A resistive sensor for humidity detection based on cellulose/polyaniline

Ilaria Ragazzini,^a Riccardo Castagnoli,^a Isacco Gualandi,^{a,b,c,*}, Maria Cristina Cassani,^{a,b} Daniele Nanni,^a Francesca Gambassi,^a Erika Scavetta,^{a,b,c} Elena Bernardi,^{a,c} and Barbara Ballarin^{a,b,c,*}

^a Department of Industrial Chemistry "Toso Montanari", Bologna University, Via Risorgimento 4,
I-40136, Bologna, Italy & UdR INSTM Bologna.

^b Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy.

^c Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy.

Supporting Information

S1 Cost analysis and set-up	2
S2 Sensor Characterization	3
S3 Electrical measurements	5
S4 Humidity sensing studies	7

*To whom correspondence should be addressed. E-mail: <u>barbara.ballarin@unibo.it</u> (B.B) tel: +39 051 2093704; <u>isacco.gualandi@unibo.it</u> (I.G.) tel: +39 051 2093386.

S1. COST ANALYSIS AND SET-UP

Table S1: cost analysis to produce 310,8 cm² of modified cellulose

material	Cost for batch (310.8 cm ² , USD)
Water	0.45
Bare cellulose fibers	negligible
Aniline	0.80
Cloridic acid (37%)	3.27
Ammonium persulphate	9.49
Citric acid	41.32
Aluminium sulphate	1.46
Tot	56.8

Fig. S1. Homemade set-up for humidity sensing. Analysis chamber of 500 cm³.

S2. SENSOR CHARACTERIZATIONS

Fig. S2. Scanning electron microscopy (SEM) of: A-C) bare Cellulose and D-F) Cell/PANI fibers at different X magnifications; G) Cross-section of Cell/PANI fiber at 10000 X magnification and H) EDX elemental maps of a Cell/PANI fiber (C red, O blue, N green).

Fig. S3. ATR-FTIR spectra of bare Cellulose (black), PANI (red) and Cell/PANI-S (blue); inset: enlargement in the range 1900-700 cm⁻¹.

Fig. S4. TGA curves for Cellulose and Cell/PANI.

Fig. S5. Acid release tests: A) Cell/PANI, B) Cell/PANI after 67 h under vacuum.

S3. ELECTRICAL MEASUREMENTS

Resistance measurements were made with a Keysight B2902A source meter units in a 4-line-probe configuration. The sample was prepared with a rectangular shape and was held down with an insulating material by exerting a uniform pressure on all the surfaces. The inner electrodes measure the difference of potential while a constant current flow was forced between the two outer electrodes (Fig. S6).

Fig. S6. Sample holder for resistance measurements.

The measurements were performed at different current values (100, 200, 300 μ A) and a line passing from the origin was always obtained. The resistance (R) was calculated with the Ohm's law and the sheet resistance (R_•) is equal to:

$$R_{\bullet} = R \frac{W}{L}$$

Where W and L are the width and the length, respectively.

The specific resistance (ρ) can be calculated by:

$$\rho = R_{\bullet} t$$

Where t is the thickness. The specific conductance (κ) is calculated by:

Fig. S7. Cell/PANI conductivity after repeated bending cycles (angle = 30°).

S4. HUMIDITY SENSING STUDIES

Fig. S8. The cycling behaviour of the Cell/PANI sensor under pulse stimuli obtained by switching at different %RH obtained with potassium carbonate saturated salt solution (44 RH%) or under wet or dry N_2 flow (3 mL s⁻¹, 2-98 RH%) at short cycling time. The tests were conducted under an applied voltage of 0.100 V at 25±1 °C with the homemade set-up.