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Model-Centric Data Manifold: The Data Through the Eyes of the Model*
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Abstract. We show that deep ReLU neural network classifiers can see a low-dimensional Riemannian manifold
structure on data. Such structure comes via the local data matrix, a variation of the Fisher infor-
mation matrix, where the role of the model parameters is taken by the data variables. We obtain a
foliation of the data domain, and we show that the dataset on which the model is trained lies on a
leaf, the data leaf, whose dimension is bounded by the number of classification labels. We validate
our results with some experiments with the MNIST dataset: paths on the data leaf connect valid
images, while other leaves cover noisy images.
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1. Introduction. In machine learning, models are categorized as discriminative models or
generative models. From its inception, deep learning has focused on classification and discrimi-
native models [22, 16, 7]. Another perspective came with the construction of generative models
based on neural networks [19, 14, 33, 18]. Both kinds of models give us information about
the data and the similarity between examples. In particular, generative models introduce a
geometric structure on generated data. Such models transform a random low-dimensional
vector to an example sampled from a probability distribution approximating the one of the
training dataset. As proved by [5], generated data lie on a countable union of manifolds. This
fact supports the human intuition that data have a low-dimensional manifold structure, but
in generative models the dimension of such a manifold is usually a hyper-parameter fixed by
the experimenter. A recent algorithm by [30] provides a way to find an approximation of the
number of dimensions of the data manifold, deactivating irrelevant dimensions in a GAN (see
[9] and [31] for another interesting perspective on data structure).

Similarly, here we try to understand if a discriminative model can be used to detect a
manifold structure on the space containing data and to provide tools to navigate this manifold.
The implicit definition of such a manifold and the possibility to trace paths between points
on the manifold can open many possible applications. In particular, we could use paths to
define a system of coordinates on the manifold (more specifically on a chart of the manifold).
Such coordinates would immediately give us a low-dimensional parametrization of our data,
allowing us to do dimensionality reduction. This question was also explored in the context
of manifold learning (see [24, 11, 26, 1] and references therein). In particular in [34], where
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the authors take an infinitesimal approach, the approximation of the manifold of data points
is obtained via its tangent space at suitable points in order to define a coordinate system.
This suggests that our approach, more theoretical and global, can lead to a more intrinsic
description of such manifold.

In supervised learning, a model is trained on a labeled dataset to identify the correct
label on unseen data. A trained neural network classifier builds a hierarchy of representations
that encodes increasingly complex features of the input data [28]. Through the representation
function, a distance (e.g., Euclidean or cosine) on the representation space of a layer endows
input data with a distance. The deeper the layer, the better the metric reflects the similarity
of data according to the task at hand. This observation suggests that the model is implicitly
organizing the data according to a suitable structure (another interesting point of view on the
same matter appears also in [12]).

Unfortunately, these intermediate representations and metrics are insufficient to under-
stand the geometric structure of data. First of all, representation functions are not invertible,
S0 we cannot recover the original example from its intermediate representation or interpolate
between data points. Moreover, the domain of representation functions is the entire data do-
main R”. This domain is mostly composed of meaningless noise, and data occupy only a thin
region inside of it. So, even if representation functions provide us a distance, those metrics
are incapable of distinguishing between meaningful data and noise.

We find out that a ReLU neural network implicitly identifies a low-dimensional subman-
ifold of the data domain that contains real data. We prove that, if the activation function
is piecewise linear (e.g., ReLU), the neural network decomposes the data domain R" as the
disjoint union of submanifolds (the leaves of a foliation, using the terminology of differential
geometry). The dimension of every submanifold (every leaf of the foliation) is bounded by
the number of classes of our classification model, so it is much smaller than n, the dimension
of the data domain R™. Our main theoretical result, Theorem 3.1, stems from the study of
the properties of a variant of the Fisher information matrix, the local data matrix. However,
Theorem 3.1 cannot tell us which leaves of this foliation are meaningful or useful for practical
applications: the interpretation of this geometric structure can only come from experiments.
We report experiments performed on MNIST dataset. We choose to focus on MNIST because
it is easily interpretable.

Our experiments suggest that all valid data points lie on only one leaf of the foliation,
the data leaf. To observe this phenomenon we take an example from the dataset, and we try
to connect it with another random example following a path along the leaf containing the
starting point. If such a path exists, it means that the destination example belongs to the
same leaf of the foliation; otherwise, the two data points belongs to different leaves. Figure 1
pictures a summary of our experiments.

Visualizing the intermediate points on these joining paths, we see that the low-dimensional
data manifold defined by the model is not the anthropocentric data manifold composed of
data meaningful for a human observer. The model-centric data manifold comprises images
that do not belong to a precise class. The model needs those transition points to connect
points with different labels. At the same time, it understands that such transition points
represent an ambiguous digit: on such points, the model assigns a low probability to every
class.
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Figure 1. We provide algorithms to move along a leaf and orthogonally to it. In our erperiments, we
observe that moving orthogonally to the leaves changes the amount of noise in images. On the other hand, a
path on a leaf is able to transform an image into a different one preserving the amount of noise of the starting
image.

The experiments also show that moving orthogonally to the data leaf we find noisy images.
This means that the other leaves of the foliation contain images with a level of noise that
increases with the distance from the data leaf. These noisy images become soon meaningless
to the human eye, while the model still classifies them with high confidence. This fact is a
consequence of the property of the local data matrix: (3.2) prescribes that the model output
does not change if we move in a direction orthogonal to the tangent space of the leaf on which
our data are located.

This remark points us to other possible applications of the model-centric data manifold.
We could project a noisy point on the data leaf to perform denoising, or we could use the dis-
tance from the data leaf to recognize out-of-distribution examples. Such applications require
further research on the characterization of the model-centric data manifold.

The main contributions of the paper are

1. the definition of the local data matrix G(x,w) at a point x of the data domain and for
a given model w and the study of its properties;

2. the proof that the subspace spanned by the eigenvectors with a nonzero eigenvalue of the
local data matrix G(z,w) can be interpreted as the tangent space of a Riemannian manifold,
whose dimension is bounded by the number of classes on which our model is trained;

3. the identification and visualization of the model-centric data manifold through paths,
obtained via experiments on MNIST.

Organization of the paper. In section 2, we review the fundamentals of information
geometry using a novel perspective that aims at facilitating the comprehension of the key
concepts of the paper. We introduce the local data matrix G(z,w), and we summarize its
properties in Proposition 2.1. In section 3, we show that, through the local data matrix, under
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some mild hypotheses, the data domain foliates as a disjoint union of leaves, which are all
Riemannian submanifolds of R", with a metric given via G(z,w). In section 4, we provide
evidence that all our dataset lies on one leaf of the foliation and that moving along directions
orthogonal to the data leaf amounts to adding noise to data.

2. Information geometry. Here we collect some results pertaining to information geom-
etry [3, 27, 17], using a novel perspective adapted to our question, namely, how to provide a
manifold structure to the space containing data.

Let p(y|x, w) be a discrete probability distribution on C classification labels, i.e., p(y|z, w) =
(pi(ylz, w))iz1,..c, * € ¥ C R*, w € R4 In the applications, x represents input data be-
longing to a certain dataset X, while w is the learning parameters, i.e., the parameters of the
empirical model. As we are going to see in our discussion later on, it is fruitful to treat the two
sets of variables x and w on equal grounds. This will naturally lead to a geometric structure
on a low-dimensional submanifold of R™ that we can navigate through paths joining points
in the dataset X (see section 4).

In order to give some context to our treatment, we define, following [3, section 3|, the
information loss I(x,w) = —log(p(y|z,w)) and the loss function L(z,w) = Ey4[I(z,w)].
Typically L(x,w) is used for practical optimizations, where we need to compare the model
output distribution p(y|x,w) with a certain known true distribution ¢(y|z). We may also view
L(z,w) as the Kullback—Leibler divergence between p(y|z,w) and ¢(y|z) up to the constant
— > 6i(y|z) log ¢i(y|z), irrelevant for any optimization problem:

L(x, w) = By~q[—log(p(yl|z, w))] =

T, w

< Glylr) &

= qi(ylz)log ——"—~ =) ¢;(y|z)log ¢(y|x
C

(2.1) = KL(q(yl2)llp(ylz, w)) = > qi(ylz) log gi(y|).
=1

A popular choice for p(y|z,w) in deep learning classification algorithms is

si(@,w)

e

22 7 ; == ft y P = A,
(2.2) pi(y|lx, w) = softmax(s(z, w)) 2521 )

where s(z,w) € RY is a score function determined by parameters w. From such p(y|x,w) we
derive the cross-entropy with softmax loss function:

L(z,w) = By q[I(z,w)] = Eyq[—log p(y|z, w)]

C
(2.3) = —5y, (x,w) + log Z %1 (@),
j=1

where L(z,w) is computed with respect to the probability mass distribution ¢(y|x) assigning
1 to the correct label y, of our datum x and zero otherwise.
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Let us now define the following two matrices:
(2.4) F(z,w) = Byp[ Vi log p(ylz, w) - (Vu log pylz, w))"],
(2.5) G(x,w) = Byep[Vlog pylz, w) - (Vo log plylz, w))"].

We call F(z,w) the local Fisher matriz at the datum x and G(z,w) the local data matriz
given the model w. The Fisher matrix [3] is obtained as F(w) = Ezx[F(x,w)], and it gives
information on the metric structure of the space of parameters. Similarly, we can reverse our
perspective and see how G(z,w) allows us to recognize some structure in our dataset.

The following observations apply to both F(x,w) and G(x,w) and provide the theoretical
cornerstone of section 3.

Proposition 2.1. Let the notation be as above. Then,

1. F(z,w) and G(z,w) are positive semidefinite symmetric matrices;

2. ker F(z,w) = (span,_y__c{Vuw log p;(y|lz, w))*; ker G(z,w) = (span;_;  c{V.

10gpz’(y|l', w)})L;
3. rank F(z,w) < C, rank G(z,w) < C.

Proof. We prove the results for F(z,w); the proofs for G(z,w) are akin.

1. It is immediate to see that F'(z,w) is symmetric because it is a weighted sum of symmet-
ric matrices. To see that it is positive semidefinite we check that the property v’ F(z,w)u > 0
is satisfied Vu € R™.

ul F(z, wyu = By [u" Vi log plylz, w)(Vy log p(yla, w) u]
=Ey [(Vwlogp(ylz, w), u)?] > 0.
2. We show that ker F'(z,w) C (span;_; _c{Vwlogp;(y|z, w) )t

(2.6)

2.7) u € ker F(x,w) = u' F(z,w)u =0 = E,, [(Vw logp(y|9:,w),u>2} =0
. = (Vylogpi(ylz,w),u)y =0 Vi=1,...,C.

On the other hand, if u € (span;—_;__c{Vwlogpi(ylz,w)})*, then u € ker F(z, w):
(2.8) F(z,w)u = Ey, [Vylogpi(ylz, w)(Vy log pi(y|z, w), u)] = 0.

3. From Proposition 2.1, we know that rank F'(z,w) < C. The vectors V,, log p;(y|z, w)
are linearly dependent since

C
Ey [Vl (z,w)] = pi(ylz, w) Ve log pi(yle, w)
i=1
(2.9) . .
=Y Vupi(ylz, w) = Vw<zpi(y!:v7w)> =Vyl =0.
i=1 i=1
Therefore, we deduce rank F(z,w) < C. [ ]

This result tells us that the rank of both F'(z,w) and G(z,w) is bounded by C, the number
of classes in our classification problem. The bound on rank G(z,w) will allow us to define a
submanifold of R™ of dimension rank G(x,w) (section 3) that our experiments show contains
our dataset (section 4) In practical situations, this dimension is much lower than the size of
G(z,w), i.e., the input size n, as shown in Table 1.
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Table 1
Bound on the rank of G(x,w) for popular image classification tasks.

Dataset G(z,w) size rank G(z,w) bound

MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

3. The model view on the data manifold. We now turn to examine some properties of
the matrices F'(x,w) and G(x,w) that will enable us to discover a submanifold structure on
the portion of R™ occupied by our dataset (see section 4) and to prove the claims at the end
of the above section.

We recall that, given a perturbation of the weights w, the Kullback—Leibler divergence,
gives, to second order approximation, the following formula:

KL(p(y|z, w + 0w)|[p(y|z, w))
(3.1) = (6w)T F(z,w)(6w) + O(||6w]|[?).

Equation (3.1), together with Proposition 2.1, effectively expresses the fact that, during
stochastic gradient descent dynamics with a minibatch of size 1, we have only a very limited
number of directions, namely, C' — 1, in which the change dw affects the loss.

Taking the expectation with respect to x ~ ¥ on both sides of the equation, we obtain
the analogous property for the Fisher matrix F(w) = E;ox[F(z,w)]. While F(z,w) has a
low rank, the rank of F'(w) is bounded by |X|(C — 1), a number that is often higher than the
size of F(w). Thus F(w), when nondegenerate, is an effective metric on the parameter space.
It allows us to measure, according to a certain step dw, when we reach a stable predicted
probability and thus the end of model training (see [25] and references within).

It must be noted, however, that F'(w) is meaningful away from the trained model, that is,
well before the end of the training phase (see [2] for an empirical validation of such statements).
We are going to see, with our experiments in section 4, that a similar phenomenon occurs for
G(z,w).

We now turn to the local data matrix G(x,w), thus interpreting (3.1) in the data domain
R". For a perturbation dx of the data x, we have, up to second order approximation,

KL(p(y|z + 6z, w)||lp(y|z, w))
(3.2) = (62)T G(z,w)(5z) + O(||0z|]?).

This equation tells us that, if we move along the directions of ker G(z,w), the probability
distribution p(y|z,w) is constant (up to a second order approximation), while our data are
changing. Those are the vast majority of the directions since rank G(x,w) < C and typically
C < n; hence, we interpret them as the noise directions. On the other hand, if we move
from a data point 2 along the directions in (ker G(x,w))*, data will change along with the
probability distribution p(y|z,w) associated with it. These are the directions going toward
data points that the model classifies with confidence.
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Equation (3.2) suggests to view G(x,w) as a metric on the data domain. However, be-
cause of its low rank (see Proposition 2.1), we need to restrict our attention to the subspace
(ker G(x,w))*, where G(x,w) is nondegenerate. G(x,w) allows us to define a distribution D
on R™. In general, in differential geometry, we call distribution on R™ an assignment:

x— D, CR" Ve € R”,

where D, is a vector subspace of R™ of a fixed dimension k.
Assume now G(z,w) has constant rank; as we shall see in our experiments, this is the case
for a non—fully trained model. We thus obtain a distribution D:

(3.3) z — D, = (ker G(z,w))t C R™

We now would like to see if our distribution (3.3) defines a foliation structure. This means
that we can decompose R™ as the disjoint union of submanifolds, called leaves of the foliation,
and there is a unique submanifold (leaf) going through each point z. The distribution comes
into the play because it gives the tangent space to the leaf through z: D, = (ker G(z,w))"*.
In this way, moving along the directions in D, at each point x will produce a path lying in
one of the submanifolds (leaves) of the foliation.

The existence of a foliation, whose leaf through a point x has tangent space D,, comes
through the Frobenius theorem, which we recall here in the version that we need. Notation
is as follows: as usual [X,Y] denotes the Lie bracket of vectors in R" interpreted as vector
fields, i.e., derivations; hence [X, Y] : =X oY —Y o X.

Frobenius theorem. Let x € R"™, and let D be a distribution in R™. Assume that in a
neighborhood U of x

(3.4) [X,Y]eD VX, YeD.

Then, there exists a (local) submanifold N C R", x € N, such that T,N =D, Vz € N.

It is not reasonable to expect that a general classifier satisfies the involutive property
(3.4); however, it is remarkable that for a large class of classifiers, namely, deep ReLU neural
networks, this is the case, with p given by softmax as in (2.2).

Theorem 3.1. Let w be the weights of a deep ReLU neural network classifier, p be given
by softmaz, and G(x,w) be the local data matriz. Assume G(x,w) has constant rank. Then,
there exists a local submanifold N C R™, x € N, such that its tangent space at z, T,N =
(ker G(z,w))* ¥z € N.

Proof. We first notice that the points in which the local data matrix is nondifferentiable
are a closed subset in R"”; in fact they consist of a union of hyperplanes. Since the result we
want to prove is local, we may safely assume that our point x has a neighborhood where we
can compute V, logp;(y|z,w) and in particular Vs (z, w).

By the Frobenius theorem, we need to check the involutivity property (3.4) for the distri-
bution z + D, = (ker G(z,w))* on R™. Since, by Proposition 2.1,

D, = (ker G(;It,w))l = span;_y _c{Valogpi(ylz,w)},
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we only need to show that

[V log pi(y|x, w), Vi log pj(y|x, w)] € spang_;  o{Valogpi(ylz, w)}.
By standard computations, we see that

[V log pi(y|x, w), Vi log pj(y|z, w)] = H(log pi(y|z, w))V, log p;(y|z, w)+
(3.5)
—H(log p;(y|z, w))V, log pi(y|z,w),

where H(f) denotes the Hessian of a function f. Here we are using the fact that

Z a@i, Z bj8j = Z(al&b] - bl&aj)(?]
J

% 2,7
With some calculations, we have

H(pi(ylz, w))

(3.6)  H(logpi(ylz, w)) = — Valogpi(yla, w) - (Vo log pi(yle, w))"

and
C

(37) prz(y|33>w) = Zpi(?ﬂl‘a w)(dzk —pk(y|$7 w))vxsk($7w)a
k=1

where s is the score function and we make use of the fact p;(y|z,w) is given by softmax.
Notice 0s, pi(y|z, w) = pi(y|z, w)(d;ir — pr(y|x,w)), where d;;, is the Kronecker delta. By (3.6)
and (3.7),

H(pi(y|x7 w)) = Jac(vxpi(y|$’ w))

C
(38) = 3. Iyl ) Bt — Dyl w))] (Vs (2, )"
k=1

where we use the fact that the Hessian of s, is zero, where it is defined. In fact, sj is piecewise
linear since the activation function ReLU is piecewise linear. Hence,

Vapi(ylz, w) (Vapi(ylz, w))”

(3.9) c
- pi(y‘wa ’LU) Z Vmpk(y|x7 w)(vwsk(xv w))T'
k=1
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Now, in view of (3.5), using (3.6) and (3.9) we compute the expression

Vapi(ylz, w) (vxpxyu,w))Z

H(log pi(ylz, w)) =

pi(ylz, w) gz, w)
C
B Va z,w)(Vesp(z,w T
(3.10) kg Pr(yl, w) (Vasi (i, w)) T+

— V. log p;(y|z,w) - (V, log p;(y|z, w))”

c
= = > Vaprlylr w) (Vas (o)

k=1
Hence,
H(log pi(y|z,w))V, log p;(ylz,w) =
(3.11) c . |
k=1

Since (Vasg(w,w))I'V,logpi(y|z,w) is a scalar, we obtain that H(logp;(y|z,w))
V. logpj(ylz, w) is a linear combination of the vectors V,pi(y|z,w) and therefore a linear
combination of the vectors V log pi(y|x, w).

The same holds for H(logp;(y|z,w)) Vilogp;(y|z,w); then also [Vlogp;(y|z,w),
V. log pj(ylz, w)] is a linear combination of vectors in D, as we wanted to show.

Through the application of Frobenius theorem, Theorem 3.1 gives us a foliation of the
data domain R™. R™ decomposes into the disjoint union of C' — 1-dimensional submanifolds,
whose tangent space at a fixed x € R™ is D, = (ker G(x,w))*. Every point = determines a
unique submanifold corresponding to the leaf of the foliation through x. We may extend this
local submanifold structure to obtain a global structure of manifold on a leaf, still retaining
the above property regarding the distribution.

As we shall see in section 4, we can move from a point x in our dataset X to another point
z’ also in ¥ with a horizontal path, that is, a path tangent to D,, hence lying on the leaf of
x and 2/. Our experiments show that we can connect every pair of points (z,2’) € ¥ x X
with horizontal paths. It means that all the dataset belongs to a single leaf, which we call
the data leaf L£. Our model, through the local data matrix G(z,w), enables us to move on
the low-dimensional submanifold £, to which all of our dataset belongs. Of course not all the
points of £ correspond to elements of the dataset; however, as we show in the experiments,
on most points of £ the model gives prediction compatible with human observers.

We also notice that each leaf of our foliation comes naturally equipped with a metric
given at each point by the matrix G(z,w), restricted to the subspace (ker G(x,w))*, which
coincides with the tangent space to the leaf, where G(z,w) is nondegenerate. Hence G(x,w)
will provide each leaf with a natural Riemannian manifold structure. We end this section
with an observation, comparing our approach to the geometry of the data domain, with the
parameter space.

Remark. Equation (3.1) provides a metric to the parameter space R?, motivating our
approach to the data domain. For each w € R%, we can define, as we did for the data domain,
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a distribution w ~ D!, := (ker F(w))*, using the Fisher matrix. However, it is easy to see
empirically that this distribution is not involutive; i.e., there is no foliation and no submanifold
corresponding to it.

4. Experiments. We performed experiments on the MNIST dataset [23] and on the
CIFAR-10 dataset [21]. We report in this section the experiments on the MNIST dataset
only because they are easier to interpret in the geometrical framework (foliation and leaves)
introduced in our previous section. CIFAR-10 experiments are reported in the dedicated
Appendix A.

All the following experiments use the same simple CNN classifier trained on MNIST. The
neural network is similar to LeNet, with 32 and 64 channels in the two convolutional layers
and 128 hidden units in the fully connected layer. The architecture is identical to the one
proposed in the official MNIST example of the PyTorch framework [29]. The network has
ReLU activation function, so it satisfies the hypothesis of Theorem 3.1. We train this network
with SGD, a batch size of 60, and a fixed learning rate of 0.01.

4.1. Rank and trace of the local data matrix. The definition of distribution in section 3
and the consequent results require the rank of G(x,w) to be constant on every point x for a
certain parameter configuration w. We remark that the rank of G(z,w) can be at most C' — 1
(Proposition 2.1), i.e., much lower than the size of G(z,w) (Table 1).

To check if our assumption is satisfied by a model, we should calculate the rank of several
local data matrices varying the data point x. Unfortunately, it is very difficult to establish
the rank of a matrix in numerical experiments because the rank is not robust with respect to
small perturbations. In fact, if we perform the calculation, the numerically estimated rank is
always higher than the theoretical upper bound C' — 1. Knowing that the rank corresponds
to the £y norm of the eigenvalues of a matrix, we can consider the ¢; norm of the eigenvalues
as a soft version of the rank. For a positive semidefinite symmetric matrix like G(z,w) (see
Proposition 2.1), the £; norm of the eigenvalues corresponds to the trace of the matrix.

Figure 2 shows the trend of the mean trace of G(x,w) for a fixed set of 1000 images during
the training. The plot is similar to the ones reported in [2] for the Fisher information matrix,
and it tells us that the local data matrix G(z,w) loses its informative content at the end of
training as well. When the model reaches the convergence the trace of G(x,w) is almost null
for many data points z, and the rank can be different for different x, breaking the hypothesis
of the theorem. We could expect the observed decreasing trend of the trace since

Tr G(z, w)=Tr Ey,[V.log p(y|x)- (Vlog p(ylz))"]
= Eyp[Te(Ve log p(yle, w) - (Vo log plyla, w))")]
(4.1) = Eyp[lVa log p(ylz, w)|?].

In fact a small perturbation of the data point x should not influence the prediction of a fully
trained model; thus ||V, log p;(y|z, w)||? should be almost null for every point = at the end of
training.

All these observations motivate us to perform subsequent experiments on a partially
trained model. In particular, we use the checkpoint at step 10000, i.e., at the end of the
10th epoch.
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Figure 2. Average trace of G(x,w) computed on 1000 fized data points x during training.

4.2. Characterization of leaves. Since our neural network classifier satisfies all the hy-
pothesis of Theorem 3.1, it views the data domain R" as a foliation. Nevertheless, this result
does not give us any clue about the characterization of leaves. We know, however, that, mov-
ing away from a data point z while remaining on the same leaf, we can obtain points with
different labels, while moving in a direction orthogonal to the tangent space to the leaf of x,
we obtain points with the same label as x, as long as the estimate (3.2) holds.

To understand the distinguishing factors of a leaf, we move from a data point x across
leaves, and we inspect the crossed data points. More specifically, we start from an image
in MNIST test set, and we let it evolve moving orthogonally to the tangent space D,, =
(ker G(x¢,w))*. Since the dimension of the orthogonal space is n — C + 1, there are many
possible directions. Thus, to monotonically increase the distance from the starting point =,
we use a fixed random direction, and at every step we project it on ker G(x;, w), i.e., on the
orthogonal space of the tangent space of current leaf.

We observe in Figure 3 that the noise in the images increases steadily. Moreover, we can
see that, as predicted by (3.2), model predictions remain very certain even when the digit
is indistinguishable for the human eye. This experiment makes us speculate that a leaf is
characterized by a constant amount of noise. If that is the case, all valid data should reside
on the same leaf characterized by the absence of noise, the data leaf.

4.3. Horizontal paths on leaves. We follow horizontal paths connecting two images from
MNIST test set. If it is possible to join two inputs with a horizontal path, then we know that
those points are on the same leaf. In our case a horizontal path is tangent to the distribution D
described in the previous section, i.e., D, = (ker G(z,w))* = span,_; _{ Ve logpi(y|z,w)}
from Proposition 2.1. We remark that D, coincides with the row space of the Jacobian
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Iteration 0: Iteration 125: Iteration 250: Iteration 375: Iteration 500: Iteration 625: Iteration 750 Iteration &75: Iteration 1000:
predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with
probability 1.0000 probability 1.0000 probability 1.0000 probability 1.0000 probability 1.0000 probability 0.9993 probability 0.9925 probability 0.9680 probability 0.9294

Iteration 0: lteration 125: Iteration 250: Iteration 375: Iteration 500: Iteration 625: Iteration 750 Iteration 875: Iteration 1000:
predicted label 0 with predicted label 0 with predicted label O with predicted label O with predicted label 0 with predicted label O with predicted label O with predicted label O with predicted label 0 with
probability 0.9996 probability 0.9996 probability 0.99393 probability 0.9978  probability 0.9920 probability 09719 probability 0.9245 probability 0.8533
m .

Figure 3. Paths across leaves of the foliation. Notice how the images become increasingly indistinguishable
from noise, while the classifier continues to assign a high probably to the class of the initial image. The further
we move orthogonally to the data leaf, the more noise appears on the image.

matrix Jac, log p(y|z,w). We use this equivalence to compute the projection of a vector on
the distribution D,.

Algorithm 4.1 Find a horizontal path between points.
Input: source s, destination d, step size «, number of iterations 7', model parameters w

rog =S
fort=1,...,7 do
# Calculate Jacobian of log p(y|z:—1,w) with respect to xy—1
j = Jacy log p(y|zi—1, w)
# Project the gradient of ||d — x;_1||*> on Dy,_,)
v = projection(d — x;_1, j)
# Update z;_1 to obtain the next point x; on the path
Ty =T4_1 + aﬁ
end for
Output: {z:}i—0,.. 7

Algorithm 4.1 finds an approximate horizontal path from a source point to a destination
point. The algorithm is obtained as a simplification of Riemannian gradient descent [13]
using the squared Fuclidean distance from the destination point as a loss function. Since we
do not have an explicit characterization of the leaves, we cannot perform the retraction step
commonly used in optimization algorithms on manifolds. To circumvent this problem, we
normalize the gradient vector v and use a small step size & = 0.1 in our experiments. The
normalization ensures that the norm of the displacement at every step is controlled by the
step size.

Figure 4 shows the results of the application of Algorithm 4.1 on some pairs of images in
MNIST test set. We observe that it is possible to link different images with a horizontal path,
confirming our conjecture about the existence of the data leaf. This experiment shows that
the model sees the data on the same manifold, namely, one leaf of the foliation determined by
our distribution D.
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Iteration 0. lteration 625: Iteration 1250. Iteration 1875, Iteration 2500. Iteration 3125 Iteration 3750 Iteration 4375, Iteration 5000.
predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9996 probability 0.8800 probability 0.9868 probability 0.9903 probability 0.9965 probability 0.9969 probability 0.9973 probability 0.9978 probability 0.9979

Slafslelslslslsls

Iteration 0: Iteration 625: Iteration 1250: Iteration 1875 Iteration 2500: Iteration 3125: Iteration 3750. Iteration 4375 Iteration 5000:
predicted label 1 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9880 probability 0.9974 probability 0.9962 probability 0.9893 probability 0.9950 probability 0.9964 probability 0.9946 probability 0.9938 probability 0.9937

-+l B -u -« BN -l B -ul B -
& L - . & o &

Figure 4. Horizontal paths between two images in MNIST test set. Here, the paths require at most 5000
steps; different source-destination pairs can need more steps and a longer path. The sequences show that a
horizontal path is very different from an interpolation. Any two images in MNIST appear to be connected by a
horizontal path, i.e., by a path laying on one leaf.

Iteration 0: lteration 625: Iteration 1250: Iteration 1875 Iteration 2500: Iteration 3125: Iteration 3750. Iteration 4375 Iteration S000:
predicted label 9 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9139 probability 0.9937 probability 0.9808 probability 0.9796 probability 0.9670 probability 0.9512 probability 0.9448 probability 0.9228 probability 08964

NHEEEEEEER
e B B el N el § el ) el

Iteration 0. lteration 625: Iteration 1250. Iteration 1875, Iteration 2500. Iteration 3125 Iteration 3750 Iteration 4375, Iteration 5000.
predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with
probability 1.0000 probability 0.7932 probability 0.7930 probability 0.9615 probability 0.9422 probability 0.9108 probability 0.8606 probability 0.8254 probability 08110

Figure 5. Horizontal paths between a valid image and a mirrored image from MNIST test set. The mirrored
images are chosen to resemble letters (E and P). Notice how in the first sequence the path passes through the
digit 5 before reaching the destination point. Also images not in MNIST appear to be connected by a horizontal
path.

The observation of the paths on the data leaf gives us a novel point of view on the
generalization property of the model. First of all, while we could expect to find all training data
on the same leaf, it is remarkable that test data are placed on the same leaf too. Furthermore,
we observe that the data leaf is not limited to digits and transition points between them.
In fact, we can find paths connecting valid images with images of nonexistent digits similar
to letters, as shown in Figure 5. This fact suggests that the model-centric data manifold is
somewhat more general than the classification task on which the model is trained.

Our final experiment gives us another remarkable confirmation of our theoretical findings:
it is impossible to link with a horizontal path a noisy image outside the data leaf and a valid
data image. A noisy image is generated using the same strategy presented in section 4.2, i.e.,
modifying a valid image along a direction in ker G(x, w). Figure 6 shows that, even after 10000
iterations of Algorithm 4.1, it is impossible to converge to the valid destination point. Indeed,
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Iteration 0: Iteration 1250, Iteration 2500 Iteration 3750 Iteration 5000: Iteration 6250: Iteration 7500 Iteration 8750 Iteration 10000:
predicted label 3 with predicted label 7 with predicted label 7 with predicted label 7 with predicted IaDeI 'I M[n predicted IaDeI 7 \M[h predicted IaDe\ ? wu:n predicted IaDeI 7 with predicted label 7 with
pmbablhty 1.0000 probability 0.9952 probability 0.9953 probability 0.9911 P P p [ 095815 [+ vy 0.9758

] . ' ' ] .

3]

Iteration 0: Iteration 1250, Iteration 2500 Iteration 3750 Iteration 5000 Iteration 6250 Iteration 7500 Iteration 8750 Iteration 10000:
predicted label 4 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with
probability 0.9863 probability 0.9998 probability 0.9998 probability 0.9998 P ility 0.9998 p ility 0.9998 [ ility 0.9998 p ility 09998 P v 0.9995

] " " ] ]

Figure 6. Horizontal paths unable to reach a valid image in MNIST test set from a moisy image.

the noise is preserved along the path, and the noise pattern stabilizes after 5000 iterations.
The final point reached is a noisy version of the actual destination point.

All those experiments confirm that there exists a model-centric data manifold, the data
leaf of the foliation. In addition, they exhibit that the leaves in the foliation of the data
domain are characterized by the noise content.

5. Related works. Fisher information matrix. In [2] the authors discuss the infor-
mation content of the Fisher matrix, and they show that such content changes during the
training of a neural network, decreasing rapidly toward the end of it. This shows that the
Fisher-Rao metric acquires importance during the training phase only (see also [20]). More
on the geometry of the parameter space, as a Riemannian manifold, is found in [32]. In this
paper, we take an analogue of the Fisher-Rao metric but on the data domain. In our ex-
amples, we see a phenomenon similar to the one observed in [2]: the trace of the local data
matrix decreases rapidly as the model completes its training. Other metrics on datasets were
suggested (for example, see [10] and references within) but with different purposes. Here,
our philosophy is the same as in [6]: we believe that data themselves are not equipped with
a geometric structure, but such structure emerges only when the model views data, with a
given classification task.

Intrinsic dimension. [4] measures the intrinsic dimension of layer representations for
many common neural network architectures. At the same time, they measure the intrinsic
dimension of MNIST, CIFAR-10 [21], and ImageNet [8] datasets. Our objective is similar,
but we do not specifically quantify the dimension of the data manifold. The data leaf reflects
how a classifier sees a geometric structure on the discrete data points from a dataset. Its
dimension is intimately linked to the classification task. For this reason the results are not
directly comparable.

[4] shows that MNIST and neural networks trained on it behave very differently from net-
works trained on CIFAR-10 or ImageNet. While our experiments focus on MNIST, additional
experiments on CIFAR-10 are shown in Appendix A.

Adversarial attacks. Our method to navigate the leaves of the foliation is very similar to
common adversarial attack methods, like fast gradient sign method [15] or projected gradient
descent. Adversarial attacks and our navigation algorithm both rely on gradients V, log p;, but
adversarial generation algorithms perturb the original image by sign(V,logp;). In general,
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sign(V;logp;) ¢ ker(G(z,w))*, so adversarial examples are created perturbing the image
outside the data leaf.

6. Conclusions. In this paper, we introduce the local data matrix, a novel mathematical
object that sheds light on the internal workings of a neural network classifier. We prove
that the model organizes the data domain according to the geometric structure of a foliation.
Experiments show that valid data are placed on the same leaf of the foliation; thus the model
sees the data on a low-dimensional submanifold of the data domain. Such a submanifold
appears more general than the model itself because it includes meaningless but visually similar
images together with training and test data.

In the future, we aim to characterize the data leaf and to study the Riemannian metric
given by the local data matrix. If we could analytically characterize the leaves of the foliation
by the degree of noise, we could distinguish noisy data from valid examples. That can be
used in the inference phase to exclude examples on which model predictions are not reliable.
Furthermore, it could pave the way to the creation of novel generic denoising algorithms
applicable to every kind of data.

Appendix A. CIFAR-10 experiments.

We perform some experiments with the CIFAR-10 dataset (shown in Figure 7) and a
neural network similar to VGG-11. The horizontal paths found are hard to interpret, and
they are very similar to interpolations.

Figure 7. Horizontal paths between images in CIFAR-10 test set.
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