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The Weak Objectivity of Mathematics and Its Reasonable 
Effectiveness in Science 

 
 
 

Abstract 
 

Philosophical analysis of mathematical knowledge are commonly conducted within 
the realist/antirealist dichotomy. Nevertheless, philosophers working within this 
dichotomy pay little attention to the way in which mathematics evolves and struc- 
tures itself. Focusing on mathematical practice, I propose a weak notion of objec- 
tivity of mathematical knowledge that preserves the intersubjective character of 
mathematical knowledge but does not bear on a view of mathematics as a body of 
mind-independent necessary truths. Furthermore, I show how that the successful 
application of mathematics in science is an important trigger for the objectivity of 
mathematical knowledge. 
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1 Introduction 

Starting a paper with a long quotation is probably not the most elegant way to set 
things moving. Nevertheless, the following words from Hilary Putnam beautifully 
serve as an introduction to the subject of the present article. This is why, at the risk 
of being inelegant, I report them here: 

I urge first that mathematics should be interpreted realistically and objectively. 
But unfortunately, belief in the objectivity of mathematics has generally gone 
along with belief that “mathematical objects” have an unconditional and super- 
physical reality, and with the idea that mathematical knowledge is strictly a 
priori. But actually, the criterion of truth in mathematics is the success of its 

 



 

 

ideas in practice; mathematical knowledge is corrigible and not absolute; thus 
it resembles empirical knowledge in many respects (Putnam 1975, p. 529) 

Putnam’s words, echoing Kreisel’s point that the interesting question is not about 
the existence of mathematical objects but about the objectivity of mathematical dis- 
course, sound menacing to the hears of the platonist who claims for the existence 
of mathematical objects. And the intimidation is even more strong if we accept the 
idea that mathematical knowledge is ‘corrigible and not absolute’. How can Putnam 
say that? And, more importantly, how can we account for the objectivity of math- 
ematics if we abandon the idea of an infallible and absolute mathematics? At first 
glance, it seems that behind Putnam’s words there are good news for the nominalist 
philosopher (“mathematical objects do not exist... I told you, Plato!”). Nevertheless, 
the happy nominalist has no reason to be so happy. Although Putnam believes that 
the question over the existence of mathematical objects is not an interesting one and 
we have to avoid commitment to mathematical objects, a standpoint that is certainly 
very attractive to the anti-realist, he is a realist of some sort (for Putnam mathemati- 
cal statements are true about possibilities, not about objects, and these truths are 
true independently of the human mind). Moreover, and this is a lesson that I think 
the nominalist has to gulp down when reading the passage above, an analysis of the 
nature of mathematical knowledge should be conducted in tandem with an analysis 
of the success of mathematics ‘in practice’, considering mathematical knowledge as 
‘corrigible and not absolute’. Engaged in her philosophical battle with the platonist, 
a battle completely focused on ontology, the nominalist seems not to pay the suf- 
ficient attention to the practice of mathematics, its evolution and its constitution.1 
This is, I think, a big mistake. Accepting the ontological arena as the proper and 
unique location for the dispute on the nature of mathematical knowledge has led 
both the nominalist and the platonist to undervalue, or even bypass, some ‘evolu- 
tionary’ features of mathematics that are extremely interesting from a philosophical 
point of view. 

I take Putnam’s words as trigger for the following question: how can we account 
for the objectivity of mathematics and make this objectivity compatible with the 
corrigible and not absolute character of mathematics? In the first two sections of 
this paper I shall provide an answer to this question. Elaborating on some ideas that 
have been proposed in Friend (2014) and Ferreirós (2015), I shall propose a weak 
notion of objectivity of mathematical knowledge that does not arise from some 
aprioristic view of mathematical knowledge but it is the result of a practice (or bet- 
ter a sequence of practices) in mathematics. In the development of these practices 
the (weak) objectivity of mathematical results is weakened or reinforced through 

 

 
1 Platonist and nominalist philosophies of mathematics come in degree and I am over simplifying here. 
Nevertheless, even acknowledging the subtle nuances that characterize these philosophies, my point still 
holds: the contemporary battle in philosophy of mathematics is mainly focused on ontology and other 
aspects of mathematics, as for instance the way in which mathematical knowledge evolves, are totally 
omitted from this battleground. This is particularly evident from how the recent discussion over Indis- 
pensability Argument(s) has been carried out. Nonetheless, there are exceptions to this attitude and I 
shall say more on these later in the paper. 



 

 

crosschecking within mathematics or even through the interaction with the empiri- 
cal sciences. Thus in my account objectivity comes in degree, and it is exactly this 
objectivity that confers mathematical knowledge epistemic stability within the math- 
ematical community. Nevertheless, I do not take a higher degree of weak objectiv- 
ity as a mark of truth. In order to illustrate my position, I shall briefly report some 
examples of mathematical results that have acquired their objectivity and the rela- 
tive stability as the result of a sequence of practices (in mathematics and in science) 
and the crosschecking process that came with these practices. Next, in the third sec- 
tion of my paper, I will address a different (although strictly related) question: how 
can we make the effectiveness of mathematics in science compatible with a notion 
of objectivity that makes mathematics ‘corrigible and not absolute’? This question 
is particularly important because, as it is clear from the debate around the Indis- 
pensability Arguments for mathematical realism, it is precisely the ‘good’ applica- 
bility of mathematics, namely the possibility to get successful inferences about the 
world through mathematics, that some philosophers consider as an indicator of the 
absolute and necessary character of mathematics. Thus an account of objectivity of 
mathematics should say something on how this objectivity is supposed to work in 
practice, namely when we use mathematics in science. 

 
 

2 The Fallible and Corrigible Character of Mathematics 

Is mathematics fallible? Yes. The Euler’s sum of like powers conjecture, which was 
formulated by Euler and states that at least n nth powers are required to sum to an 
nth power for n > 2, was shown to be false by Lander and Parkin (1966). Is math- 
ematical knowledge corrigible? Yes. As an example of the corrigible character of 
mathematics take the famous four color conjecture, proposed by Francis Guthrie in 
1852.2 The conjecture was proved by Alfred Kempe in 1879 and Peter Guthrie Tait 
in 1880. The problem was considered ‘solved’ and the two proofs of the relative the- 
orem remained unchallenged for about eleven years. Nevertheless, Kempe’s proof 
was shown to be false by Percy Heawood in 1890, while a gap in Tait’s argument 
was found by the Danish mathematician Julius Petersen in 1891 (Thomas 1998). 
Many attempts to prove the theorem followed. In some cases these attempts did not 
survive, while in other cases the proofs were corrected and improved. More than a 
century of developing the necessary theoretical machinery would have pass before 
it was established that Francis Guthrie’s conjecture was true. The complete proof of 
the Four-Color theorem was finally achieved in 1976 by Kenneth Appel and Wolf- 
gang Haken, with the help of an IBM 360 in Urbana (Appel and Haken 1977).3 The 
mathematical tools developed during this century-long story strongly contributed 
to the development of new stems and branches of mathematics, one being graph 

 

 
2 Guthrie’s conjecture that four colors are sufficient to color the world map so that adjacent countries 
receive distinct colors is equivalent to the mathematical statement that any plane graph is 4-face-colora- 
ble. 
3 The authors published a revised version of their proof in Appel and Haken (1989). 



 

 

theory.4 For the unconvinced reader who is thinking that, after all, a conjecture is 
not a well respected piece of mathematical knowledge until it is confirmed or dis- 
confirmed, here is another example of the fallible and corrigible character of math- 
ematics.5 Lagrange’s multiplier rule, originally introduced by Lagrange in his Méca- 
nique Analytique, was subjected to several allegedly correct proofs during the 19th 
century. Nevertheless, all these proofs were later seen as flawed and it was only in 
1906 that Hilbert gave a proof filling all the gaps of the previous demonstrations 
(Goldstine 1980). 

But the unconvinced reader is still unconvinced. Why? First, even if we acknowl- 
edge that there are proofs that are not correct, we can always say that these are not 
part of our best mathematical knowledge (indeed, they are rectified at a later stage). 
Second, in mathematics we usually assess statements (theorems) deductively, from 
an established set of axioms. Therefore, once the axioms have been correctly set 
in place, no failure will follow. If this is what we assume mathematics to be about, 
then Appel and Haken’s computer proof does not count as a proof (not in the tradi- 
tional sense, at least). Third, and here the platonist jumps into the discussion, the 
fact that some mathematical results are subject to correction can be interpreted as 
a manifestation of an absolute, not fallible, mathematical knowledge. After all, we 
only have to get to it. And we can make errors in our search for the truth. That is the 
mathematical knowledge we are talking about. And that mathematical knowledge is 
not fallible at all. 

I have various replies to these observations, and I address these in turn. First, 
as it happened in the case of the two false proofs of the four color theorem, a false 
mathematical proof can be seen as a bona fide part of our mathematical knowl- 
edge. This happens at a particular stage of mathematical development, before that 
particular piece of mathematics is subject to a potential revision (similarly to what 
happens in empirical science). Consider, for instance, the book Proofs from THE 
BOOK by Martin Aigner and Günter M. Ziegler, now in its 6th edition (Aigner and 
Ziegler 2018). The proofs in that book are generally considered correct, however 
the fact that such book is now in its 6th edition well supports the idea that some 
proofs may be subject to improvements, and even corrections, in the future. Thus, 
if proofs are part of what we consider as mathematical knowledge, and if proofs 
are corrigible, then mathematical knowledge should be seen as corrigible. Second, 
even if within an axiomatic system we assess the truth or falsity of mathematical 
statements, what about the axioms themselves? What about the axiom of choice and 
its justification? Don’t we accept it as a self-evident, intrinsically necessary, funda- 
mental principle? What about the truth value of the continuum hypothesis? Do we 
have reasons to discard the possibility that, at a later stage of development of math- 
ematics, the continuum hypothesis will come out as false? Furthermore, although 
some mathematicians do not consider a computer-based proof as a mathematical 

 

 
4 The history of the four-color theorem and its import for the development of various areas of modern 
mathematics are examined in detail in Fritsch and Fritsch (1998) and Wilson (2013). 
5 An analysis of the important and guiding role that conjectures play in mathematics is offered in Mazur 
(1997). 



 

 

proof (and, indeed, the question of a computer-free proof of the four-color theorem 
still remains), this does not mean that the same mathematicians question the valid- 
ity of results such as that obtained by Appel and Haken. In fact, Appel and Haken’s 
result is generally accepted as valid by mathematicians.6The point is that within the 
development of mathematics several ‘BOOKS’ have been written, and some of them 
contained mathematical results that were considered as bona fide pieces of math- 
ematical knowledge according to some standards (e.g., diagram-based reasoning, or 
even physical principles used in the context of geometry, as shown by Archimedes’ 
works). But some of these results were proven to be false in a later stage. And there- 
fore what was considered as indubitable and infallible according to some standards, 
at a precise historical moment, was indeed fallible. Finally, concerning the third 
remark put forward in the previous paragraph, I agree that the existence of errors 
and corrections in mathematics does not threaten a platonist point of view (indeed, 
it is not my intention here to propose such a criticism). Nevertheless, the fact that 
mathematical results are improved and subject to correction at a later stage does 
not support the platonist position either. And a parallel with the pessimistic meta- 
induction argument in philosophy of science well illustrates the point: mathemati- 
cal results which were (considered as) successful were found to be flawed in some 
respect, so we have no reason to believe that our currently mathematical results are 
faultless.7 

There are many other examples that may be added here and that show the fallible 
and corrigible character of mathematical knowledge. All these examples, although 
rarely displayed in a contemporary textbook of mathematics, suggest that the build- 
ing of that solid edifice we call mathematical knowledge is the result of a complex 
and not error-free process. In this process some bricks are thrown away, modified, 
added or even substituted with new blocks that show a better fit with the edifice 
itself. This is not new. But if mathematics has such a fallible and corrigible char- 
acter, any specific philosophical position on the nature of mathematical knowledge 
should account for it. Nevertheless, the contemporary discussion between platonists 
and nominalists seems to have no account (and interest) about this ‘imperfect’ aspect 
of mathematics (except for the platonistic observation that such fallibility is ascrib- 
able to mathematicians and not to mathematics, which must be considered a source 
of absolute and indubitable truth). On the other hand, even if we acknowledge the 
fallible and corrigible character of mathematics, we are still missing an important 
part of the story. Mathematics shows an impressive form of inter-subjectivity and 
we want to grant its results a form of objectivity that makes justice of such inter- 
subjective character. 

 
 
 
6 The philosophical significance of Appel and Haken’s proof of the four-color theorem and its impact on 
the notion of proof are analyzed in Tymoczko (1979). The influence of computer science on contempo- 
rary mathematics and the challenges that philosophy has to meet when addressing these developments 
are discussed in Avigad (2008). 
7 It is important to clarify here that with the expression ‘mathematical results’ I am considering not only 
statements of theorems but also proofs, which should be included in what we consider ‘mathematical 
knowledge’. 



 

 

3 The Objectivity of Mathematics 

Objectivity is not a univocal notion and it is used to express a complex variety of 
metaphysical and epistemological views. Typically, what is objective is taken to be 
independent (or to exist independently) of human thought, as opposed to something 
that depends (or whose existence is not independent) of human intellectual activ- 
ity. This notion of objectivity, which is based on the idea of ‘ontological independ- 
ence’ (Kölbel 2002), is commonly used to identify mathematics as a body of mind- 
independent absolute and necessary truths. On this characterization, to consider the 
content of mathematical knowledge as objective is to accept a realist position (real- 
ism in truth value if we consider that the truth value of sentences of a mathemati- 
cal theory is independent to our ability to establish them; realism in ontology if we 
consider that the ontology of mathematical discourse is independent of our knowl- 
edge of mathematics). Call this ‘strong objectivity’. Strong objectivity is frequently 
adopted among philosophers of mathematics, and it is easy to see how it can accom- 
modate the intersubjective character of mathematics. Nevertheless, there is no prima 
facie reason to prefer this strong notion of objectivity to a notion of objectivity that 
does not bear on absolute truth and ontological dependence. What I have in mind 
is a weaker sense of objectivity, which although not dependent on the existence of 
mathematical objects and on the truth of mathematical theories is nonetheless capa- 
ble to account for the intersubjective character of mathematics and its success in 
application. 

Before passing to the notion of weak objectivity, let me spend some words on 
truth evaluability and ontological dependence. What is ‘truth’ in mathematics? I take 
truth in mathematics to be ‘truth in a theory’, and not as a synonymous for ‘absolute 
truth’ or ‘truth of a theory’ (the first being the mark of realism in ontology while the 
second of realism in truth value). The sentence ‘the sum of the angles of a triangle is 
180◦’ is true in Euclidean geometry, while it is false in Bolyai-Lobachevsky geom- 
etry, in which Euclid’s fifth postulate is replaced with a different postulate. ‘3+5=8’ 
is true in Peano arithmetics but it is false in arithmetic mod 5, where 3+5=3. I am 
aware that this attitude towards truth in mathematics will not satisfy some, but I 
also consider that it better renders the use of ‘truth’ that we find in mathematical 
practice.8 What about ontological dependence? Although the discussion that I offer 
below will make clear how my considerations are not framed within a particular 
ontological attitude, I think that is important to clarify my position here. I consider 
questions of existence (or non existence) of mathematical objects as independent 
from the objective and intersubjective character of mathematics. After all, this opin- 
ion seems to be largely shared by mathematicians. Philosophers of mathematics 
interested in ontology usually quote famous mathematicians to support their phil- 
osophical standpoints and argue for or against the strongly objective character of 
mathematics. Nevertheless, the majority of the mathematical community seems to 

 
 
8 Ferreirós adopts the same stance toward ‘truth’: “My use of the word ‘truth’ at this point must be rela- 
tivized by implicit or explicit reference to a mathematical theory. This agrees with the practice of most 
mathematicians; hence it should not be perceived as a shortcoming” (Ferreirós 2015, p. 8). 



 

 

be neutral to these ontological issues, although regarding mathematics as objective 
and intersubjective.9 Thus the question: if it is not about absolute truth and ontology, 
in what sense mathematical knowledge is objective? 

Mathematics can be seen as the result of a sequence of different and intercon- 
nected practices (Ferreirós 2015).10 These practices are based on different activities 
and therefore they should be considered as distinct. Examples of practices include 
the practice of counting, measuring, drawing, manipulating objects (these practices 
are called by Ferreirós ‘technical practices’ and are considered as more elementary, 
or proto-mathematical, because rooted in our particular cognitive abilities),11 the 
practice of calculating and that of using a symbolic framework. Practices are agent- 
based because are performed by human agents, nonetheless they are not subjective 
and relative only to the individual because they are adopted and shared within the 
mathematical community. Furthermore, they are interconnected and they mutually 
interact. It is precisely in this interaction that symbolic and theoretical mathematical 
frameworks, as for instance the framework of Euclidean geometry, are defined. And 
it is this interaction that, according to Ferreirós, constraints mathematical knowledge 
and makes it objective: 

we have working knowledge of several different practices and strata of knowl- 
edge, together with their systematic interconnections. This causes links that 
restrict the admissible–for instance, when a new framework is being devel- 
oped–and that are responsible for much of the objectivity of mathematical 
results and developments. The interplay of practices acts as a constraint and a 
guide (Ferreirós 2015, p. 39) 

I agree with Ferreirós that practices and their interplay constrain mathematical 
knowledge and therefore contribute to its objectivity (its strong inter-subjective 
character). Nevertheless, I think that within this interplay of practices what confers 
mathematics its objectivity is the process of crosschecking, a process that can be 

 

 
9 Let me note that it is not my intention here to give an argument against platonism. Moreover, the fact 
that I consider the notion of objectivity in mathematics as independent from the notion of existence does 
not mean that I am excluding a possible connection between the two. In this respect, I adopt a skeptic 
position and I leave to the realist the task to show that the objectivity of mathematics is the manifestation 
of the existence of a realm of abstract and timeless entities. 
10 The philosophical analysis of history of mathematics and practices of working mathematicians 
has become an important concern for many philosophers of mathematics since the emergence of anti- 
foundational works such as Lakatos’ Proofs and Refutations (Mancosu 2008; cf. also Tymoczko 1985). 
Although the term ‘mathematical practice’ is generally used to indicate the way in which mathematicians 
do mathematics, its use may vary depending on the author. In Kitcher (1984) an analysis of the growth 
of mathematical knowledge is given in terms of practices, and every practice is peculiar of a particular 
historical period in the development of mathematics. Differently from Kitcher, Ferreirós considers that 
different levels of practices can coexist during the same period (Ferreirós 2015, pp. 4–5). In what follows 
I adopt Ferreirós’ view on practices, which I think offers a better rendering of how mathematics is prac- 
ticed and develops. 
11 The opinion that some parts of mathematics, as for instance elementary geometry, are grounded in 
basic cognitive skills is shared by many philosophers of mathematics (cf. Giaquinto 2007). Giuseppe 
Longo calls “cognitive foundation of mathematics” the project of accounting for the intersubjective and 
conceptually-stable character of mathematics in terms of early cognitive processes (Longo 2003). 



 

 

internal or external to mathematics. It is therefore the notion of crosschecking that I 
see as central to the objectivity of mathematical discourse. 

The notion of crosschecking in mathematics, and more particularly the kind 
of objectivity that can be recovered through an analysis in terms of this notion, is 
extensively discussed in Friend (2014). Friend considers various kinds of cross- 
checkings in mathematics, as for instance embeddings or reductions, but in general 
the process of crosschecking consists in applying one mathematical theory, or even 
one mathematical result, to check another theory or other mathematical results. 
In order for the crosschecking be possible, there should be something in common 
between the checking mathematics and the checked mathematics. These common 
notions are called by friend ‘fixtures’ and they are taken as preconditions for cross- 
checking in mathematics (Friend 2014, p. 151).12 But what about objectivity? Like 
Friend, I consider that crosschecking reinforces mathematical results and theories, 
thus contributing to their inter-subjective character within the mathematical com- 
munity. It is not an instrument of absolute-truth evaluability but it “supplants the 
need for absolute truth, absolute and independent ontology, a foundation or for a 
single orientation” (Friend 2014, p. 152). And it is exactly the failure or success of 
crosscheckings that confers mathematical results less or more objectivity within the 
community of mathematicians.13 As Friend points out: 

Moreover, the crosschecking is robust since it is rigorous. There are plenty of 
contexts where attempts at cross application do not work. It is not the case that 
everything in mathematics fits together in any way we choose, and it is the fail- 
ure of cross-application which is evidence for the objectivity and non-triviality 
of mathematics. This sort of objectivity is not grounded in an ontology. Rather, 
some successful instances of fit, or convergence, are evidence for some suc- 
cessful instances of fit and convergence, nothing more (Friend 2014, p. 171) 

Thus my thesis is: mathematical practices constrain mathematical knowledge but 
it is through the crosschecking process that this knowledge acquires more or less 
objectivity. This kind of objectivity is a weak form of objectivity (as compared to 
the strong form of objectivity which is dependent on ontology and absolute truth). 
It is dependent on the agents because practices are made by agents. And therefore 
not subject-independent in an absolute sense. Nevertheless, practices are shared by 
mathematicians and thus they should be regarded as partly autonomous from the 
individual agent. The same autonomy holds for crosscheckings: crosscheckings 
are made internally (within mathematics) or externally (through the application of 

 

 
12 The intuition behind this requirement is easy to catch: if we want to check A using B, there should be 
a way to ‘see’ the information and the objects of B (or at least that piece of information which is relevant) 
from the perspective of A (and viceversa), namely a constant mathematical idea that serves as a basis for 
comparison between theories. 
13 Friend considers Wright’s criteria for objectivity (Wright 1992), and particularly his notions of cogni- 
tive command and width of cosmological role, as components of her account of objectivity. Similarly, 
Shapiro (2011) applies Wright’s criteria to the notion of objectivity in mathematics. Although I agree 
with Friend and Shapiro in considering Wright’s criteria as useful in shaping a notion of objectivity in 
mathematics, I won’t discuss this issue here and I will leave it for future work. 



 

 

mathematics in science), but they are oriented by practices. Thus, on this (weak) 
notion of objectivity, mathematical knowledge is neither arbitrary nor ‘subjective’ 
(e.g., relative only to the individual). 

Take, for instance, the case of the Pythagorean theorem. In Greek geometry this 
result was constrained by different practices: measuring, counting, symbolic manip- 
ulation and diagram-based practices. Many geometrical proofs of this theorem were 
proposed but it is with the development of number theory and particularly algebra 
that it acquired more ‘objectivity’. Through algebraic methods mathematicians were 
able to ‘read’ the Pythagorean theorem and its objects from a fresh perspective, thus 
making the result more stable. Moreover, with the advent of non-Euclidean geom- 
etries and the emergence of new ways of practicing mathematics, the theorem was 
subject to an even stronger crosschecking. Indeed, non-Euclidean geometries did not 
falsify Euclidean geometry but showed that the scope of its theorems only cover 
those systems in which the parallel postulate is assumed (although the Pythagorean 
theorem lost its status of absolute truth; but, again, truth is truth in a theory and 
this particular theorem holds in Euclidean geometry, where the parallel postulate 
is assumed). Therefore the objectivity of the Pythagorean theorem was reinforced 
further. This is an example of what I call ‘internal crosschecking’, namely a cross- 
checking that comes from the application of mathematics to mathematics. Neverthe- 
less, I also propose another form of crosschecking that contributes to the objectiv- 
ity of mathematical knowledge. I call this second form of crosschecking ‘external’ 
because it comes from the application of mathematics in science and from the use 
of empirical principles to justify mathematical theorems. In the case of the Pythago- 
rean theorem, several cases of application in science can be mentioned since the 
prominent use of Euclidean geometry in physics. Furthermore, several mechani- 
cal proof of the Pythagorean theorem can be given (Levi 2009; Kogan 1974). And 
although these ‘physical proofs’ have not influenced so much the history of this par- 
ticular theorem, they define another type of crosschecking that contributes to the 
objectivity of a mathematical result.14 

The are some observations that I think are worth adding at this point. First, this 
notion of weak objectivity well fits with various aspects of mathematical prac- 
tice, as for instance that of giving different proofs of the same theorem. Why do 
mathematicians look for different proofs of the same theorem? Why do we have so 
many proofs for the Pythagorean theorem? One reply might be that mathematics 
is funny, and mathematicians look for different proofs because they are curious. A 

 
 
14 The crosscheckings that come from the application of mathematics in science and the use of physical 
principles to justify theorems are external because in both cases the interactions do not fall within the 
boundaries of mathematics. Nevertheless, it is important to stress the difference between the two forms 
of interactions. We apply mathematics in science when we use mathematics to represent some features of 
an empirical (physical, biological, etc.) setting and infer informations about it. This sense of applicability 
has many philosophical facets and has received extensive attention among philosophers (Steiner 2005). 
What is less known, at least to those philosophers of mathematics with no interest in history of science, 
is that physical principles can led to establish mathematical results. This second sense of applicability (of 
physics to mathematics) appears prominently in Archimedes’ works, and particularly in his treatise Geo- 
metrical Solutions Derived From Mechanics (Archimedes 2009). A philosophical discussion of the use 
of physical principles in mathematics is offered in Urquhart (2008a) and Skow (2013). 



 

 

more interesting answer would be that they look for different proofs because they are 
interested in particular aesthetic, pragmatic and epistemic virtues, or because they 
want to extend a theorem’s range of validity, or even because they want to explore 
a topic through a distinct mathematical technique and search for explanations in 
mathematics.15 All these are reasonable answers. But it is without doubt that prov- 
ing several times the same result from different perspectives makes that result more 
(or less) stable within the mathematical community. And this is especially true when 
that result is crosschecked with a different piece of mathematics. Take, for instance, 
the case the purely analytic proof of the Intermediate Value theorem as provided 
by Bolzano. Bolzano’s guiding ideal in searching for a solely analytic (non-geo- 
metrical) proof of this theorem was purity of methods (Detlefsen and Arana 2011). 
Nevertheless, Bolzano himself considered the geometrical proofs of the theorem as 
showing that the result was true. In this sense, Bolzano’s analytical treatment can be 
seen as a crosschecking that reinforced the objectivity of the result. 

The case of Bolzano is particularly interesting because it shows how two different 
ways of practicing mathematics (one associated with the geometrical treatment and 
the other with the analytical one) constrained a particular mathematical result (the 
Intermediate Value theorem). Nevertheless, it is with the crosschecking made by 
Bolzano that the result acquired more objectivity. Practices define the ‘environment’ 
in which the crosscheckings hold, however what I see as really central to the notion 
of objectivity is the crosschecking process itself. To draw a parallel between the case 
of Bolzano and that of the Four-Color theorem, it is true that the computer proof 
achieved in by Kenneth Appel and Wolfgang Haken is accepted by mathematicians 
as showing that the theorem holds. Nevertheless, many mathematicians are attempt- 
ing to construct a ‘manual proof’ of the Four-Color theorem, independent of the use 
of computers. Here we have, again, two different ways of practicing mathematics 
(one very recent coming from the use of computers in proving theorems and the 
other more traditional). It is the interaction of these practices, and more particularly 
the possibility to crosscheck the result from the standpoint of one practice to that of 
another, that is responsible for the objectivity of the result. 

Secondly, I want to connect the discussion of the present section with the fallible 
and corrigible character of mathematics discussed above. I argue that the sense of 
objectivity that I am sketching here makes justice of the fallibility and corrigibility 
of mathematics. How? Consider the case of the four-color theorem. It is reasonable 
to suppose that, before spotting the errors made by Kempe and Peter Guthrie Tait 
in their proofs, mathematicians considered the Four-Color theorem and the rela- 
tive proofs as authentic and objective pieces of mathematical knowledge. Indeed, 
this was the case and even influential mathematicians and logicians such as Charles 
Sanders Peirce regarded Kempe’s proof as such (Fritsch and Fritsch 1998, pp. 15–
16). It is therefore useful and reasonable to adopt a weak notion of objectiv- ity 
of mathematical knowledge that does not confer to mathematical knowledge an 
absolute and infallible character, but that is capable to account for the ‘objectivity’ 

 
 
15 John W. Dawson has recently explored these motivations for re-proving theorems in Chapter 2 of his 
book Why Prove it Again? Alternative Proofs in Mathematical Practice (Dawson 2015). 



 

 

that mathematicians attributed to Kempe’s results. With the discovery of errors the 
original proofs proposed by Kempe and Peter Guthrie Tait were reconsidered and 
subject to a process of revision and crosschecking from different areas of mathe- 
matics, where different practices and ways of tackling a problem were in use. For 
instance Percy John Heawood, who discovered the fallacy in Kempe’s proof, tackled 
the Four Color Problem using methods from elementary number theory. And other 
important steps were made by mathematicians working in different areas, as for 
example topology and the more recent graph theory. In this fascinating and complex 
process, which gave birth to new mathematical methods and variants of the origi- 
nal four color theorem, the objectivity of a theorem was constrained by different 
practices and secured by the many crosscheckings that came with these practices. 
The crosscheckings conferred the result (and its proofs) more objectivity, but this 
does not mean that this objectivity is absolute and cannot be weakened by further 
developments of mathematics. Geometrical knowledge obtained through diagram- 
matic reasoning was considered by Greek geometers as a source of strong objec- 
tivity (Netz 1999), however the same knowledge got a reinforced objectivity (not 
diagram-based) with the development of mathematics and the possibility to cross- 
check geometrical theorems from different areas of mathematics, as for instance in 
graph theory. The notion of objectivity that I am proposing here poses no problems 
in accounting for this historical process, and therefore has the merit of providing a 
genuine mirroring of how mathematical knowledge evolves. 

Before passing to discuss the implications of the notion of weak objectivity in the 
context of the applicability of mathematics, let me add a comment on the relations 
between the weak and the strong sense of objectivity. Strong objectivity builds on 
the insight that mathematical knowledge is true and absolute. It is therefore easy 
to see that, on this conception, the weak sense of objectivity poses no problems. 
For instance, we may claim that a mathematical result is objective in the strong 
sense and in the weak sense proposed above. This is probably not very interesting 
for those who regard mathematical knowledge as having a strong objective char- 
acter. Nevertheless, and this is relevant to the point I want to make in this article, 
strong objectivity collapses into weak objectivity when we have cases of mathemati- 
cal knowledge that is subject to revision (e.g the proofs of the four color theorem). 
Therefore the notion of weak objectivity has the benefit to make us consider ‘objec- 
tive’ even those pieces of mathematical knowledge that may be subject to a revision 
at a further historical moment. On the other hand, the adoption of a notion of strong 
objectivity is not flexible enough to accomodate such potential revisions without 
embracing a very optimistic (platonistic) standpoint. 

 
 

4 The Reasonable Effectiveness of Mathematics in Science 

The fact that mathematics successfully applies in the empirical sciences has led 
philosophers of mathematics to elaborate different accounts of how this is possi- 
ble. For most platonists, the successful application of mathematics supports a realist 



 

 

commitment to the mathematical entities used in application.16 Philosophers who 
adopt this standpoint typically assume a strong reading of objectivity and regard 
mathematics as a body of absolute truths. Thus the success of mathematics in 
application is a sign of its objectivity, and the objectivity of mathematics is what 
makes its effectiveness in science reasonable. Call this a realist-account of appli- 
cation. Nevertheless, the platonist position is not the only option to go and other 
anti-realist accounts of application have been proposed. Many of these attempts have 
been proposed by nominalists, but not all of them are nominalistic (cf. Bueno 2016). 
Furthermore, there are also accounts of application that are neutral on the realism/ 
anti-realism issue in the philosophy of mathematics. Bueno and Colyvan’s inferen- 
tial conception of application, for instance, can be adopted by both realist and anti- 
realist parties to account for the successful application of mathematics in science 
(Bueno and Colyvan 2011). In this last section my proposal is not to provide an 
account of applicability, nor to discuss applicability in connection with ontologi- 
cal issues. What I want to show is that the (weak) sense of objectivity that I have 
sketched in the previous section is compatible with successful cases of applicability. 
And this without making the applicability of mathematics an unreasonable, or even 
arbitrary and accidental, practice. The moral is therefore that successful applica- 
tion of mathematics does not necessarily require strong objectivity of mathematical 
knowledge. 

There are many different ways in which mathematics successfully applies in sci- 
ence, but in general we can distinguish two different types of application: when 
mathematics (or better a piece of mathematical knowledge) is introduced for appli- 
cation; when mathematics is not specifically introduced for application but later, 
at a further historical moment, we discover that we can apply it with success. An 
example of the former is given from the introduction of some pieces of basic geo- 
metrical knowledge, for instance when the concept of straight line is introduced to 
measure the minimum length between two points in real space. Another example is 
given by the Dirichlet principle, which was introduced in physics (more precisely, in 
potential theory) in the middle of the 19th century (Monna 1975). In these cases the 
origins of a mathematical concept and the associated result can be sometimes traced 
in a non-mathematical idea, and mathematics is specifically introduced in the con- 
text of a physical application. The key role of physics is to “produce an intuitive 
‘natural’ context for various abstract mathematical constructions” (Atiyah et al. 
2010, p. 915). It is no mystery, then, that the same result will reapplied successfully 
again in a similar setting (e.g., obtaining the minimal distance between two points 
through a straight line). And it is plausible to think that, in these cases, it is the 
successful introduction of mathematics for application (and the possibility to repeat 
application) than confers mathematical knowledge some objectivity (through what 

 
 
 
 
 
16 This attitude is reflected in the role that applied mathematics plays, according to the platonist, in the 
enhanced (or explanatory) indispensability argument (Baker 2009). 



 

 

I call external external crosschecking), and not the objectivity of mathematics that 
makes the application successfully.17 

As for the second type of application, a famous example is that of group theory 
in quantum mechanics. Group theory was developed at the beginning of the twenti- 
eth century, however it was applied with success in quantum mechanics only later. 
Another example is given by non-Euclidean geometries, which were developed long 
before Einstein used them in the context of spacetime theories. Philosophers have 
provided accounts of this successful applicability (see, for instance, French 2000). 
Whatever the account, the brute fact is that some pieces of mathematical knowl- 
edge (not all mathematical knowledge) find an application later their introduction 
into the corpus of mathematics. This application is successful for some reason and 
represents a form of external crosschecking that contributes to the objectivity of the 
mathematical knowledge in question. This is particularly true in the context of mod- 
ern applications (such as the case of group theory and quantum mechanics), where 
the ‘physical’ content of the scientific theory is highly mathematized, and therefore 
to have a successful application often amounts to have a sort of internal crosscheck- 
ing with other mathematical results that model the physical theory. 

 
 

5 Conclusions 

Four years after the publication of Putnam’s article cited in the introduction, Reu- 
ben Hersh made a famous assertion that strongly resonates with Putnam’s clos- 
ing lines: “It is reasonable to propose a new task for mathematical philosophy: not 
to seek indubitable truth, but to give an account of mathematical knowledge as it 
really is—fallible, corrigible, tentative and evolving, as is every other kind of human 
knowledge” (Hersh 1979, p. 43). The conception of objectivity I am proposing here 
goes in the direction suggested by Hersh. I argued that the objective, intra-subjec- 
tive character of mathematical knowledge is the result of crosscheckings that come 
internally (within mathematics) or externally (from the application of mathematics 
in science or even from the application of physics to mathematics). 

Does this mean we should give up the idea of strong objectivity in mathematics? 
No, I think we don’t. Although the conception of objectivity sketched here is better 
suited to fit within an anti-realist account of mathematical knowledge and applica- 
tion, and I suppose that various forms of structuralism are potentially compatible 
with the sense of weak objectivity that I propose, I didn’t rule out the possibility 

 

 
17 There also also more tricky, though similar, cases. One of them is the case of the delta function, intro- 
duced in Dirac’s formulation of quantum mechanics to represent the mass density function of a point 
particle of mass 1 situated at the origin. Mathematically speaking, the delta function was defined on the 
real line so that it was zero everywhere except at the origin, with integral equals to 1. However, this func- 
tion can’t be defined on the classical real line. The Dirac function was therefore introduced for applica- 
tion, but it was accepted as a legitimate piece of mathematical knowledge only after its interpretation as 
a distribution (Urquhart 2008b). In this case, the objectivity of the mathematical result was not provided 
by the application itself but rather from the internal crosschecking that came later within mathematics 
(embedding of the delta function in the theory of distributions). 



 

 

that a particular form of realism (in ontology or in truth value) may be on the right 
track. And therefore the doors (of Plato’s heaven) are still open to those who want to 
embrace a strong notion of objectivity for mathematical knowledge. 

Finding a positive characterization of what makes mathematics objective is hard. 
My modest proposal here has been to outline a notion of objectivity that, being sepa- 
rated from the notions of truth and existence, well renders the way mathematical 
knowledge structures and evolves. Further analysis and case studies are needed to 
make this notion more precise and convincing. 
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