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Abstract
The manual segmentation of muscles on magnetic resonance images is the gold standard procedure to reconstruct muscle 
volumes from medical imaging data and extract critical information for clinical and research purposes. (Semi)automatic 
methods have been proposed to expedite the otherwise lengthy process. These, however, rely on manual segmentations. 
Nonetheless, the repeatability of manual muscle volume segmentations performed on clinical MRI data has not been 
thoroughly assessed. When conducted, volumetric assessments often disregard the hip muscles. Therefore, one trained 
operator performed repeated manual segmentations (n = 3) of the iliopsoas (n = 34) and gluteus medius (n = 40) muscles on 
coronal T1-weighted MRI scans, acquired on 1.5 T scanners on a clinical population of patients elected for hip replacement 
surgery. Reconstructed muscle volumes were divided in sub-volumes and compared in terms of volume variance (normalized 
variance of volumes – nVV), shape (Jaccard Index—JI) and surface similarity (maximal Hausdorff distance—HD), to 
quantify intra-operator repeatability. One-way repeated measures ANOVA (or equivalent) tests with Bonferroni corrections 
for multiple comparisons were conducted to assess statistical significance. For both muscles, repeated manual segmentations 
were highly similar to one another (nVV: 2–6%, JI > 0.78, HD < 15 mm). However, shape and surface similarity were 
significantly lower when muscle extremities were included in the segmentations (e.g., iliopsoas: HD –12.06 to 14.42 mm, 
P < 0.05). Our findings show that the manual segmentation of hip muscle volumes on clinical MRI scans provides repeatable 
results over time. Nonetheless, extreme care should be taken in the segmentation of muscle extremities.
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Introduction

The quantification of skeletal muscle volume using MRI is 
used in a number of clinical and research applications such as 
sport medicine [1], the quantification of sarcopenia [2], or the 
generation of patient-specific musculoskeletal dynamics models 

[3, 4]. While in the clinical routine, the simple quantification 
of a single muscle cross-sectional area may be sufficient to 
evaluate the loss of muscle tissue [5, 6], research applications 
usually require that the entire muscle volume is segmented 
in the MRI images. This operation is cumbersome and time-
consuming, which is why there is intense research on the 
automation of this operation [7–11]. However, all automatic 
segmentation algorithms are validated assuming the manual 
segmentation as the true value [12, 13]; thus, it becomes 
very important to quantify the repeatability of the manual 
segmentation of skeletal muscle volume on MRI images.

A substantial amount of work has already been done on the 
quantification of the reliability and repeatability of skeletal 
muscle volumes manually segmented on MRI images. An 
excellent systematic review of this literature is reported here 
[14]. Overall, the manual segmentation of skeletal muscles, 
performed slice-by-slice, showed good to excellent intra-rater 
reliability, moderate to good inter-rater reliability and good 
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test–retest reliability. For the above reasons, this technique 
is currently considered the gold-standard for skeletal muscle 
segmentation. However, Pons and colleagues highlighted that 
hip and trunk muscles (e.g. gluteus medius and iliopsoas) 
were often neglected, which is surprising given the key role 
these muscles play in the stabilization of the spine and in many 
activities of daily living [15–18], and only healthy muscles 
were typically analyzed. Indeed, when assessed, the reliability 
of manual segmentations for pathological muscles was lower 
than for healthy muscles [19–21]. Moreover, while slice-by-
slice segmentations are commonly used to demonstrate the 
concurrent validity of novel semi-automatic techniques, only 
one study on the rotator cuff muscles was conducted to assess 
the validity of manual segmentations [22], and test–retest 
repeatability was quantified for the quadriceps and for the 
upper limb muscles only.

In addition, the repeatability of manual segmentations may 
highly depend on the specific MRI sequence used to generate 
the images [23, 24]. Despite new imaging sequences, such as 
Dixon scans, have been developed to highlight specific features 
(e.g. fat infiltration) in soft-tissues and muscles, T1-weighted 
MRI images are typically preferred to assess muscle size and 
morphology, and fat infiltration [14, 25]. Indeed, T1-weighted 
images are characterized by excellent anatomical detail and 
high signal-to-noise ratio (compared to other MRI sequences), 
which makes them ideal to assess muscles [26, 27]. Another 
important factor is the field intensity of the MRI system; 3 T 
systems are becoming widely available, although in most 
clinical settings 1.5 T systems are still in use. Finally, the 
region of interest and the location (superficial or deep) of the 
muscles to be segmented are likely to affect the accuracy of 
manual muscle segmentations. Thus, it is necessary to conduct 
a repeatability analysis for the specific region (hip and trunk 
muscles) and for the specific MRI system and sequence 
adopted.

To the purpose, one trained operator performed 
repeated manual segmentations of the iliopsoas and 
gluteus medius muscle volumes on 1.5 T clinical MRI 
scans. The twofold aim of the study was (1) to determine 
if the manual segmentation of hip muscle volumes 
provides similar results over time, and (2) to understand 
how the (segmentation) error is distributed across the 
muscle volume of interest (towards the extremities or 
in the belly region). More specifically, three hypotheses 
were tested: (H1) that repeated manual segmentations of 
the gluteus medius and iliopsoas muscles on MRI show a 
high level of agreement, (H2) that manual segmentations 
of the iliopsoas muscle, given its complex geometry 
[28], are less repeatable than those of the gluteus medius 
muscle, and (H3) that limiting the segmentations to 
the muscle belly (quicker to perform compared to full 
segmentations and typically included in clinical hip joint 

scans) would be less prone to inaccuracies, as muscle 
extremities may be difficult to identify on MRIs.

Materials and Methods

Data Collection

Medical imaging data were retrospectively collected 
from the institutional 2015–2020 database. The study 
was approved by the Institutional Review Board and 
was conducted in compliance with the Health Insurance 
Portability and Accountability Act and the Declaration 
of Helsinki. The temporal threshold was selected to 
minimize image quality variability due to technological 
improvements (in MRI acquisition). The dataset was 
further screened to exclude those MRIs where the 
iliopsoas and/or the gluteus medius muscles were not 
visible in their entirety. Thus, medical imaging data on 
40 gluteus medius and 34 iliopsoas muscles were included 
in the study. All selected MRIs were acquired on 1.5 T 
scanners, with a coronal T1-weighted sequence, but 
different spatial resolution (512 × 512 pixels, pixel size: 
0.817 ± 0.053 mm, min = 0.723 mm, max = 0.938 mm) 
and slice thickness (min = 4 mm, max = 6 mm) depending 
on the MRI scanner and year of acquisition (see Table S1 
in Supplementary material for more details). These were 
representative of a heterogeneous pathological population 
(age: 57.3 ± 19.7 years, mass: 68.9 ± 10.7 kg, male/female 
ratio: 8/12) of patients candidate for hip replacement 
surgery on one or both sides of the body (Table 1).

Data Processing

A five-step workflow was implemented to process all 
medical imaging data (Fig. 1). This included (1) slice-by-
slice manual segmentation of iliopsoas and gluteus medius 
muscles on MRIs, (2) virtual palpation of pelvic and femoral 
bony landmarks, (3) atlas-based morphing of muscle 
attachments, (4) automated selective cut of segmented 
muscle volumes and (5) sub-volume comparison. More 
details are provided in the following sections.

For the iliopsoas muscle, an additional step (step 3b, 
Fig.  1) was performed to standardize the segmented 
volumes prior to proceed with the analyses. A cutting 
plane normal to the origin-to-insertion line and passing 
through the bony landmarks identified on the pelvic bone 
(i.e., on the left and right iliac crests) was defined and 
the proximal end of the muscle was removed (Fig. 2b). 
This step was deemed necessary to remove any possible 
bias due to artefacts on the images at the edges of the 
captured volume, which differed from patient to patient. 
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Table 1  Demographics of 
patients and image acquisition 
details

Age, mass and spatial resolution values are reported as mean ± standard deviation
kg kilograms, mm millimeters, T tesla

Patients demographics Image acquisition

Population size 20 Magnetic field strength (T) 1.5
Age (years) 57.3 ± 19.7 Sequence Coronal T1-w
Mass (kg) 71.35 ± 12.45 Echo time (ms) 11.08 ± 1.62
Sex (male/female) 8/12 Repetition time (ms) 553.58 ± 146.47

Spatial resolution 512 × 512 pixels
Diagnosis Primary arthrosis (12)

Secondary arthrosis (1)
Osteonecrosis (5)
Femoral fracture (2)

Pixel size (mm) 0.817 ± 0.053
0.723 (min)
0.938 (max)

Field of view (mm) 418.5 ± 26.50
370.02 (min)
480 (max)

Slice thickness (mm) 4 (min)
6 (max)

Fig. 1  Five-step workflow to process medical imaging data. The 
workflow comprised of manual segmentation, identification of bony 
landmarks via virtual palpation, muscle point morphing using single 
value decomposition (SVD) algorithm, selective cut of the muscle 
volume, sub-volume comparison computing volume variance, Jaccard 

index and Hausdorff distance. For the iliopsoas muscle, a further step 
was performed to standardize segmented muscle volumes prior to 
cutting. MTU = muscle–tendon unit, I = muscle insertion, O = muscle 
origin
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These could affect contour identification in first place, 
and in turn all subsequent analyses and the repeatability 
measures.

Manual Segmentation

The MRI data, stored in DICOM format, were imported 
in the Mimics Innovation Suite v22 (Materialise, Leuven, 
BE), and anonymized. The Multiple Slice Edit tool was then 
used to draw the contours of the left and right iliopsoas and 
gluteus medius muscles. All pixels enclosed in a contour 
were assigned to a 2D mask, specific to a structure of 
interest. This process, namely manual segmentation, was 
performed on each (coronal) slice. Automatic interpolation 
finally filled the gaps between consecutive segmentations, 
enabling the generation of 3D objects off the resulting 2D 
masks. One trained operator performed three repeated 
segmentations for all subjects and muscles of interest 
(gluteus medius: n = 40; iliopsoas: n = 34), on different and 
non-consecutive days, selecting the MRI data and target 
muscle to be segmented in a random fashion to minimize the 
memory effect. Similarly, to further enable a reproducibility 
assessment of the procedure, two additional operators (with 
different background and/or level of expertise compared 
to the first operator) (Table S2, Supplementary material) 
performed manual segmentations of the gluteus medius and 
iliopsoas muscles.

Virtual Palpation

Using the free-software 3D Slicer [29], twelve points, 
corresponding to pre-selected anatomical bony landmarks 
on the pelvis and femurs, were manually identified on all 
MRIs via virtual palpation [30]. The 3D coordinates were 
then exported into text files for later use.

Muscle Point Morphing

Since muscle aponeuroses and attachment areas were 
not clearly visible on MRIs, muscle origin and insertion 
points were mapped to the medical imaging data from a 
generic atlas (i.e., gait2392 OpenSim model [31–33]). Point 
morphing was performed in nmsBuilder [34], where the 
single value decomposition method was used to determine 
an affine transformation able to register corresponding pairs 
of bony landmarks (i.e., selected on both the gait2392 model 
and the MRIs, for each subject). The same transformation 
was then applied to all generic muscle points of interest (i.e., 
for the gluteus medius muscle: origin and insertion of the 
medial bundle; for the iliopsoas: origin of the psoas and 
insertion of the iliacus on the femur). Visual inspections 
were conducted to check for points (mis)placement. If 
deemed necessary (e.g., points not laying on the bone 
surfaces), the muscle attachments were snapped to the bone 
surface, i.e. (re)located to the nearest plausible surface point, 
through an automated procedure in MATLAB. A visual 
check was finally performed to ensure that the updated 
locations were in agreement with the underlying MRI.

Sub‑volume Definition

All segmented muscle volumes were divided in sub-volumes. 
Starting from the mid-point between muscle attachments, two 
parallel cutting planes, orthogonal to the line connecting origin 
and insertion points, were iteratively moved up and down, 
respectively, along the muscle line of action in 5% steps (of 
the muscle length) (Fig. 2a). At each iteration, only the volume 
included between the planes was preserved. Ten (sub)volumes 
per segmentation were thus generated. To ensure consistency, 
the process was fully automated via custom-written functions 
and scripts compiled in Python (v3.6).

Fig. 2  a Selective cut of the 
gluteus medius muscle volume 
(green). At each iteration, top 
and bottom cutting planes were 
iteratively moved up or down 
along the line connecting mus-
cle origin and insertion points 
(red squares) in 5% steps of the 
muscle length (black = 10%, 
dark blue = 80%). b Iliopsoas 
muscle standardization per-
formed prior to the definition of 
sub-volumes
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Data Analysis

For the repeatability assessment, for each subject and muscle, 
corresponding sub-volumes were compared using different 
metrics, in line with previous studies that assessed the reliability 
and/or repeatability of anatomical structures segmented on 
MRI images [35, 36]. First, the volume variance between 
repetitions was calculated. Values were normalized to the 
mean muscle (sub)volume and reported as percentage. Then, 
surface and shape similarity were quantified by computing the 
maximal Hausdorff distance (HD) and the Jaccard index (JI) 
[37], testing all possible combinations (i.e., repetitions:  1st vs 
 2nd,  2nd vs  3rd,  1st vs  3rd). Mean HD and JI values (across the 
three combinations) were ultimately extracted. This enabled 
the quantification of the segmentation error and its distribution 
along the muscle volume. All operations were performed in 
Python using the stl-mesh and gias2 modules.

For the reproducibility assessment, the overall muscle 
volumes segmented by the three operators were extracted 
and compared.

Statistical Analysis

Data were checked for normality. If data distributions 
were normal, a one-way repeated measures ANOVA was 
performed to compare Jaccard index, maximal Hausdorff 
distance and volume variance between cutting levels, i.e. 
depending on the amount of muscle volume accounted 
for. Post hoc analyses were conducted using paired t-tests 
implementing Bonferroni corrections to account for multiple 
comparisons. If data were not normally distributed, all 
metrics were compared using a Friedman test for repeated 
measures followed by a Wilcoxon signed-rank test. 
Statistical significance was initially set to α = 0.05. The 
inter-operator reproducibility was assessed by computing 
the intraclass correlation coefficient (i.e., ICC(1,1) and 
ICC(3,1)). All analyses were conducted in Python 3.6, using 
the Pingouin module [38]. Furthermore, linear mixed models 
(LMM) were employed to understand whether patients’ 
etiology affected (intra-operator) repeatability and (inter-
operator) reproducibility. This last analysis was conducted in 
R (v4.2.1) using the rptR package (v0.9.22)[39], comparing 
the segmentations (of overall muscle volumes) performed by 
the three operators.

Results

Overall, repeated muscle segmentations showed a moderate 
to high level of agreement. Nonetheless, for both muscles 
and all metrics, the statistical analyses (i.e., one-way 
repeated measures ANOVA or Friedman tests) revealed a 

significant main effect of the amount of volume accounted 
for (P < 0.013 for all tests). Post hoc analyses were thus 
performed, to identify sub-volume differences. All P-values 
reported in the following sections refer to the results of the 
post hoc analyses.

The reader is referred to the Supplementary Material 
for the results of the additional analyses (Table  S2 for 
the reproducibility assessment, Table S3 for the effect of 
etiology on inter- and intra-operator assessments).

Jaccard Index

Shape-wise, all repeated segmentations, presented a 
good level of agreement. For the gluteus medius muscle, 
the Jaccard index was on average larger than 0.8 (i.e., 
0.821 ± 0.03, min = 0.816, max = 0.827), slightly decreasing 
with the amount of volume analyzed (Fig. 3). Complete 
segmentations showed a significantly lower level of 
similarity compared to segmentations including 70%,  
80% or 90% of the overall muscle volume (P = 0.045,  
P = 0.001, P = 0.000, respectively. Fig. 4a). 

For the iliopsoas muscle, the amount of volume 
included in the analysis had a more substantial effect on the 
Jaccard index, which was generally lower compared to the  
values observed for the gluteus medius (i.e., on average: 
0.795 ± 0.09, min = 0.777, max = 0.807). Specifically, 
repeated segmentations were significantly more similar to  
one another (i.e., showed higher JI values) when only the 
middle portion of the muscle belly (i.e., central 40% to 
70% of the muscle volume) was accounted for, compared 
to analyses including 80–100% of the overall volume  
(P40 < 0.009, P50 < 0.002, P60 = 0.001, P70 < 0.001.  
Fig. 4b, Table 2).

Hausdorff Distance

The amount of selected volume further influenced the 
maximal Hausdorff distance: the larger the analyzed 
volume, the larger the discrepancy between repeated 
segmentations. This effect was more noticeable for 
the iliopsoas (HD = 10.92 ± 2.13 mm, min = 7.90 mm, 
max = 14.42 mm. Fig. 3, Table 2) than for the gluteus 
medius muscle (HD = 11.56 ± 0.78 mm, min = 10.00 mm, 
max = 12.59 mm. Fig. 3, Table 2). In general, the surface-
to-surface distance error between repeated segmentations 
was the lowest (Pilps < 0.01, Pgmed < 0.002) when only 
a minimal amount of segmented muscle volume (i.e., 
within ± 5% of the muscle–tendon unit length from the 
centre of the muscle) was analyzed. For the gluteus 
medius, the post hoc analysis revealed no significant 
differences between analyses including over 80% of the 
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Fig. 3  Similarity metrics (Jaccard 
index, Hausdorff distance and 
variance of the volume) selected 
to quantify the repeatability 
of manual segmentations of 
muscles on MRI. Results for 
the gluteus medius muscle (a) 
and for the iliopsoas muscle 
(b) are reported as mean (bar) 
and standard deviation (line). 
mm = millimeters

Fig. 4  Results of the post hoc analysis (pairwise T-tests) performed 
to assess surface, shape and volume similarity between segmented 
muscle (sub)volumes (i.e., Jaccard index, Hausdorff distance and 
normalized volume variance), for (a) the gluteus medius and (b) 
the iliopsoas muscle. Each box within a subplot represents an indi-

vidual comparison between cutting levels (e.g., between segmenta-
tions including 10% and 20% of the overall muscle volume). Green: 
P ≥ 0.05 (not significant), light blue: P < 0.05, blue: P ≤ 0.01, dark 
blue: P ≤ 0.005
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entirely segmented muscle volume (Fig. 4a). Nonetheless, 
these were associated to the largest HD values overall. 
For the iliopsoas, the inclusion of muscle extremities (i.e., 
full segmentations) led to the largest measured surface-
to-surface errors (P100 ≤ 0.025, compared to all other 
analyses. Fig. 4b).

Volume Variance

In terms of volume, all repeated segmentations were 
comparable to one another, independently on the amount 
of volume accounted for. On average, the variance of the 
volume, which was normalized to the corresponding mean 
muscle volume to allow for comparisons, was lower than 4% 
and 6.5% for the gluteus medius and the iliopsoas muscle, 
respectively. More specifically, for the gluteus medius, 
the cutting level did not show any noticeable effect on the 
results, as revealed by the statistical analysis (P > 0.05, for all 
comparisons. Fig. 4a). On the other hand, for the iliopsoas 
muscle, there was one exception: repeated segmentations 
of muscle volumes corresponding to the central 10% of the 
muscle belly showed significantly larger variance compared 

to segmentations including up to 70% of the overall muscle 
volume (P < 0.03, Fig. 4b).

Discussion

The aims of this study were (1) to assess the repeatability of 
manual segmentations of the gluteus medius and iliopsoas 
muscles on standard 1.5  T MRIs and (2) to determine 
whether the segmentation error was equally distributed 
across the volume or confined in specific areas (e.g., 
muscle extremities). To this end, forty gluteus medius and 
thirty-four iliopsoas muscles were manually segmented 
by one trained operator using the Mimics software (v.22). 
All segmentations were performed three times in non-
consecutive days and compared using three different metrics: 
JI as measure of shape similarity, maximal HD to quantify 
surface-to-surface error, and normalized volume variance 
(nVV) to determine volumetric differences. To identify the 
areas more prone to segmentation error, the analysis was 
repeated on portions of the segmented muscle volumes 
(i.e., ten sub-volumes of incremental size), which were 
automatically generated in Python.

Table 2  Comparative metrics to assess the repeatability of manual segmentations

Results are reported as mean (min, max) values of the entire analyzed population (ngluteus = 40, niliopsoas = 34)
Symbols indicate statistical significance, as detected by post hoc pairwise comparisons (with respect to the preceding row, e.g. 100 vs 90)
JI Jaccard Index, HD Hausdorff distance, nVV normalized volume variance, mm millimetres
* = P < 0.05, ^ = P ≤ 0.01, † = P ≤ 0.005

Analyzed 
volume
(% muscle 
length)

Gluteus medius Iliopsoas

JI HD (mm) nVV (%) JI HD (mm) nVV (%)

10 0.827
(0.748,0.883)

9.996
(5.828,15.675)

3.864
(0.223,11.858)

0.777
(0.612,0.873)

7.903
(4.431,17.530)

6.198
(0.919,14.374)

20 0.825
(0.747,0.883)

10.620†

(6.266,18.559)
3.777
(0.538,11.878)

0.793†v

(0.645,0.868)
8.669^

(5.026,34.431)
4.995†

(0.553,11.121)
30 0.823

(0.746,0.884)
11.070†

(6.925,18.144)
3.670
(0.174,11.721)

0.802†

(0.668,0.883)
8.937
(5.337,175.270)

4.378
(0.563,8.880)

40 0.822
(0.747,0.884)

11.333*

(7.646,18.036)
3.542
(0.642,11.173)

0.807
(0.678,0.892)

9.461*

(5.829,34.431)
4.039
(0.402,7.706)

50 0.821
(0.749,0.885)

11.576
(7.599,33.859)

3.360
(0.379,10.280)

0.806
(0.664,0.892)

9.962
(5.941,37.300)

3.879
(0.707,8.004)

60 0.821
(0.745,0.887)

11.870†

(7.599,33.859)
3.196
(0.074,9.221)

0.802
(0.650,0.878)

11.629†

(7.022,35.316)
3.742
(0.263,7.579)

70 0.820
(0.743,0.888)

12.025
(7.599,34.707)

3.064
(0.518,8.404)

0.797*

(0.645,0.869)
12.057
(7.107,35.316)

3.741
(0.369,7.833)

80 0.820
(0.745,0.889)

12.189
(7.726,34.707)

2.954
(0.177,8.023)

0.792†

(0.645,0.867)
12.598
(7.810,35.316)

3.746
(0.644,8.587)

90 0.819
(0.739,0.889)

12.371
(7.726,34.707)

2.866
(0.244,7.785)

0.788†

(0.651,0.860)
13.597*

(7.864,35.316)
3.672
(0.580,9.054)

100 0.816†

(0.736,0.887)
12.592
(8.571,34.707)

2.814
(0.428,7.537)

0.786
(0.659,0.857)

14.423*

(8.206,35.316)
3.605
(0.687,9.457)
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In agreement with our first hypothesis (H1), repeated 
manual segmentations of the gluteus medius and 
iliopsoas muscles showed a high level of similarity (i.e., 
JI ~ 0.8, HD < 15  mm and normalized volume variance 
2–6%). Noticeably, the Jaccard indices ranged between 
0.777 and 0.807 for the iliopsoas, and between 0.816 
and 0.827 for the gluteus medius muscle. These results 
further demonstrate that the manual segmentation of soft 
tissues on MRIs is not only possible, but also repeatable. 
The identification of muscle parameters from manually 
segmented muscle volumes, which is of outmost importance 
for musculoskeletal modelling and clinical applications, 
can be considered affected by minimal (if not negligible) 
uncertainty due to the segmentation procedure.

Nonetheless, distinctions need to be drawn. In fact, 
while HD and nVV did vary similarly for both muscles 
(i.e., increasing and decreasing, respectively, the larger the 
portion of the analyzed volume was), this did not hold true 
for the JI metric. For the gluteus medius, JI slightly reduced 
the more volume was accounted for, and the differences were 
statistically significant only between full segmentations and 
segmentations including over 70% of the muscle volume. 
On the other hand, for the iliopsoas muscle, considering 
little (< 30%) or large (> 70%) portions of muscle volume 
resulted in significantly lower volume similarity compared 
to analyses including 40–70% of the overall muscle volume. 
This is likely due to the simpler anatomical structure 
characterizing the gluteus medius muscle compared to the 
iliopsoas, as hypothesized (H2).

Last, as hypothesized (H3), the observed level of 
similarity was highest when muscle extremities were not 
included in the analysis. Full segmentations showed lowest JI 
and largest surface-to-surface distance errors. Interestingly, 
for the iliopsoas, volume variability (i.e., normalized 
variance) was largest when only the central portion (i.e., 
10%) of the segmentation was considered. This is likely 
due to the shape of the iliopsoas muscle that in its central 
portion attaches to and wraps around the iliac crests, adding 
complexity to the process of contour identification. Extreme 
care should be taken when segmenting complex structures, 
as segmentation inaccuracies may be further enhanced while 
interpolating consecutive 2D segmentations to generate 3D 
(volume) reconstructions.

Limitations

This study has few limitations. First, what in the “Results” 
section we referred to as full segmentations for the iliopsoas 
muscle, were in fact standardized muscle volumes. Therefore, 
for the iliopsoas muscle only, the analysis may have not fully 
captured all discrepancies between repeated segmentations, 
as the proximal end of the muscle (typically more difficult 

to identify on MRI) was not included. Nonetheless, the 
standardization was required as the MRI data used in this study 
were retrospectively collected from the institutional database, 
therefore the images were not homogeneous in terms of scanned 
volume, possibly affecting comparisons. Second, while most of 
the acquisitions shared the same spatial resolution and slice 
thickness, in some cases, the above parameters slightly differed, 
potentially increasing or reducing the precision of manual 
segmentations. Third, the dataset included both healthy and 
affected muscles, as patients’ data were segmented bilaterally. 
Due to an altered composition, diseased muscle tissues may 
appear less clearly on MRIs compared to healthy muscles, 
negatively affecting repeatability metrics. Furthermore, the 
analyzed data belonged to patients with different etiology, 
resulting in a small sample size per diagnosis group. However, 
statistical analyses using linear mixed models showed that 
patient’s etiology had a limited effect on the repeatability and 
reproducibility of manual muscle segmentations, for both the 
iliopsoas and gluteus medius muscles. Finally, it must be noted 
that all data were acquired prior to 2015, for diagnostic and 
clinical purposes (i.e., not optimised for research). This may 
have affected image quality, possibly limiting the operator’s 
ability to precisely identify muscle contours. Therefore, 
the hereby reported level of accuracy may be slightly 
underestimating what can be currently achieved on higher 
quality imaging data.

Conclusions

This study aimed to assess the repeatability of manual 
segmentations of the iliopsoas and gluteus medius muscles 
on diagnostic 1.5  T MRIs. To this end, one operator 
performed repeated manual segmentations of the muscles 
of interest on axial T1-weighted MRI scans of the pelvic 
area (hip), retrospectively collected from the database of 
the institute (nilps = 34, ngmed = 40). Our results show that 
3D muscle volumes reconstructed from the interpolation of 
consecutive manual 2D segmentations are highly repeatable, 
in terms of shape similarity (JI > 0.77), surface similarity 
(maximal HD < 15 mm) and volume variance (nVV < 6.5%). 
Hence, the slice-by-slice manual segmentation of muscles 
on MRIs should be considered both for musculoskeletal 
modelling applications (to extract parameters of interest 
towards model personalization), and clinical applications 
(e.g., in the assessment of sarcopenia). Nonetheless, extreme 
care should be taken when segmenting complex structures 
or muscles wrapping around bones, as contour identification 
becomes non-trivial and susceptible to errors that could 
be magnified during interpolation, reducing the overall 
accuracy.
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