorithms as the
ones used for data. Additional pp interactions per bunch crossing (”pileup”) are included.
The effect of pileup is taken into account by generating concurrent minimum bias collision
events with pythia. The pileup distribution in simulation is weighted to match the pileup
in data.

5 Event reconstruction

The reconstruction algorithms for both observed and simulated events are based on the
particle-flow (PF) algorithm [69], which relies on the information from the different CMS
subdetectors to reconstruct muons, electrons, photons, and charged and neutral hadrons.
These objects are combined to form more complex ones, such as τh candidates or missing
transverse momentum (pmiss

T ).

– 6 –
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5.1 Primary vertex reconstruction

The positions of all pp interactions (vertices) in the event, including the hard scatter
(primary) and soft (pileup) vertices, are reconstructed in a two-step procedure [70]. The
steps consist in clustering the tracks that appear to originate from the same interaction
using the deterministic annealing algorithm [71], and subsequently fitting the position of
each vertex using tracks associated to its cluster with the adaptive vertex fitter (AVF)
algorithm [72]. The candidate vertex with the largest value of the sum of the p2

T of all
associated physics objects is considered to be the primary pp interaction vertex (PV).
The physics objects included in this sum are jets, clustered using the anti-kT jet finding
algorithm [73] with the tracks assigned to candidate vertices as inputs, and the associated
pmiss

T , taken as the negative vector sum of the pT of those jets.

5.2 Muon reconstruction

Muons are identified and reconstructed with requirements on the quality of the track re-
construction and on the number of hits in the tracker and muon systems [74], and selected
within |η| < 2.4. In order to reject muons that originate from nonprompt interactions, or
are misidentified, a relative isolation is defined as

Iµ ≡
∑

charged pT + max
(
0,∑neutral pT − 1

2
∑

charged, PU pT
)

p
µ

T
. (5.1)

In this equation, ∑charged pT is the scalar pT sum of the charged particles originating from
the PV and located in a cone of size ∆R =

√
(∆η)2 + (∆φ)2 = 0.4 (where φ is azimuthal

angle in radians) centred on the muon direction. The sum ∑
neutral pT is a similar quantity

for neutral particles. The∑charged, PU pT term sums over charged particles originating from
pileup vertices in order to estimate and subtract the contribution of pileup to the neutral
particle sum, which is scaled by 1/2 to account for the fraction of neutral to charged energy
in pileup interactions. The pT of the muon is denoted by p

µ

T. In the τ
µ

τh channel, it is
required that Iµ < 0.15.

5.3 Electron reconstruction

Electrons are reconstructed using tracks from the tracking system and calorimeter deposits
in the ECAL, with a veto on objects with a large HCAL to ECAL energy ratio. Electrons
are identified using a multivariate analysis (MVA) discriminant combining several quan-
tities that describe the shape of the energy deposits in the ECAL, the quality of tracks,
and the compatibility of the measurements from the tracker and the ECAL [75]. The en-
ergy scale of electrons is adjusted in data and simulation using the Z mass peak, while its
resolution in simulation is adjusted to data.

For the electrons, an isolation criterion Ie is defined for a cone size of R < 0.3 centred
on the electron direction. Its definition is analogous to eq. (5.1) for the charged tracks, but
the pileup contribution of neutral particles is estimated via an effective-area method as

Ie =
∑

charged pT + max (0,∑neutral pT − ρEA)
p

e
T

. (5.2)
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In this equation, the pileup contribution is estimated as ρEA, where ρ is the event-specific
average pileup energy density per unit area in the φ-η plane and EA, which depends
on the electron η, is the effective area specific to the neutral component of the isolation
variable [75]. In the τeτh channel, it is required that Ie < 0.15.

5.4 Jet and pmiss
T reconstruction

Jets are reconstructed using the anti-kT algorithm [73] with distance parameter R = 0.4 as
implemented in the FastJet package [76]. The anti-kT algorithm functions by taking PF
objects and grouping them together based on inverse powers of the pT of the objects [73, 77].
Jet momentum is determined as the vectorial sum of all particle momenta in the jet, and is
found from simulation to be, on average, within 5 to 10% of the true momentum over the
whole pT spectrum and detector acceptance. Pileup interactions can contribute additional
tracks and calorimetric energy depositions to the jet momentum. To mitigate this effect,
charged particles identified to be originating from pileup vertices are discarded and an offset
correction is applied to correct for remaining contributions. Jet energy corrections are
derived from simulation to bring the measured response of jets to that of particle level jets
on average. In situ measurements of the momentum balance in dijet, photon+ jet, Z + jet,
and multijet events are used to account for any residual differences in the jet energy scale
between data and simulation [78]. The jet energy resolution amounts typically to 15-20%
at 30GeV, 10% at 100GeV, and 5% at 1TeV [78]. Additional selection criteria are applied
to each jet to remove jets potentially dominated by anomalous contributions from various
subdetector components or reconstruction failures. Data collected in the ECAL endcaps
were affected by large amounts of noise during the 2017 data-taking period, which led to
disagreements between simulation and data. To mitigate this issue, jets used in the analysis
of the 2017 data are discarded if they have pT < 50GeV and 2.65 < |η| < 3.10. Hadronic
jets that contain b-quarks (b-jets) are tagged using a deep neural network (DNN), called
DeepCSV algorithm [79]. The medium working point used for the DeepCSV algorithm
corresponds to a b-jet identification efficiency of about 70% for a misidentification rate for
jets originating from light quarks and gluons of around 1%.

The pileup per particle identification algorithm [80] is applied to reduce the pileup
dependence of the ~pmiss

T observable. The ~pmiss
T and its magnitude (pmiss

T ) are computed
from the PF candidates weighted by their probability to originate from the PV [81]. The
~pmiss

T is adjusted for the effect of jet energy corrections.

5.5 Tau lepton reconstruction

The τh lepton reconstruction is performed with the Hadron-Plus-Strips (HPS) algorithm [82].
Starting from the constituents of reconstructed jets, the algorithm works by combining
charged hadrons with the signature of neutral pions — one or more electron/photon can-
didates falling within a certain ∆η×∆φ region (referred to as a “strip”). The combination
of these signatures provides the four-vector of the visible decay products of the parent τh.
The identification of τh candidates makes use of isolation discriminators to reject quark
and gluon jets that could be misidentified as τh. For this analysis, a DNN called Deep-
Tau [83] is used on the HPS τh candidates to provide further discrimination. In order
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to achieve an optimal τh identification performance, the DNN combines information from
the high-level reconstructed τh features together with the low-level information from the
inner tracker, calorimeters and muon sub-detectors, using PF candidates reconstructed
within the τh isolation cone. The working point on the output discriminant is chosen to
provide a τh identification efficiency of about 60% at a jet misidentification rate of approx-
imately 5× 10−3. Two other DNNs are used to reject electrons and muons misidentified as
τh candidates using dedicated criteria based on the consistency between the measurements
in the tracker, calorimeters, and muon detectors.

The mass of the ττ system mττ is calculated using a simplified matrix-element algo-
rithm, Svfit [84], which combines the ~pmiss

T and its uncertainty matrix with the four-vectors
of both τ candidates to calculate the parent boson’s mass. The resolution of mττ is 15-20%
depending on the ττ final state and the boost of the ττ system.

6 Reconstruction of CP-sensitive observables

In this section we outline the methods used to construct CP-sensitive observables, collec-
tively referred to as φCP angles. Various techniques can be used to define φCP depending
on the decay topology of the τ leptons. In total, four methods are employed in the analysis:
the “impact parameter” [85, 86], “neutral-pion” [86, 87], “combined” [86], and “polarimetric
vector” [88] methods. We provide a detailed description of these methods below. We then
summarise for which di-τ final states each method is utilised, and outline the procedures
used to optimise the resolving power of the φCP observables.

6.1 Impact parameter method

This method exploits the finite lifetime of the τ leptons and can be applied to all events
where both τ leptons decay to a single charged particle. We define the impact parameter
~j± of a track (where ± refers to the charge of the track) as the vector between the PV and
the point on the track where distance to the PV is minimal.

For each τ lepton we define a plane using the impact parameter vector and the charged-
particle momentum vector. This plane, which is constructed in the laboratory frame, only
represents the genuine plane of the decay into a single charged pion and neutrino when
the laboratory frame coincides with the rest frame of the H. This means that this method
does not reconstruct the genuine τ lepton decay plane, but rather a plane that is correlated
with it. In order to approximate the rest frame of the H we use the charged decay products
of the τ leptons of the H to define a zero-momentum frame (ZMF) into which the decay
planes are boosted. The ZMF is used to define φCP for all channels in this analysis, except
the a3pr

1 a3pr
1 channel, where both τ leptons decay to three charged pions and the H rest

frame can be reconstructed.
We then construct four-component vectors in the laboratory frame as λ± = (0,~j±).

The λ± four-vectors are boosted into the ZMF and denoted λZMF±. We also boost the
respective charged-pion four-vectors to the ZMF, denoted qZMF±. Subsequently, we take
the transverse components of λZMF± with respect to qZMF±. We normalise the vectors to
obtain unit vectors λ̂ZMF+

⊥ and λ̂ZMF−
⊥ .

– 9 –
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Figure 3. Illustration of the τ lepton decay planes and the angle φCP for various decay configu-
rations. The decay planes are illustrated with the shaded regions, and either the vector λ̂ or the
momentum vector of the neutral pion is in the decay plane. The illustrations are in the frame in
which the sum of the momenta of the charged particles is zero. Left: the decay plane for the decays
τ

− → π
− + ν and τ

+ → π
+ + ν . Middle: the decay plane as reconstructed from the neutral and

charged pion momenta. Right: φCP for the mixed scenario, in which one τ lepton decays to a pion
while the other decays via an intermediate ρ meson.

To reconstruct φCP, we first define the angle φZMF and OZMF as

φZMF = arccos(λ̂ZMF+
⊥ · λ̂ZMF−

⊥ ), and
OZMF = q̂ZMF− · (λ̂ZMF+

⊥ × λ̂ZMF−
⊥ ).

(6.1)

From φZMF and OZMF we reconstruct φCP in a range [0, 360◦] as

φCP =

φ
ZMF if OZMF ≥ 0

360◦ − φZMF if OZMF < 0
. (6.2)

The τ lepton spectral functions have opposite signs for single-pion decays and leptonic
decays in the kinematic regions considered in this analysis. This causes a phase flip between
the φCP distributions for single pion decays and leptonic decays when the impact parameter
method is used [40]. An illustration of the definition of the φCP observable using the impact
parameter method is shown in figure 3 (left).

6.2 Neutral-pion method

This method can be applied to hadronic decay channels in which both τ leptons undergo
decays involving more than one outgoing hadron. We describe the method applied to the
intermediate ρ meson decay, and the intermediate a1(1260) meson to 1- and 3-prong decay
modes.

For the ρ meson decays, the vector λ is replaced by the four-momentum vector of the
π

0, which means we use the planes spanned by the ρ decay products (e.g. the π
± and π

0
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Figure 4. The decay of a3pr
1 via an intermediate ρ

0 to three charged pions.

in the case of the ρ
± → π

±
π

0 decay) to define the φCP observable. The four-momentum
vector of the π

0 is obtained as follows: to estimate the π
0 energy, we sum the energies of

all electron/photon candidates collected by the HPS algorithm. The direction of the π
0 is

then taken as the direction of the leading electron/photon candidate. In most cases the
leading candidate is a photon and the direction is determined by pointing its associated
ECAL clusters back towards the PV. Finally, the mass is set to the known π

0 mass.
The same method is applied to a1pr

1 decays involving two neutral pions by summing the
neutral constituents in the decay, as they cannot be easily resolved experimentally. The
angle φCP is then calculated in an analogous method to that used in the impact parameter
method except that to avoid destructive interference from differently polarised states of
the mesons, the following observables need to be defined:

yτ
±

=
E

π
± − E

π
0

E
π
± + E

π
0
, yτ = yτ

−
yτ

+
. (6.3)

In this equation, Eπ is the energy of the pion in the laboratory frame. If yτ is negative,
φCP is obtained via the shift 360◦−φCP. The neutral-pion method can also be successfully
adapted to the a3pr

1 decay mode. In these decays we select the oppositely charged pion
pair with an invariant mass closest to the intermediate ρ

0, an illustration is depicted in
figure 4. Of this pair we treat the pion with the charge opposite of that of the τh lepton as
though it was a π

0, and the momentum of the pion with the same sign as the τh is used for
the calculation of the ZMF. After these assignments the neutral-pion method is applied as
described for 1-prong decays.

An illustration of the definition of the φCP observable using the neutral-pion method
is shown in figure 3 (middle).

6.3 Combined method

This method combines the impact parameter and neutral-pion methods outlined in the
two previous sections, which is appropriate for events where only one of the two τ leptons
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decay into multiple hadrons. For the τ lepton decaying into a ρ, a1pr
1 , or a3pr

1 mesons, the
vector λ in eq. (6.1) is replaced by four-momentum vectors as described in section 6.2, and
the angle φCP is then calculated using the same formulae.

Analogously to the neutral-pion method we avoid destructive interference from differ-
ently polarised states of the mesons by applying the shift 360◦ − φCP for events with yτ

±
,

where yτ
±

is computed for the τ lepton that decays to the intermediate resonance.
An illustration of the definition of the φCP observable using the combined method is

shown in figure 3 (right).

6.4 Polarimetric vector method

This method can, in principle, be applied to any τ lepton decay mode in which both τ

lepton momenta can be well reconstructed. When τ leptons decay via the a3pr
1 mode, the

τ lepton rest frames can be reconstructed using the secondary vertices (SVs), that are
extracted by fitting the three tracks originating from the a3pr

1 decays. Therefore, we only
apply the polarimetric vector method to the a3pr

1 a3pr
1 decay configuration.

The polarimetric vector ~h can be considered as an estimate of the most likely direction
of the spin vector ~s of the τ lepton in the τ lepton rest frame [88]. We start by outlining the
reconstruction of the τ lepton momenta, which are required to compute the polarimetric
vectors. Subsequently, we describe how φCP is reconstructed in the H rest frame from both
the τ lepton momenta and the polarimetric vectors.

To reconstruct the τ lepton momentum in the a3pr
1 channel we assume that the recon-

structed τ lepton candidate has a mass mτ and undergoes a two-body decay to a mass-
less neutrino and an intermediate a1 meson with mass ma1

. Furthermore, we define the
Gottfried-Jackson angle θGJ as the angle between the a1 momentum and the τ lepton mo-
mentum [89]. The latter is reconstructed from the positions of the τ lepton production and
decay vertex. The magnitude of the τ lepton momentum is then given by [89]

|~pτ | =
(m2

a1
+m2

τ )|~pa1
| cos θGJ ±

√
(m2

a1
+ |~pa1

|2)((m2
a1
−m2

τ )2 − 4m2
τ |~pa1

|2 sin2 θGJ)
2(m2

a1
+ |~pa1

|2 sin2 θGJ)
.

(6.4)
The maximal allowed value θmax

GJ of the Gottfried-Jackson angle is defined as

θmax
GJ = arcsin

(
m2

τ −m
2
a1

2mτ |~pa1
|

)
. (6.5)

For decays in which the reconstructed θGJ exceeds θmax
GJ , due to the finite angular resolution

of the charged pions and τ direction measurements, the value of θGJ is set to θmax
GJ .

As can be seen in eq. (6.4), there can be two solutions for the τ lepton momentum. This
can be understood by considering the decay in the τ lepton rest frame. In this frame, the a1
meson may be emitted in either the same or the opposite direction to that of the τ lepton
momentum in the lab frame. When the a1 meson is emitted in the direction orthogonal
to the τ lepton, we obtain the uniquely determined solution when the square root in the
numerator of eq. (6.4) vanishes. Thus, we may obtain up to four pairs of solutions for the
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momenta of the two τ leptons. This ambiguity is resolved by selecting the pair of solutions
with the mass closest to that of the H. The direction of the τ lepton in the lab frame is
determined by the vector SV−PV.

Once the τ leptons and a3pr
1 momenta have been determined, the polarimetric vectors

~h1,2 may be retrieved using the a3pr
1 resonance model as implemented in the tauola [90–

92] program, which uses the parameters as measured by the CLEO Collaboration [93].
To reconstruct φCP from the polarimetric vectors and the τ lepton momenta vectors, we
introduce a vector ~k that is defined as

~k1,2 =
~h1,2 × ~n1,2

|~h1,2 × ~n1,2|
. (6.6)

In this definition, ~n1,2 are the two τ lepton momentum unit vectors in the H rest frame.
We then reconstruct φ∗ and O∗ (in the H rest frame) as

φ∗ = arccos(~k1 · ~k2), and
O∗ = −(~h1 × ~h2) · ~n1.

(6.7)

From φ∗ and O∗ we reconstruct φCP via the assignments defined in eq. (6.2).
In summary, for the configuration involving two a3pr

1 decays, the secondary decay
vertices are exploited to reconstruct the τ momenta in the rest frame of the H. Together
with the a1 resonance model, this allows for the extraction of the polarimetric vectors.
Studies on simulated signal events revealed that fits to φCP measured using the polarimetric
vector method have approximately twice the resolving power between the CP-even and
CP-odd states as compared to applying the neutral-pion method.

6.5 Strategy for selecting the CP-sensitive observables

The τh impact parameter is relatively small compared to the tracking resolution and there-
fore the precision to which it can be measured is limited despite the excellent resolution of
the CMS tracker. An advantage of the neutral-pion method is that it does not rely on the
reconstruction of the impact parameter; instead, the direction of the neutral pion needs to
be determined. Due to the relatively large distance between the primary interaction point
and the ECAL (O(1m)), coupled with the fine ECAL granularity, the direction of neu-
tral pions can be reconstructed with smaller relative uncertainties compared to the impact
parameter direction.

Studies were performed on signal events to review the CP sensitivity of the neutral
pion and impact parameter methods in regions of phase space where the latter is expected
to perform optimally. The sensitivity normalised to the number of events was comparable
while the selections (explained below) that are needed for the impact parameter method
discard a significant number of events. The cuts imposed on the impact parameter signifi-
cance mean that the neutral-pion method can be applied to about twice as many events as
the impact parameter method. Therefore, although the impact parameter method can in
principle be applied to every τ lepton decay mode, in this analysis we only use this method
for the ππ, µπ, and eπ final states. For the ρρ, ρa1pr

1 , a1pr
1 a1pr

1 , a1pr
1 a3pr

1 , and ρa3pr
1 final
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states, the neutral-pion method is deployed, and the polarimetric vector method is used
exclusively for the a3pr

1 a3pr
1 channel. In other configurations where one τ lepton decays to a

single charged hadron or lepton and the other to multiple hadrons, the combined methods
is used.

6.6 Extraction of φCP optimisation

In this section we outline the experimental techniques that are developed for this analysis to
optimise the experimental extraction of φCP. A dedicated MVA discriminant is deployed
to improve the identification of the τh decay modes. To improve the estimate of the
impact parameters, the reconstruction of the PV coordinates is improved, and a helical
extrapolation of the track to the PV was implemented. These methods are discussed in
detail below.

6.6.1 Multivariate discriminant for τh decay mode identification

In order to optimally discriminate between the different decay modes, a boosted decision
tree (BDT) [94] is deployed. It is trained using the XGBoost [95] framework, and is
applied on top of the τh selection. The algorithm was trained to distinguish between the
1- and 3-prong τ lepton decays: π, ρ, a1pr

1 , a3pr
1 , and π

±
π
∓

π
±

π
0. The π

±
π
∓

π
±

π
0 decay

is not used in the extraction of the CP angle but must be separated from a3pr
1 to avoid

contamination.
The inputs to the BDT are the kinematic features of the τh reconstructed by the HPS

method and its constituents. The BDT exploits angular correlations between the decay
products, invariant mass quantities, and kinematic properties of the photons.

6.6.2 Primary vertex refitting

The finite lifetime of the τ lepton means that tracks emanating from its decay do not
originate from the PV. These tracks are removed and the PV is refitted using the remaining
tracks as input to the AVF algorithm. The LHC beamspot represents a three-dimensional
(3-D) profile of the luminous region, where the LHC beams collide in the CMS detector.
The parameters of the beamspot are determined from an average over many events [70].
The uncertainties in the beamspot parameters are relatively small and are incorporated
into the AVF algorithm to provide an additional constraint on the PV position. The
inclusion of the beamspot information leads to an improvement of the PV resolution in
the transverse plane of a factor of about 3 for signal events and of about 4 for Drell-Yan
events, while the z coordinate of the PV is largely unaffected. This refitted PV is used
when estimating the impact parameters and the polarimetric vectors.

6.6.3 Impact parameter estimate and significance

A dedicated algorithm is deployed to derive the impact parameter of the charged track
from the τ lepton decay using an analytic extrapolation of track trajectory towards the
PV position. The extrapolation depends on the magnetic field and the helical parameters
of the track. The distance between the extrapolated track and the PV position is then
minimised numerically to determine the impact parameter.
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Channel Year Trigger requirement Offline pT (GeV)

τhτh All years τh(35) & τh(35) p
τh
T > 40

τ
µ

τh
2016 µ(22), µ(19) & τh(20) p

µ

T > 20, pτh
T > 25

2017, 2018 µ(24), µ(20) & τh(27) p
µ

T > 21, pτh
T > 32

τeτh

2016 e(25) p
e
T > 26

2017 e(27), e(24) & τh(30) p
e
T > 25, pτh

T > 35

2018 e(32), e(24) & τh(30) p
e
T > 25, pτh

T > 35

Table 2. Kinematic trigger and offline requirements applied to the τeτh, τ
µ

τh, and τhτh channels.
The trigger pT requirement is indicated in parentheses (in GeV). The pT thresholds indicated for
the τh apply only for the object matched to the hadronic trigger or to the hadronic leg from the
cross trigger.

This procedure has two advantages. Firstly, with this extrapolation, the minimisation
of the impact parameter is performed in three dimensions. For tracks with large η values,
the procedure leads to a better estimation of the z coordinate of the impact parameter than
when the minimisation is done exclusively in the transverse plane. Secondly, the helical
extrapolation allows for the propagation of both the track and PV uncertainties into an
overall impact parameter significance SIP (defined as the ratio of the magnitude of the
impact parameter divided by its uncertainty). In this analysis, selections are made on the
impact parameter significance, as further explained in section 9.

7 Event selection

Events are selected online by the CMS trigger system. For the τ`τh channels, events are
triggered by either a paired `+ τh cross trigger or a single-lepton trigger with a higher pT
threshold for the lepton compared to the cross trigger. For the τhτh channel, a di-τ trigger
is used.

Offline, a pair of oppositely charged τ leptons separated by ∆R > 0.5 is required.
The offline-reconstructed objects must match the required trigger objects (i.e. the object
as reconstructed by the trigger system) within ∆R < 0.5. The offline-reconstructed light
lepton is required to have a pT value that is at least 1GeV higher than the online threshold.
If an offline τh candidate is matched to a τh trigger object (including the τh leg of the `+ τh
cross trigger for the semileptonic channels), the τh must have a pT at least 5GeV above
the trigger threshold. The offline thresholds are higher than the online thresholds due to
the turn-on curve in the trigger efficiencies.

Table 2 summarises the online trigger and offline pT thresholds for 2016-2018. The
offline requirements apply only to objects that are matched to a trigger object. If, in the
τ`τh channels, the event is selected online by the single-lepton trigger, the offline τh is
required instead to have a pT of at least 20GeV.
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For the τ`τh channels, the large W + jets background is reduced by rejecting events
based on the transverse mass mT of the light lepton and ~pmiss

T system,

mT ≡
√

2p`Tpmiss
T [1− cos(∆φ)] < 50GeV, (7.1)

where ∆φ is the azimuthal angle between the direction of the light lepton and ~pmiss
T .

The longitudinal and transverse impact parameters dz and dxy of the muon and electron
are required to satisfy |dz| < 0.2 cm and |dxy| < 0.045 cm. These impact parameters
originate from a minimisation of the magnitude of the impact parameters in the transverse
plane only, in contrast to the impact parameters used for calculating φCP, which are derived
using a 3-D minimisation. For the purpose of the event selection this factorised approach is
sufficiently precise. For the leading τh track, only the requirement |dz| < 0.2 cm is imposed
to avoid loss of selection efficiency. Further, a veto on events containing loosely identified
additional electrons or muons is imposed. For the τ`τh channels, a veto on jets passing
b-tagging requirements is also applied. When multiple τ lepton pairs are present, the pairs
are ranked based on the output scores of the DeepTau algorithm for the τh candidates,
and the relative isolation for the τ` candidates. The highest ranked pair is selected.

8 Background estimation

The processes that contribute to the background in this analysis are Z + jets, W + jets, top
quark-antiquark pair production (tt), single top quark, and diboson production. Addition-
ally, events comprised uniquely of jets produced through the strong interaction, referred to
as QCD multijet events, form a significant background. These processes contribute to the
production of genuine τ leptons, jets and leptons that are misidentified as τh, as well as
prompt leptons and jets that are misidentified as τ` in the semileptonic channels. All back-
ground processes resulting in two genuine τ leptons constitute a major background, and
are estimated from data using a τ-embedding technique [96]. The majority of the back-
grounds due to jets misidentified as τh candidates are estimated using the “fake factor”
(FF) method, as described in ref. [97]. The remaining minor backgrounds are determined
using simulated events. In the remainder of this section we outline the τ-embedding and
FF methods, and describe the corrections applied to simulated events in order to improve
their description of the data.

8.1 The τ embedding method

In order to obtain the genuine ττ background we exploit lepton universality, and replace
oppositely charged muon pairs in data events with simulated oppositely charged τ lepton
pairs. The dominant process for this background is Z → ττ, but there are also small
contributions from tt and diboson processes.

For all data-taking periods, events containing an oppositely charged dimuon pair were
collected using a dedicated di-µ trigger. The detector hits belonging to the muon tracks are
removed from these events. A Z boson is simulated in an empty detector, which is forced to
decay to a pair of oppositely charged τ leptons with identical kinematics to the muon pair
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that was removed. The τ leptons are forced to decay fully hadronically or semileptonically
in order to simulate either the τhτh or τ`τh channels. The detector response to the τ pair
is then simulated and added to the data event.

In order to model the background processes in data well, various corrections need to
be applied to the embedded event samples. Muons and electrons are corrected for mismod-
elling of their trigger, tracking and identification, and isolation requirements efficiencies.
The τh candidates are corrected for mismodelling of their trigger, reconstruction and iden-
tification efficiencies. The “tag-and-probe” method [98] is used to derive these corrections.
The τh energy scales are corrected per decay mode to match the corresponding scales in
data. The electron, muon, and pion impact parameters are corrected using a samples of
Z → µµ and Z → ee events and quantile-mapping techniques.

8.2 The FF method

This method is designed to provide an estimate of the shape and normalisation of events
in which at least one quark or gluon jet is misidentified as a τh lepton based on control
samples in data. We refer to such a jet as a jet→ τh.

We define a determination region that is orthogonal to the signal region and dominated
by a background process resulting in jet→ τh misidentifications; the construction of these
regions is outlined below. We define a τh nominal ID as a τh object that passes nominal
ID requirements as outlined in section 5, and a relaxed τh ID as objects that pass a looser
requirement on the DNN output but fail the nominal ID. In this determination region
we obtain the ratio between the nominal ID τh rate and the relaxed ID τh rate. The
ratio in the determination region is the FF. To obtain the rate of misidentified jets in
the signal region, an application region is defined by selecting events that fulfil all event
selection criteria except that they contain a τh lepton that passes the relaxed instead of
the nominal requirement (for the τhτh channel it must be the leading τh). The rate of
misidentified jet events in the signal region is obtained by applying the FF values from the
determination region on an event-by-event basis as an event weight to the events in the
application region. In both determination and application regions the contribution of other
background processes not involving jet → τh events, which amounts to about 1% (5%) in
the τhτh (τ`τh) channel(s), is subtracted using simulated events. The contamination from
signal events is significantly smaller (<0.1%) and is therefore neglected.

The jet → τh background in the τhτh channel originates almost entirely from QCD
multijet events. The determination region is thus defined by inverting the opposite-sign
requirement on the τ lepton pair to a same-sign requirement, which effectively selects a
control region pure in QCD jets. The FF are parameterised for the leading τh lepton as a
function of the pT of the τh, and binned in the reconstructed decay mode, jet multiplicity,
and impact parameter significance. Correction factors are derived using control regions in
data to correct for residual differences in the ~pmiss

T spectrum, and to account for the sign
inversion used to define the determination region. The final FF value for the τh channel
is obtained by applying the raw FF and the two corrections multiplicatively. This FF
also accounts for other processes with a jet misidentified as the leading τh lepton, such
as W + jets production. The events in which the subleading τh is a misidentified jet and
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the leading τh candidate is a genuine τ lepton are modelled via simulation; these events
constitute only a small fraction (O(2%)) of the total misidentified jet background in the
τhτh channel.

In the τ`τh channels, the W + jets process, and to a lesser extent the tt process, con-
tribute to jet misidentification as well as events originating from QCD multijet production.
Therefore, separate FF are derived for these processes, and these individual FF values are
subsequently weighted into an overall FF to account for their different contributions in the
application region. Simulated events are used to determine the expected relative contri-
butions of W + jets and tt events, and the QCD contribution is estimated by subtracting
all simulated non-QCD processes from the data in the application region. In order to ac-
count for dependencies of the weights on several kinematic variables, a multi-class BDT
is trained to separate W + jets, QCD, and tt events. The inputs to the BDT include
kinematic features of the reconstructed ττ system and the associated jets, as well as the
τh decay mode. The output of the BDT is a set of three scores (one per class) that sum
to unity — meaning one of the outputs is redundant. The weights are thus determined
in bins of two of these scores. The overall FF accounts for the jet misidentification in all
background processes. The procedure for the QCD FF is similar to the method described
for the τhτh channel, except that the light lepton isolation parameter must be larger than
0.05 to reduce processes resulting in genuine leptons. Correction factors are derived to
correct for residual differences in the lepton pT and ~pmiss

T spectra, and to account for the
sign inversion and additional lepton isolation requirement used to define the determination
region. A determination region sufficiently pure in W + jets is defined by selecting events
with mT > 70GeV. Correction factors are derived to correct for residual differences in the
lepton pT and ~pmiss

T spectra, and to account for the inverted mT selection used to define the
determination region. For the tt process, it is difficult to define a sufficiently pure region
in data, and thus the FF values are estimated from a simulated tt sample. Correction
factors are derived to correct for residual differences in the ~pmiss

T spectrum, and to account
for differences in the FF in data and simulation. The latter is derived by comparing the
FF values measured for W + jets in data and simulation.

8.3 Estimation of minor backgrounds

The τ-embedding and FF methods combined describe around 90% of the backgrounds in
this analysis. All events containing a genuine τ lepton pair are taken from the embedded
samples, while events in which the (leading) τh is a misidentified hadronic jet in the (τhτh)
τ`τh channels are obtained from data using the FF method. All other background events
are obtained from simulation.

In addition to the genuine τ and jet→ τh contributions to the selected pairs, there are
additional sources of τ misidentifications that may occur. This includes prompt leptons
that may be either misidentified as a τ` or as a τh, τ` leptons being misidentified as τh, and
jets misidentified as τ` candidates. In tables 3 and 4 we summarise the different background
composition configurations and their modelling for the τhτh and τ`τh channels, respectively.
To avoid double-counting events with a genuine τ lepton pair, such events are subtracted
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Leading τh Subleading τh
Genuine τh Jet → τh (Prompt lepton/τ`) → τh

Genuine τh τ-Embedding Simulation Simulation
Jet → τh FF FF FF
(Prompt lepton/τ`) → τh Simulation Simulation Simulation

Table 3. The different sources of backgrounds in the τhτh channel are shown in the rows and
columns. The entries in the table represent the possible τ lepton pair background contribution from
different processes and misidentifications and encapsulate the different experimental techniques that
are deployed to estimate the background contributions.

τ` τh
Genuine τh Jet → τh (Prompt lepton/τ`) → τh

Genuine τ` τ-Embedding FF Simulation
Jet → τ` Simulation FF Simulation
Prompt lepton → τ` Simulation FF Simulation

Table 4. The different sources of backgrounds in the τ`τh channel are shown in the rows and
columns. The entries in the table represent the possible τ lepton pair background contribution from
different processes and misidentifications and encapsulate the different experimental techniques that
are deployed to estimate the background contributions.

from all simulated samples, as well as events in which the τh is a misidentified hadronic jet
(for the τhτh channel this must be the leading τh).

In order to model the background processes in data well, various corrections need
to be applied to the simulated samples. All corrections to the τ lepton decay products
applied to the embedded samples (described in section 8.1) are also applied to the simulated
samples. Although both embedded and simulated samples include simulated leptons, the
corresponding corrections can differ slightly due to deposits from other nearby objects,
that may influence, for example, isolation sums and/or particle identification decisions.
Therefore, dedicated correction factors are derived in each case.

Jet energy scale corrections are applied to both data and simulated events as described
in section 5. Recoil corrections to the ~pmiss

T are applied to reduce the mismodelling of the
simulated Z + jets, W + jets, and Higgs boson samples. The corrections are applied to the
simulated events based on the vectorial difference of the measured pmiss

T and total pT of
the neutrinos originating from the decay of the Z, W, or H. Their average effect is the
reduction of the pmiss

T obtained from simulation by a few GeV. Recoil corrections to ~pmiss
T

are measured in Z → µµ events. The corrections are subsequently applied to Drell-Yan
plus jets events, W + jets, and signal event samples. The ` → τh misidentification rates
are corrected in simulation by applying the tag-and-probe method to Z → `` events, and
the energy scales are corrected in simulation to match the scale in data.

The Z boson mass and pT spectra in simulation are corrected to better match the
data. To this purpose the Z mass and pT are measured in data and simulation in di-muon
events, and the simulated events are corrected to match the spectra in data. A correction
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is also applied to the top quark pT spectrum in the tt sample, using a dedicated control
region. The procedure used to derive this correction is detailed in ref. [99].

After applying all corrections, we obtain a satisfactory description of the observables
that we use to categorise events, which are described in section 9.

8.4 Validating the modelling of the φCP observables

To validate the modelling of the φCP spectrum, the τ
µ

τh events in data and the background
estimates are divided into distributions in which the charged π is “nearly coplanar” or
“nearly perpendicular” to the production plane of the beam axis and the τ momentum in
the laboratory frame, as described in ref. [37]. To this purpose we introduce the observable
απ− that is defined as

cosαπ− =
∣∣∣∣∣ ẑ × p̂|ẑ × p̂|

· ĵ × p̂
|ĵ × p̂|

∣∣∣∣∣ . (8.1)

In this equation, ẑ is the unit vector pointing along the beam axis, p̂ is the unit momentum
vector of the charged π, and ĵ is the unit impact parameter vector. We can define a subset
of events in which the charged π is nearly perpendicular or coplanar by requiring απ− > π/4
or απ− < π/4, respectively. We also perform equivalent checks for τ decays into ρ mesons,
where we substitute the unit π

0 momentum vector for ĵ in eq. (8.1) to define an equivalent
observable, αρ−. In figure 5 we display the coplanar and perpendicular distributions in the
µπ and µρ channels.

9 Event categorisation

In order to enhance the sensitivity of this analysis we apply MVA discriminants to separate
signal from background events.

This event categorisation is formulated as a multi-class problem. The output is a set
of scores for each event (one per class) that, by construction, sum to unity. Each score can
therefore be interpreted loosely as the probability that an event belongs to a given class.
We then assign each event to a category depending on the class that received the highest
score. Since both the τ`τh and τhτh channels are dominated by backgrounds containing
contributions from genuine τ and jet → τh production, the discriminant is trained to
categorise events in three classes:

• The “Higgs” category is trained to distinguish events from the ggH, VBF, and VH
samples from background events, which are reweighed by their cross sections before
merging them into one sample. Events in this category are used to infer the CP
quantum number of the boson.

• The “Genuine” category includes all background processes involving two genuine τ

leptons.

• The “Mis-ID” category includes all background processes in which minimally one
hadronic jet is misidentified as a τh lepton. This category also contains ` → τh
misidentified events for all channels and prompt light leptons in the τ`τh channels.
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Figure 5. The angle φCP for τ
µ

τh events in which the τh decays to a charged π (upper) or a charged
ρ meson (lower). The distributions are decomposed in a subset in which the charged π is “nearly
coplanar” (left) or “nearly perpendicular” (right) to the production plane.

The three categories are mutually exclusive and, by definition, the lower bound for the
highest MVA score is 1/3. Subsequently, the three training categories are normalised to ac-
count for the different number of events in each data set. All event classes are then chosen
to contribute to the training with the same weight, i.e. with uniform prevalence. For the
semileptonic channels, the backgrounds for the training are provided from simulated sam-
ples, except for QCD events, which are obtained using same-sign τ lepton pair candidates
in data. For the hadronic channel, the embedded samples and the FF method are used in
the training. For the latter, the events from the application region are used and reweighted
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Observable τ`τh τhτh
pT of leading τh X X
pT of trailing τh — X
pT of τ` X —
pT of visible di-τ X X
pT of di-τh + pmiss

T — X
pT of τ`τh + pmiss

T X —
Visible di-τ mass X X
Di-τ mass (using Svfit) X X
Leading jet pT X X
Trailing jet pT X
Jet multiplicity X X
Dijet invariant mass X X
Dijet pT X
Dijet |∆η| X
pmiss

T X X

Table 5. Input variables to the MVA discriminants for the τ`τh and τhτh channels. The Svfit
algorithm is used to estimate the di-τ mass.

by their FF values. The contribution of other background processes not involving jet → τh
events is not removed in this case, but the impact of these events on the performance of
the MVA is negligible as they amount to only O(1%) of the total. A separate training
was performed for each year to account for differences in the performance of the CMS
detector in different data-taking periods. In the τ`τh channels, the event categorisation is
performed with a multiclass neural network. In the τhτh channel, the event categorisation
is performed using a multi-class BDT algorithm combined with the XGBoost package.
The input variables used in the categorisation of the τ`τh and τhτh channels are displayed
in table 5. The training is performed inclusively for all the τ lepton decay modes.

Events are sorted into the three categories depending on which of the three output
scores is closest to unity. The maximum output score is also retained and used for the
purpose of signal extraction. These maximum scores will be referred to as the “MVA
scores” henceforth.

After the categorisation, a cutoff of SIP > 1.5 is applied to the impact parameter
significances of the electron and muon, as well as to the single pions from a τ lepton
for events that are classified as signal events. Events with a lower SIP would dilute the
sensitivity of the analysis. In the background categories, a cutoff on the impact parameter
significance is only applied to the single-pion decays.

In figure 6, the post-fit MVA score distributions of the Genuine and Mis-ID categories
are displayed for the τ

µ
τh and τeτh channels. The best fit signal contributions are overlaid.

The fitting procedure is outlined in section 12. The genuine di-τ and jet→ τh background
contributions are displayed separately as indicated in the legends. The remaining back-
ground contributions are collated and indicated by the “Others” label. The BDT scores
for the τhτh channel are analogously displayed in figure 7.
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Figure 6. The post-fit MVA score distributions for the Genuine (left) and Mis-ID categories (right)
in the τ

µ
τh (upper) and τeτh (lower) channels. The distributions are inclusive in τh decay mode.

The best fit signal distributions are overlaid, where the signal cross sections are set to the values
obtained from the fit to data, which are given in section 12.1. In the lower panels, the data minus
the background template divided by the uncertainty in the background template is displayed, as well
as the signal distribution divided by the uncertainty in the background template. The uncertainty
band accounts for all sources of systematic uncertainty in the background prediction, after the fit
to data.

– 23 –



J
H
E
P
0
6
(
2
0
2
2
)
0
1
2

100

103

106

109
Ev

en
ts
/b

in
CMS 137 fb−1 (13 TeV)

τhτh Genuine

Observed
ττ bkg.
Jet → τh

Others
Bkg. unc.
Best fit H → ττ

0.4 0.6 0.8 1.0
MVA score

−5

0

5

10

O
bs
.−

Bk
g.

Bk
g.

un
c.

100

103

106

109

Ev
en

ts
/b

in

CMS 137 fb−1 (13 TeV)

τhτh Mis-ID

Observed
Jet → τh
ττ bkg.

Others
Bkg. unc.
Best fit H → ττ

0.4 0.6 0.8 1.0
MVA score

−5

0

5

10

O
bs
.−

Bk
g.

Bk
g.

un
c.

Figure 7. The post-fit MVA score distributions for the Genuine (left) and Mis-ID categories
(right) in the τhτh channel. The distributions are inclusive in τh decay mode. The best fit signal
distributions are overlaid, where the signal cross sections are set to the values obtained from the
fit to data, which are given in section 12.1. In the lower panels, the data minus the background
template divided by the uncertainty in the background template is displayed, as well as the signal
distribution divided by the uncertainty in the background template. The uncertainty band accounts
for all sources of systematic uncertainty in the background prediction, after the fit to data.

10 The φCP distributions in windows of the MVA discriminant score

The MVA score distributions described in section 9 allow for a partial separation of signal
from background events. The φCP distributions of the events in the signal categories are
then analysed in windows of increasing MVA score, corresponding to progressively higher
signal-to-background ratios. The result is a set of 2-D distributions built from the MVA
score and φCP variables. These distributions are used in the fit to data to extract the
results.

The statistical fluctuations in the estimates of the background contributions (denoted
as background templates) in the signal and background categories are sizeable. It has been
underlined that backgrounds involving two genuine τ leptons are flat in φCP at the generator
level [37]. Experimental smearing effects do not modulate this flat shape for decay modes
in which we apply the neutral pion method for at least one τ lepton. Therefore, for this
background process and these decay modes we flatten the background templates by merging
the bins. The φCP distribution is not flat for the jet→ τh background for all decay modes
due to the kinematic properties of the events, but the distributions are still symmetric
around φCP = 180◦, and so this background is symmetrised — meaning the symmetry
around φCP = 180◦ is enforced. For other background templates, for example the µ → τh
contribution, the distributions are found to be flat within the statistical uncertainties, and
therefore these background templates are also flattened.
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The backgrounds are not expected to be flat in decay modes in which the impact
parameter method is used or when the polarimetric vector method is applied when both τ

leptons decay via the a3pr
1 mode. This can be understood from the fact that smearing effects

in the PV are correlated for the decay planes. The smearing of the PV results in a depletion
in the region φCP = 180◦ [37], such that the shape of the background distributions in the
µπ, eπ, and a3pr

1 a3pr
1 (ππ) channels tends to resemble the CP-even (CP-odd) signal rather

than the CP-odd (CP-even). However, for such channels the backgrounds are symmetric
around φCP = 180◦, and therefore the background templates are symmetrised.

For certain decay modes, the statistical fluctuations in the signal templates are also
sizeable. Therefore, the templates for the scalar and pseudoscalar cases are symmetrised
around φCP = 180◦ as well. The maximally mixed signal template, which is not displayed
in the plots, is used in the fitting procedure described in section 12. In order to symmetrise
this template, we reweight the signal sample to another sample with αHττ = −45◦. The
φCP distribution is shifted by 180◦, and the average is taken between the sample with
αHττ = 45◦ and αHττ = −45◦.

In figures 8–10 we display the post-fit data and background template distributions,
after the bin smearing and symmetrisation, with the best fit and pseudoscalar signal tem-
plates overlaid. The cross sections for the pseudoscalar signal are set to the values deter-
mined from the fit to data for the best fit signal, which are given in section 12.1. The
uncertainties have been adjusted to their value after the fit described in section 12. The
most sensitive decay modes of the analysis are displayed, which are the µρ and µπ mode in
the τ

µ
τh channel displayed in figure 8, the ρρ and πρ mode in the τhτh channel displayed

in figure 9, and the eρ and eπ channels in the τeτh channel displayed in figure 10. The
distributions highlight the effectiveness of the MVA discriminant in optimising the signal
over background ratio, as well as the CP-sensitivity of the measurement that follows from
the visibly different phases of the best fit signal and CP-odd signal distributions. The 180◦

phase shift between the τhτh and τ`τh channels is manifest in the figures. The correlated
effect of the PV smearing is also visible in the µπ and eπ modes via the non-flat shapes of
the background distributions.

11 Systematic uncertainties

The uncertainties considered in this analysis can be categorised into normalisation and
shape uncertainties. The former modify only the normalisation of a distribution while
leaving its shape unchanged, whereas the latter allow for correlated changes across bins
that also alter the shapes of the distributions. The uncertainties are accounted for as
nuisance parameters in the fit to data. The normalisation and shape uncertainties are
summarised in table 6, in which we also state their correlations between the three different
years of data-taking considered in this analysis.

11.1 Normalisation uncertainties

The integrated luminosity uncertainty amounts to 2.5, 2.3, and 2.5% for 2016, 2017, and
2018 respectively [101–103], and is applied to all simulated samples discussed in section 4.
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Figure 8. Distributions of φCP in the µρ (upper) and µπ (lower) channels in windows of increasing
MVA score, shown on top of each window. The best fit and pseudoscalar (PS) signal distributions
are overlaid, where in both cases the signal cross sections are set to the values obtained from the
fit to data, which are given in section 12.1. The x-axis represents the cyclic bins in φCP in the
range of (0, 360◦). In the lower panels, the data minus the background template divided by the
uncertainty in the background template is displayed, as well as the signal distributions divided
by the uncertainty in the background template. The uncertainty band accounts for all sources of
systematic uncertainty in the background prediction, after the fit to data.
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Figure 9. Distributions of φCP in the ρρ (upper) and πρ (lower) channels in windows of increasing
MVA score, shown on top of each window. The best fit and pseudoscalar (PS) signal distributions
are overlaid, where in both cases the signal cross sections are set to the values obtained from the
fit to data, which are given in section 12.1. The x-axis represents the cyclic bins in φCP in the
range of (0, 360◦). In the lower panels, the data minus the background template divided by the
uncertainty in the background template is displayed, as well as the signal distributions divided
by the uncertainty in the background template. The uncertainty band accounts for all sources of
systematic uncertainty in the background prediction, after the fit to data.
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Figure 10. Distributions of φCP in the eρ (upper) and eπ (lower) channels in windows of increasing
MVA score, shown on top of each window. The best fit and pseudoscalar (PS) signal distributions
are overlaid, where in both cases the signal cross sections are set to the values obtained from the
fit to data, which are given in section 12.1. The x-axis represents the cyclic bins in φCP in the
range of (0, 360◦). In the lower panels, the data minus the background template divided by the
uncertainty in the background template is displayed, as well as the signal distributions divided
by the uncertainty in the background template. The uncertainty band accounts for all sources of
systematic uncertainty in the background prediction, after the fit to data.
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Uncertainty Magnitude Correlation Shape
Muon reconstruction 1% Yes No
Electron reconstruction 2% Yes No
Muon trigger 2% No No
Electron trigger 2% No No
e → τh rate in τhτh 10 (2)% 2016 (2017,2018) No No
e → τh rate in τeτh 10% No No
µ → τh rate in τ

µ
τh up to 40% No No

b-jet veto 1-9% No No
Luminosity 2.3-2.5% Partial No
Embedded yield 4% No No
tt cross section 4.2% Yes No
Diboson cross section 5% Yes No
Single top quark cross section 5% Yes No
W + jets cross section 4% Yes No
Drell-Yan cross section 2% Yes No
H cross sections 2-5% [100] Yes No
H → ττ branching fraction 2%[100] Yes No
SV reco. eff. in a3pr

1 a3pr
1 2% No No

τh ID efficiency 3% No No
SIP In µ, π, and e decays Decay-mode dependent, 1-5% No No
Muon energy scale 0.4-2.7% Yes Yes
Electron energy scale <1% Yes Yes
τh Trigger pT/Decay-mode dependent No Yes
τh Reconstruction pT/Decay-mode dependent (2-3%) Partial Yes
Top quark pT reweighing ptopT -Dependent Yes Yes
Z pT and mass reweighing p

Z
T/mZ-Dependent Partial Yes

τh Energy scale pT/Decay-mode dependent (0.2-1.1%) No Yes
e → τh Energy scale 0.5-6.5% No Yes
µ → τh Energy scale 1% No Yes
Jet energy scale Event-dependent Partial Yes
Jet energy resolution Event-dependent No Yes
pmiss

T Unclustered scale Event-dependent No Yes
pmiss

T Recoil corrections Event-dependent No Yes
FF uncertainties Described in text Partial Yes
tt/diboson in embedded 10% Yes Yes
L1 trigger timing (2016-2017) Event-dependent (0-4%) Yes Yes
Renorm./Fact. scales Event-dependent Yes Yes
Parton showering Event-dependent Yes Yes

Table 6. Overview of the systematic uncertainties. The third column indicates if the source of
uncertainty was treated as being correlated between the years in the fit described in section 12.
The fourth column indicates if the uncertainty affects the shapes of the distributions.
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The uncertainty in the muon reconstruction efficiency including the tracking, identifi-
cation, and isolation requirements is 1%, while for electrons it is 2%. The uncertainty in
the muon and electron trigger efficiencies, which affect both the single-lepton and cross-
triggers, is 2%. An additional normalisation uncertainty of 4% is applied to the embedded
event samples, originating from the uncertainty in the measurement of the muon trigger
and identification efficiencies used to scale the embedded samples.

For the τ`τh channels, which contain a veto on events containing b-jets, an uncertainty
in the propagation of the b-quark tagging scale factors of 1-9% is applied on the tt and
diboson event yields (the uncertainties on the event yields for other simulated processes
are found to be negligible).

The fewz 3.1 program [104] was used to calculate the W + jets and Z + jets cross
sections. Uncertainties in the factorisation and renormalisation scales, the PDF, and the
running coupling αS were propagated and added in quadrature. The Top++v2.0 pro-
gram [105] was used to calculate the tt cross section and its uncertainty. The extracted
uncertainties for the simulated Z + jets, W + jets, and tt cross sections amount to 2, 4,
and 4%, respectively. For the diboson and single top quark production processes, a com-
bined systematic uncertainty in the background yield is estimated to be 5% using CMS
measurements [106, 107]. The uncertainties in the signal ggH, VBF, and VH production
cross sections, as well as the uncertainty in the H → ττ branching fraction, are applied as
recommended in ref. [100].

The uncertainty in the µ → τh misidentification rate in the τ
µ

τh channel is split into four
independent uncertainties depending on the MVA decay mode of the µ → τh candidate. The
sizes of the uncertainties are 20% for π and ρ, 30% for a1pr

1 , and 40% for a3pr
1 , respectively.

An uncertainty of 10 (2)% to the e → τh misidentification rate is applied for 2016 (2017,
2018) in the τhτh channel. In the τeτh channel, the e → τh misidentification rate is split
per decay mode and is, at most, 10%.

For the τhτh channel, the uncertainty in the jet→ τh background normalisation due to
the extrapolation of the FF from same-sign to opposite-sign regions ranges between 4 and
7%.

For the decay of the τ lepton to µ or a single-pion, an uncertainty in the correction
of SIP is applied by varying the size of the correction by ±25%, while for the decay to an
electron the correction is varied by 40%. The uncertainty is converted into a normalisation
uncertainty per decay mode and ranges 1-5%. For the a3pr

1 a3pr
1 mode, the uncertainty in

the SV reconstruction efficiency is 2%.
Finally, a 3% uncertainty in the efficiency of the τh candidates to pass the DNN

discrimination against muon and electron misidentifications is applied.

11.2 Shape uncertainties

The uncertainty in the τh reconstruction and identification efficiency is typically of the
order of 3%, and split into several uncertainties in each pT and MVA decay mode bin.
The uncertainties in these corrections originates from uncertainties in the fits to the scale
factors for these corrections and are statistically dominated. We also checked if applying
separate uncertainties for τh candidates that are incorrectly classified in a different decay
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mode (e.g. a1pr
1 misclassified as a ρ) creates any variations in the shapes of the signal or

background distributions. However, we found that such uncertainties only resulted in tiny
modifications of the shapes of the φCP distributions, which were negligible in comparison to
the statistical uncertainties in the signal and background templates, and therefore common
uncertainties were used for correctly and incorrectly classified τh candidates in each MVA
decay mode bin. The uncertainty in the τh trigger depends on the pT and decay mode,
and originates from the statistical uncertainty in parameterising the turn-on curve of the
triggers. The τh energy scale uncertainty is 0.8-1.1 (0.2-0.5)% for simulated (embedded)
events, and is decay mode dependent. The uncertainty in the µ momentum scale varies as a
function of the η of the muon and ranges 0.4-2.7%. The uncertainty in the electron energy
scale is less than 1% and depends on the pT and η. The e → τh energy scale uncertainty
ranges 0.5-6.5%, while the µ → τh energy scale uncertainty is 1%.

Uncertainties in the jet energy scale originate from different sources with limited cor-
relations. The uncertainties depend on the jet kinematics and are typically larger in the
forward regions. Uncertainties in the jet energy resolution are also incorporated; these
uncertainties are typically smaller than the jet energy scale uncertainties. Uncertainties
related to the hadronic recoil response and resolution as derived from the Z + jets, W + jets
and signal samples, are propagated to ~pmiss

T and observables dependent on ~pmiss
T in the

simulated samples that are subject to hadronic recoil corrections. For the samples in which
no hadronic recoil is applied (diboson, single top quark, and tt), the jet energy scale and
resolution uncertainties as well as the uncertainty in the unclustered energy are propagated
to ~pmiss

T and observables dependent on ~pmiss
T in the simulated samples instead.

The embedded samples contain small fractions of tt and diboson events. A shape
uncertainty is therefore applied by adding and subtracting 10% of the simulated tt and
diboson contributions. The top quark pT and Drell-Yan pT and mass spectra are reweighed.
For the top samples, the size of the correction is taken as the uncertainty, while for the
Drell-Yan samples the correction is varied by 10%.

The FF values are parameterised with continuous functions, and the statistical un-
certainties in the fitted parameters are treated as nuisance parameters. The uncertainties
are parameterised in a manner that allows for asymmetric variations above and below the
pT value where the uncertainty is minimal; the procedure is similar to the method de-
scribed in detail in ref. [11]. The size of the correction in pmiss

T is taken as an uncertainty
for all FF values. For the τhτh channel, the shape uncertainty in the QCD same-sign to
opposite-sign region correction is determined as the difference between a correction binned
in the distance ∆R between the two τ leptons and the jet multiplicity, and the unbinned
correction. For the τ`τh channels, the equivalent shape uncertainty is taken as the size of
the same-sign to opposite-sign correction. In addition, a systematic uncertainty due to the
light-lepton pT correction is taken as the size of the correction. For the W + jets FF values,
the uncertainty due to the extrapolation from the high-mT to the low-mT region is taken
as the size of residual differences observed when applying FF values derived for high-mT
simulated events to low-mT simulated events. For the tt FF, a systematic uncertainty is
applied to account for potential differences between data and simulation. To this purpose,
the difference between FF values derived via data and simulated W + jets samples is ap-
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plied as the uncertainty. An uncertainty in the subtraction of the background processes
not involving jet → τh events is considered by varying the contribution predicted from
simulation by ±10%.

For uncertainties that are common to simulated and embedded samples we treat the
lepton and τh identification uncertainties and the lepton and τh energy scale uncertainties
as being 50% correlated. All other common uncertainties are treated as being uncorrelated.

During the 2016 and 2017 data-taking periods, a gradual shift in the timing of the
inputs of the ECAL L1 trigger in the forward endcap region (2.5 < |η| < 3.0) led to a specific
inefficiency. Additional correction factors and corresponding uncertainties are applied to
the simulation to account for this inefficiency. The magnitude of the uncertainties ranges
between 0-4% depending on the process, category, and channel.

For the signal samples, renormalisation and factorisation scales and parton showering
uncertainties were incorporated [100] .

The limited number of events in the signal and background templates is accounted for
using the “Barlow-Beeston” method [108, 109], which assigns a single nuisance parameter
per bin per process. For background templates that have been flattened as described
in section 9 the bin-by-bin uncertainties are fully correlated such that there is only one
independent nuisance parameter for all φCP bins. For background templates that are
symmetric in φCP = 180◦ one nuisance parameter per pair of symmetrised bins is utilised.
It should be noted that for flattened background templates multiple nuisance parameters
are still needed per process since multiple windows of increasing MVA score are used.

We also considered other systematic uncertainties that could modify the shape of the
simulated φCP distributions, including the energy scale, and energy and angular resolutions
of the charged and neutral pions, impact parameters, and SV−PV directions. However,
we found that such uncertainties only resulted in tiny modifications to the shapes of the
φCP distributions, which were negligible in comparison to the statistical uncertainties in
the signal and background templates, and they were therefore neglected in this analysis.

The systematic uncertainty scheme is validated by fitting the φCP distributions in a
Z → ττ control region, obtained following the procedure described in section 8.4. Goodness
of fit tests have been performed to assess the validity of the statistical model. These tests
indicated a good compatibility between the data and the model.

12 Results

In order to extract the CP-mixing angle αHττ , a simultaneous fit to the data is performed
using the likelihood function L(L, ~µ, αHττ , ~θ) that depends on ~µ = (µggH , µqqH), which
are the Higgs boson signal strength modifiers (defined as the cross section times H → ττ

branching fraction with respect to the SM value), the CP-mixing angle αHττ , and the
nuisance parameters ~θ that account for the systematic uncertainties. In the fit, all H → ττ

production processes involving V boson couplings, namely VBF and VH, are scaled by
µqqH , while the ggH process is scaled by µggH . The fit is able to differentiate between
these production modes because the shapes of the MVA score distributions are different;
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the VBF signal tends to peak more sharply towards larger MVA scores, whereas the ggH
distribution is broader.

The likelihood function is defined as a product of conditional probabilities P over
binned distributions of the discriminating observables in each event category:

L(L, ~µ, αHττ , ~θ) =
Ncategories∏

j

Nbin∏
i
P (ni,j | L ~µ ~Ai,j(~θ, αHττ ) +Bi,j(~θ))

Nnuisance∏
m

Cm(~θ). (12.1)

In this equation, the Poisson distributions P correspond to the observation of ni,j events in
each bin of the discriminating observable given the expectation for the background Bi,j(~θ)
and the signal Si,j(L, αHττ , ~µ, ~θ) = L ~µ ~Ai,j(~θ, αHττ ), in which L is the integrated luminosity
and ~Ai,j(~θ, αHττ ) is the signal acceptance in each production bin. Constraints on the
nuisance parameters corresponding to the systematic uncertainties described in section 11
are represented by the functions Cm(~θ). A more detailed discussion on the formulation
of the statistical inference may be found in refs. [109, 110]. The systematic uncertainties
affecting the normalisation of the signal and background templates are incorporated in the
fit via nuisance parameters with a log-normal prior probability density function. The shape-
altering systematic uncertainties are represented by nuisance parameters whose variations
cause continuous morphing of the signal or background template shapes, and are assigned
a Gaussian prior probability density function. The bin-by-bin statistical uncertainties in
the background samples are also assigned a Gaussian prior probability density function.

Using the negative log-likelihood, which is defined as

− 2∆ lnL = −2
(
ln(LαHττ )− ln(LαHττ

best fit)
)
, (12.2)

we find the 68.3, 95.5, and 99.7% confidence intervals when −2∆ lnL equals 1.00, 4.02, and
8.81, respectively. A detailed discussion may be found in section 3.2 of ref. [111].

The inputs to the likelihood fits differ for the signal and background categories. For the
signal categories, the φCP distributions in bins of the MVA score are used (a subset of these
are displayed in figures 8–10). For the background categories, the MVA score distributions
are used. This allows for the background contributions and systematic uncertainties to be
further constrained, and helps to improve the fit convergence.

12.1 αHττ mixing angle results

We present the observed and expected negative log-likelihood scan for the combination of
the τeτh, τ

µ
τh, and τhτh channels in figure 11. The two rate parameters that scale the ggH

and qqH production signal strength were left to float freely in the fit. The best fit values
of these parameters are µggH = 0.59+0.28

−0.32 and µqqH = 1.39+0.56
−0.47, respectively, with the

correlation coefficient ρ = −0.76 . We note that there is a strong anticorrelation between
these parameters as the analysis does not directly attempt to differentiate between the
production modes.

The data disfavour the pure CP-odd scenario at 3.0σ. The expected exclusion assuming
the SM H is 2.6σ. The observed (expected) value of αHττ is found to be −1±19◦ (0±21◦)
at the 68.3% CL, and ±41◦ (±49◦) at the 95.5% CL. Furthermore, we obtain an observed
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Figure 11. Negative log-likelihood scan for the combination of the τeτh, τ
µ

τh, and τhτh channels.
The observed (expected) sensitivity to distinguish between the scalar and pseudoscalar hypotheses,
defined at αHττ = 0 and ±90◦, respectively, is 3.0σ (2.6σ). The observed (expected) value for αHττ

is −1± 19◦ (0± 21◦) at the 68.3% CL. At 95.5% CL the range is ±41◦ (±49◦), and at the 99.7%
CL the observed range is ±84◦.

±84◦ at the 99.7% CL. The uncertainty can be decomposed into: statistical; bin-by-
bin fluctuations in the background templates; experimental systematic uncertainties; and
theoretical uncertainties. In this decomposition we obtain

αHττ = −1± 19 (stat)± 1 (syst)± 2 (bin-by-bin)± 1 (theo)◦.

This result is compatible with the SM predictions within the experimental uncertainties.
The expected sensitivities of the τeτh, τ

µ
τh, and τhτh channels are 1.0, 1.5, and 1.8σ,

respectively. The µρ mode yields the most sensitive expected contribution of 1.2σ, followed
by the ρρ and πρ modes that contribute 1.1 and 1.0σ, respectively. All other modes have
sensitivities below 1σ.

The statistical uncertainties in the background templates are the subleading source of
systematic uncertainty in this analysis. As the dominant contributions to the backgrounds
are determined themselves from control samples in data, the amount of data is the limiting
factor in this uncertainty. The next most dominant sources of uncertainty are the hadronic
trigger efficiency, theory uncertainties, the τh energy scale, and uncertainties related to the
implementation of the FF method.

It was shown in ref. [36] that in the next-to-minimal supersymmetric model mixing
angles as large as ≈27◦ can be accommodated by the latest electric dipole moment and
Higgs boson measurements. This measurement is thus sensitive to the larger allowed mixing
angles in this model.
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Figure 12. The 2-D scan of the signal strength modifier µ versus αHττ . The 68.3, 95.5, and 99.7%
confidence regions are overlaid.

A fit to the data is also performed assuming µggH = µqqH = µ. In this case µ is the
combined signal strength modifier that scales the total H production cross section times
H → ττ branching fraction relative to the SM value. In figure 12 we display a scan of µ
versus αHττ . We observe that there is no strong correlation between these parameters.

In order to make a 2-D scan of κτ and κ̃τ , as defined in eq. (2.2), we parameterise the
likelihood from eq. (12.1) in terms of κτ and κ̃τ . All other H couplings are fixed to their
expected SM values.

In the case of a 2-D negative log-likelihood, the 68.3, 95.5, and 99.7% confidence
regions are found when −2∆ lnL2D equals 2.30, 6.20, and 11.62 [111], respectively, defined
analogously to eq. (12.2) with the likelihood now a function of both κτ and κ̃τ . All other
CP-even (CP-odd) couplings affecting the production cross sections and/or the H → ττ

branching fraction are fixed to their SM values, κi = 1 (κ̃i = 0). The observed result of the
scan is shown in figure 13. It should be noted that the fit is only sensitive to the relative
sign between κτ and κ̃τ and thus the scan has two best fit points for positive and negative
values of κτ .

In figure 14 we display the data of the ρρ, πρ, µρ, and eρ channel together with
CP-even and CP-odd predictions. These channels are chosen as the same number of φCP
bins are used in the fit to data, and collectively they account for most of the sensitivity
to αHττ . Events are included from all MVA score bins in these signal categories. Each
MVA score bin is weighed by A S/(S +B), where S and B are the signal and background
rates, respectively, and A is a measure for the average asymmetry between the scalar
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Figure 13. The 2-D scan of the (reduced) CP-even (κτ ) and CP-odd (κ̃τ ) τ Yukawa couplings.
The 68.3, 95.5, and 99.7% confidence regions are overlaid.

and pseudoscalar distributions. The definition of the value of A per bin is |CPeven −
CPodd|/(CPeven+CPodd), and A is normalised to the total number of bins. In this equation,
CPeven and CPodd are the scalar and pseudoscalar contributions per bin. This distribution
shows that the data favour the CP-even scenario.

13 Summary

The first measurement of the effective mixing angle αHττ between scalar and pseudoscalar
Hττ couplings has been presented for a data set of proton-proton collisions at

√
s = 13TeV

corresponding to an integrated luminosity of 137 fb−1. The data were collected with the
CMS experiment at the LHC in the period 2016-2018. The following τ lepton decay modes
were included: e±, µ

±, π
±, ρ

± → π
±

π
0, a1

± → π
±

π
0
π

0, and a1
± → π

±
π
∓

π
±. Dedicated

strategies were adopted to reconstruct the angle φCP between the τ decay planes for the
various τ decay modes. The data disfavour the pure CP-odd scenario at 3.0 standard
deviations. The observed effective mixing angle is found to be −1±19◦, while the expected
value is 0±21◦ at the 68.3% confidence level (CL). The observed and expected uncertainties
are found to be ±41◦ and ±49◦ at the 95.5% CL, respectively, and the observed sensitivity
at the 99.7% CL is ±84◦. The leading uncertainty in the measurement is statistical,
implying that the precision of the measurement will increase with the accumulation of
more collision data. The measurement is consistent with the standard model expectation,
and reduces the allowed parameter space for its extensions. Tabulated results are provided
in HEPDATA [112].
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Figure 14. The φCP distributions for the ρρ, πρ, µρ, and eρ channels weighed by A S/(S + B)
are combined. Events are included from all MVA score bins in the four signal categories. The
background is subtracted from the data. The scalar distribution is depicted in red, while the
pseudoscalar is displayed in blue. In the predictions, the rate parameters are taken from their
best fit values. The grey uncertainty band indicates the uncertainty in the subtracted background
component. In combining the channels, a phase-shift of 180◦ was applied to the channels involving
a lepton since this channel has a phase difference of 180◦ with respect to the two hadronic channels
due to a sign-flip in the spectral function of the light lepton.
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