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Abstract—Detecting anomalous messages generated by 
cyberattacks is essential for IoT based critical applications (e.g., 
finance, healthcare, manufacturing, etc.), in order to guarantee 
high levels of security and availability. Autoencoder-based 
anomaly detection has been proven effective in detecting the 
presence of messages altered by malicious attacks. To guarantee 
low detection latency, autoencoders’ algorithms are typically 
executed by HW accelerators implemented by nanotechnology. 
However, such HW accelerators are susceptible to soft errors 
(SEs), that may occur during their in-field operation. In this 
paper, we analyze the impact of SEs on the effectiveness of 
autoencoders in detecting anomalous messages generated by 
cyberattacks. As an example, we consider autoencoders trained 
to discriminate credit card legal and illegal transactions. We 
show that SEs do not decrease system’s security, but may reduce 
system’s availability of the 70%, so that proper solutions to 
avoid the detrimental impact of SEs on system’s availability 
should be devised for autoencoders implemented by high 
performance HW accelerators. 

Keywords—Autoencoders, Availability, Security, Soft Errors, 
Anomaly Prediction, Hardware accelerators, Nanotechnology. 

I. INTRODUCTION 

The advancement of nanotechnology has enabled a 
significant increase in Internet of Things (IoT) and big data 
applications using wireless communication networks [1, 2, 3]. 
Even though wireless networks adopt solutions to protect data 
against malicious attacks, they are still more vulnerable than 
traditional wired networks, and some malicious attacks might 
hack them [2, 4]. In order to guarantee the required levels of 
availability and security of IoT based critical applications 
(such as finance, healthcare, manufacturing, etc.), it is of 
utmost importance to detect, as soon as possible, the presence 
of messages that have been altered by malicious attacks. It has 
been shown that such altered messages usually present 
“anomalous” patterns, that are different from those in legal 
messages. Thus, messages modified by malicious attacks can 
be efficiently detected by anomaly detection approaches based 
on autoencoders that, as known [1, 5, 2, 6, 7, 8], are a class of 
Deep Neural Networks (DNNs). Such as any DNN, 
autoencoders should be properly trained with a dataset 
representative of legal communications among IoT devices, in 
order to find the optimal values for the weights of the 
autoencoder’s nodes (neurons) that minimize the Means 
Square Error (MSE) of the performed predictions [6].  

In order to guarantee the required level of availability and 
security of IoT based critical applications, the latency of the 

autoencoders in detecting malicious attacks should be as low 
as possible. Therefore, autoencoders’ algorithms are typically 
executed by HW accelerators implemented by 
nanotechnology, to guarantee high performance [9, 10]. To 
implement the autoencoder, the weights of its nodes, 
generated during the training phase, are stored in the memory 
of the HW accelerator [9, 10]. However, HW accelerators 
implemented by nanotechnology are becoming increasingly 
susceptible to soft errors (SEs) [9, 10, 11, 12]. Such a 
vulnerability may be exacerbated by process parameter 
variations occurring during manufacturing and by degradation 
phenomena, such as Bias-Temperature-Instability (BTI) [13, 
14]. Consequently, as highlighted in [9], standard ECCs may 
no longer able to protect the memory of HW accelerators 
implemented in nanotechnology. 

Based on these considerations, in this paper we analyze the 
impact of single SEs on the effectiveness of autoencoders in 
detecting anomalous messages generated by cyberattacks. As 
an example, for our analyses we trained a typical autoencoder 
with two representative datasets containing credit card 
legal/illegal transactions. Similar results have been obtained 
also for other datasets. We realistically emulated SEs in 
memory elements of HW accelerators as bit flips in the weight 
of the trained autoencoders. We introduce two metrics to 
evaluate the impact of such SEs on system’s availability and 
security. We show that SEs do not decrease system’s security, 
but may reduce system’s availability of the 70%. Our analyses 
have been performed considering single SEs. However similar 
problems are expected also for the case of multiple SEs that, 
as known [9], will become increasingly likely with technology 
scaling. Therefore, our analysis highlights the need for 
solutions enabling to avoid the detrimental impact on system’s 
availability caused by SEs affecting the weights of 
autoencoders’ algorithms executed using HW accelerators 
implemented by nanotechnologies.  

The rest of this paper is organized as follows. In Section 
II, we present some preliminary concepts on autoencoders. In 
Section III, we describe the implementation and training of a 
typical autoencoder for two case study datasets, consisting of 
European credit card legal/illegal transactions. In Section IV, 
we report the results of our analyses on the impact of soft 
errors on the operation of autoencoders used to detect 
fraudulent credit card transactions. Finally, in Section V, we 
present some conclusive remarks. 



 
 

II. PRELIMINARY CONCEPTS ON AUTOENCODERS 

An autoencoder is a special type of neural network, that 
is trained to learn to reproduce its input vectors upon its 
output. Therefore, an autoencoder can efficiently learn 
properties of unlabeled input information [1, 5, 2, 6, 7, 8]. A 
schematic representation of an autoencoder is illustrated in 
Fig. 1. As known [6], it consists of an input and an output 
layer with the same number of nodes (n in Fig. 1), and k 
hidden layers with a smaller number of nodes than the 
input/output layers. A neuron in a hidden layer calculates the 
weighted sum of the inputs plus a bias. The result is then 
given to an activation function (e.g., ELU, sigmoid, etc. [15]) 
that generates the output of the node, that is successively 
given as input to the nodes in the next layer. 

 
 

 
Fig. 1. Schematic representation of an autoencoder with k hidden layers. 

 

In particular, the output 𝑎௜
௟  produced by a node i on a 

hidden layer l is given by: 
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where 𝑊௜,௝
௟  and 𝑏௜,௝

௟  denote the weight and the bias parameters, 
respectively, associated to the j-th input of node i in the l-th 
layer; 𝑎௝

௟ିଵ is the value produced by a node j in the previous 
layer l-1; f is the activation function [6].  
 

During the training phase, the weights and bias of each 
node (Eq. (1)) are properly adjusted in order to minimize the 
difference (error) between the inputs and the corresponding 
outputs of the autoencoder. For a given input X= (x1, x2, …, 
xn) and the corresponding output X*= (x1

*, x2
*, …, xn

*), such 
a difference is usually expressed in terms of the Mean 
Squared Error (MSE) as follows: 
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As shown in [1, 5, 2, 6, 7, 8], since autoencoders learn 

properties underlying the complex systems for which they 
have been trained, they can be efficiently used to detect 

anomalous inputs of such systems during their operation in 
the field. Thus, an autoencoder trained with information 
regarding legal transactions of credit cards will be able to 
reconstruct correctly (i.e., with low MSE) only inputs 
corresponding to legal transactions of credit cards. Instead, it 
will reconstruct poorly (i.e., with high MSE) inputs 
corresponding to illegal transactions of credit cards, which do 
not satisfy the properties of the training dataset. 

III. AUTOENCODER IMPLEMENTATION AND TRAINING 

For our analysis, we have implemented and trained 
autoencoders considering their typical architecture in Fig. 1, 
using the Python TensorFlow framework and the Keras open 
source library [16]. We considered two credit card fraud 
detection datasets (hereinafter referred as Dataset 1 and 
Dataset 2) containing European credit card transactions [17].  

Dataset 1 contains a total of 284807 credit card 
transactions (each represented by a decimal number with 30 
digits), out of which 190161 are legal transactions for training, 
93662 are legal transactions for validation, and 984 (492 legal 
and 492 illegal) are transactions for testing.  

Dataset 2 contains a total of 6362620 credit card 
transactions (each represented by a decimal number with 9 
digits), out of which 4262955 are legal transactions for 
training, 2099665 are legal transactions for validation, and 
16426 (8213 legal and 8213 illegal) are transactions for 
testing.  

We implemented two different autoencoders of the kind in 
Fig. 1, hereinafter referred to as AEnc1 and AEnc2, to be 
trained with Dataset 1 and Dataset 2, respectively. AEnc1 has 
a number of inputs and outputs equal to n=30 (to match the 
number of inputs and outputs of Dataset 1), while AEnc2 has 
a number of inputs and outputs equal to n=9 (to match the 
number of inputs and outputs of Dataset 2). 

Moreover, for both autoencoders, we considered k=5 
hidden layers, such that:  

1) the first layer has 20 nodes in AEnc1, and 8 nodes in 
AEnc2;  

2) the second layer has 10 nodes in AEnc1, and 4 nodes in 
AEnc2;  

3) the third layer has 4 nodes in AEnc1, and 2 nodes in 
AEnc2;  

4) the fourth layer has 10 nodes in AEnc1, and 4 nodes in 
AEnc2;  

5) the fifth layer has 20 nodes in AEnc1, and 8 nodes in 
AEnc2;  

6) the sixth layer has 30 nodes in AEnc1, and 9 nodes in 
AEnc2.  

The considered number of nodes for the autoencoders’ 
hidden layers has been chosen to enable a good trade-off 
between accuracy and training/fault simulation times. 
However, results similar to those reported in this paper are 
expected also for autoencoders with a different number of 
nodes in the hidden layers.   

Finally, for both autoencoders we have considered two 
frequently adopted activation functions (f in Eq. (1)): the ELU 
and the sigmoid ones [15]. 



 
 

 We trained the two autoencoders for up to 200 epochs, 
using the training and validation part of the considered 
datasets. AEnc1 presents a total of 1680 weights, while AEnc2 
presents a total of 224 weights. 

As a result of the training phase, we obtained that, in the 
fault-free case, AEnc1 and AEnc2 feature an accuracy of 
90.1% and 99%, respectively. 

As an example, Fig. 2 reports the distribution of the MSE 
for the autoencoder AEnc1 using the ELU function. 

  

 
Fig. 2. Distribution of the Mean Square Error (MSE) of the autoencoder 
AEnc1 using the ELU function in detecting fraudulent (anomalous) credit card 
transactions. 

 

As can be seen, the distribution of the MSE for the case of 
legal transactions is reported in green. We can see that this 
distribution is completely concentrated around the 0, showing 
the good ability of the autoencoder in recognizing legal 
transactions. On the other hand, the red distribution reports the 
MSE for the case of illegal transactions. As can be seen, the 
MSE is significantly larger than 0, showing the poor ability of 
the autoencoder in reconstructing illegal transactions, that is 
its good ability to detect them. 

IV. EXPERIMENTAL SETUP AND RESULTS 

In this Section, first we describe the methodology that we 
have used to emulate the occurrence of SEs in the weights of 
the autoencoders described in Section III. Then, we present 
some of the results obtained by fault simulation. 

A. Experimental Setup 

In order to analyze the impact of SEs on the effectiveness 
of autoencoders in detecting anomalous messages generated 
by cyberattacks, we emulated the occurrence of single SEs on 
the weights of the autoencoders trained with the two 
considered datasets containing credit card legal/illegal 
transactions described in Section III. We realistically assumed 
that the weights of the autoencoders are stored in the HW 
accelerator memory as a 32-bit word, following the IEEE 754 
single-precision floating point standard representation of 
decimal numbers [18]. 

In particular, we emulated the occurrence of single SEs as 
bit-flips on the MSB of the exponent part of the floating point 
representation of each weight of the autoencoders, since this 
represents the worst case scenario. In fact, SEs affecting 
different exponent bits will result in a lower MSE, thus in a 
lower impact on the effectiveness of autoencoders in detecting 
anomalous messages generated by cyberattacks.  

We have performed fault simulation considering both the 
ELU and the Sigmoid activation functions. Our analyses have 
been carried out by injecting: 

 i)  3360 single SEs in the weights of the autoencoder 
trained with Dataset 1 (AEnc1), for both the ELU 
(1680 single SEs) and the Sigmoid (1680 single SEs) 
activation functions;  

ii)  448 single SEs in the weights of the autoencoder 
trained with Dataset 2 (AEnc2), for both the ELU (224 
single SEs) and the Sigmoid (224 single SEs) 
activation functions. 

For each injected SE, we simulated the trained 
autoencoders (as described in Section III) by applying to their 
inputs the testing part of the considered datasets. They consist 
of 492 legal and 492 illegal credit card transactions (984 in 
total) for Dataset 1, and 8213 legal and 8213 illegal credit card 
transactions (16426 in total) for Dataset 2. 

For each injected SE, one of the following conditions 
could occur: a) a legal transaction is correctly classified as 
legal (CL-L); b) an illegal transaction is correctly classified as 
illegal (CI-I); c) an illegal transaction is incorrectly classified 
as legal (CI-L); d) a legal transaction is incorrectly classified as 
illegal (CL-I). 

In particular, SEs resulting in legal transactions incorrectly 
classified as illegal (CL-I) will impact system’s availability, 
since such transactions will not be processed by the system. In 
order to evaluate such an impact of SEs on system’s 
availability, we define the following availability (AV) metric: 

 

𝐴𝑉 = 1 −
𝐶ூିூ + 𝐶௅ିூ

𝑇𝑜𝑙𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
                        (3) 

 
Instead, SEs resulting in illegal transactions incorrectly 

recognized as legal (CI-L) will impact system’s security, since 
such illegal transactions will be processed as if they were 
legal. In order to evaluate such an impact of SEs on system’s 
security, we define the following security risk (SR) metric: 

𝑆𝑅 =
𝐶ூି௅

𝐼𝑙𝑙𝑒𝑔𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
                         (4) 

B. Results for the Autoencoder Trained with Dataset 1  

The summary of the simulation results obtained for the 
autoencoder trained with Dataset 1 (AEnc1), with the ELU 
and Sigmoid activation functions, are shown in Fig. 3 and Fig. 
4, respectively. The figures report the values of CL-L, CI-I, CI-

L, and CL-I obtained for the fault free case and for the case of 
SEs affecting the weights of the autoencoder. For the case of 
SEs, the values of CL-L, CI-I, CI-L, and CL-I have been averaged 
over the total number of SEs injected in the autoencoder (3360 
single SEs).  



 
 

 As can be seen from Fig. 3, for the autoencoder AEnc1 
using the ELU function, SEs result in a reduction of approx. 
60% in the number of legal transactions recognized as legal 
(CL-L), and in a consequent significant increase in the number 
of legal transactions recognized as illegal (CL-I), thus 
significantly reducing system’s availability. This because SEs 
increase the difference between the input and output of the 
autoencoder (i.e., the MSE), thus increasing the number of 
legal transactions that are misclassified as illegal. 

Moreover, we observe that SEs result in a limited increase 
(of approx. 13%) in the number of illegal transactions 
correctly classified as illegal (CI-I), and in a consequent 
reduction in the number of illegal transactions erroneously 
recognized as legal (CI-L), thus resulting in a reduction of 
system’s security risk. This because some illegal transactions 
that are similar to legal transactions, and may be not detected 
by a fault-free autoencoder due to the small MSE, may 
become detectable if the autoencoder is affected by a SE, due 
to the increased MSE.  

 

 
Fig. 3. Simulation results for AEnc1 using the ELU activation function, 
showing the values of CL-L, CI-I, CI-L, and CL-I obtained for the fault free case 
and for the case of SEs in the weights of the autoencoder. For the case of SEs, 
the values of CL-L, CI-I, CI-L, and CL-I have been averaged over the total number 
of SEs. 

 

 
Fig. 4. Simulation results for AEnc1 using the Sigmoid activation function, 
showing the values of CL-L, CI-I, CI-L, and CL-I obtained for the fault free case 
and for the case of SEs in the weights of the autoencoder. For the case of SEs, 
the values of CL-L, CI-I, CI-L, and CL-I have been averaged over the total number 
of SEs. 

 

Analogous results are reported in Fig. 4 for the case of the 
autoencoder AEnc1 using the Sigmoid function. In particular, 
SEs result in a significant reduction (of approx. 41%) in the 
number of legal transactions recognized as legal (CL-L), and in 
a consequent significant increase in the number of legal 
transactions recognized as illegal (CL-I), thus significantly 
diminishing system’s availability. 

Moreover, we also observed that SEs result in a limited 
increase (of approx. 12%) in the number of illegal transactions 
correctly classified as illegal (CI-I), and in a consequent  
reduction in the number of illegal transactions recognized as 
legal (CI-L), thus resulting in a reduction of system’s security 
risk.  

As for the case of the ELU function, the increase in the 
number of both legal transactions recognized as illegal (CL-I) 
and illegal transactions correctly classified as illegal (CI-I) can 
be explained by the fact that SEs increase the MSE.  

C. Results for the Autoencoder Trained with Dataset 2  

The summary of the simulation results obtained for the 
autoencoder trained with Dataset 2 (AEnc2), with the ELU 
and Sigmoid activation functions, are shown in Fig. 5 and Fig. 
6, respectively. As in the previous subsection, the figures 
report the values of CL-L, CI-I, CI-L, and CL-I obtained for the 
fault free case and for the case of SEs affecting the weights of 
the autoencoder. For the case of SEs, the values of CL-L, CI-I, 
CI-L, and CL-I have been averaged over the total number of SEs 
injected in the autoencoder (448 single SEs).  

 

 

 
Fig. 5. Simulation results for AEnc2 using the ELU activation function, 
showing the values of CL-L, CI-I, CI-L, and CL-I obtained for the fault free case 
and for the case of SEs in the weights of the autoencoder. For the case of SEs, 
the values of CL-L, CI-I, CI-L, and CL-I have been averaged over the total number 
of SEs. 

 

As can be seen from Fig. 5, for the autoencoder AEnc2 
using the ELU activation function, SEs result in a reduction of 
approx. 79% in the number of legal transactions recognized as 
legal (CL-L), and in a consequent significant increase in the 
number of legal transactions recognized as illegal (CL-I), thus 
significantly reducing system’s availability. 

Moreover, we observe that SEs result in an increase of 
approx. 18% in the number of illegal transactions correctly 
classified as illegal (CI-I), and in a consequent reduction in the 



 
 

number of illegal transactions erroneously recognized as legal 
(CI-L), thus increasing system’s security.  

The increase in the number of both legal transactions 
recognized as illegal (CL-I) and illegal transactions correctly 
classified as illegal (CI-I) can be explained by the fact that SEs 
increase the MSE.  

Finally, Fig. 4 reports the results obtained for AEnc2 using 
the Sigmoid activation function. We can see that SEs result in 
a significant reduction (of approx. 68%) in the number of legal 
transactions recognized as legal (CL-L), and in a consequent 
significant increase in the number of legal transactions 
recognized as illegal (CL-I), thus significantly diminishing 
system’s availability. 

 

 

 
Fig. 6. Simulation results for AEnc2 using the Sigmoid activation function, 
showing the values of CL-L, CI-I, CI-L, and CL-I obtained for the fault free case 
and for the case of SEs in the weights of the autoencoder. For the case of SEs, 
the values of CL-L, CI-I, CI-L, and CL-I have been averaged over the total number 
of SEs. 

 

Moreover, we can also observe that SEs result in an  
increase of approx. 23% in the number of illegal transactions 
correctly classified as illegal (CI-I), and in a consequent  
reduction in the number of illegal transactions recognized as 
legal (CI-L), thus increasing system’s security. 

Similarly to the case of  the ELU function, the increase in 
the number of both legal transactions recognized as illegal (CL-

I) and illegal transactions correctly classified as illegal (CI-I) 
can be explained by the fact that SEs increase the MSE.  

 

D. Evaluation of System’s Availability and Security  

In this subsection, for both AEnc1 and AEnc2, and 
considering both the fault free case and the case of SEs, we 
evaluate the system’s availability metric (AV in (3)) and 
security metric (SR in (4)), as well as their relative variation 
(∆AV and ∆SR) between the fault free case and the case of SEs. 
In particular, such variations have been derived as follows: 

 

∆𝐴𝑉(%) = 100
𝐴𝑉ௌா − 𝐴𝑉ி௔௨௟೑ೝ೐೐

𝐴𝑉ி௔௨௟೑ೝ೐೐

;     

 

∆𝑆𝑅(%) = 100
𝑆𝑅ௌா − 𝑆𝑅ி௔௨௟_௙௥௘௘

𝑆𝑅ி௔௨௟_௙௥௘௘

 

 
Tab. 1 reports the obtained values.  

As we can see from Table 1, for both autoencoders, and 
considered activation functions, system’s availability is 
significantly impacted by SEs affecting the weights of the 
autoencoders.  

In fact, for AEnc1, we can observe an AV reduction of 
approx. 60% and 26% using the ELU and Sigmoid functions, 
respectively. Analogously, for AEnc2, we can observe an AV 
reduction of approx. 69% and 60% using the ELU and 
Sigmoid functions, respectively. Therefore, our analysis 
highlights the need for solutions enabling to avoid the 
detrimental impact on system availability caused by SEs 
affecting the weights of autoencoders’ algorithms executed 
using HW accelerators implemented by nanotechnologies. 

Table 1. 
Values of system’s availability and security metrics (AV and SR), for the 

fault free case and the case of SEs, as well as variations (∆AV and ∆SR) of 
the AV and SR values obtained for the fault free case and the case of SEs. 

 
AEnc1 AEnc2 

ELU Sigmoid ELU Sigmoid 

AV Fault free case 0.584 0.635 0.614 0.678 

AV with SE 0.23 0.47 0.19 0.27 

∆AV (%) -60.6% -25.9% -69.1% -60.2% 

SR Fault free case 0.17 0.27 0.29 0.37 

SR with SE 0.06 0.19 0.16 0.22 

∆SR (%) -64.7% -29.6% -44.8% -40.5% 

 

From Table 1 we can also see that, for both autoencoders 
and both activation functions, the security risk metric SR 
diminishes in case of SEs on the weights of the autoencoder. 
For AEnc1, the reduction in SR is of approx. 65% and 30% for 
the ELU and Sigmoid functions, respectively. For AEnc2, the 
reduction in SR is of approx. 45% and 40% using the ELU and 
Sigmoid functions, respectively. As clarified before, the 
reduction in SR is associated to the fact that SEs increase the 
difference between legal and illegal transactions, making it 
easier to detect illegal transactions in case of SEs. 

Results similar to those shown in Figs. 3, 4, 5, 6 and Table 
1 have been obtained also for other datasets in [17], thus 
highlighting the need for solutions to avoid the impact on 
system’s availability caused by SEs affecting the weights of 
autoencoders implemented by nanotechnology HW 
accelerators. 

Finally, we can reasonably expect that, with 
nanotechnology scaling, and the consequent increased 
likelihood of multiple SEs, such an impact on system’s 
availability will become even worse than that found here for 
the case of single SEs. 



 
 

V. CONCLUSIONS 

Autoencoder-based anomaly detection has recently been 
adopted to detect the presence of messages altered by 
malicious attacks in IoT based critical applications (such as 
finance, healthcare, manufacturing, etc.), in order to guarantee 
high levels of security and availability. To achieve this goal, 
the detection latency of autoencoders should be as low as 
possible. Therefore, autoencoders’ algorithms are typically 
executed using HW accelerators, implemented by 
nanotechnology. However, such HW accelerators are 
susceptible to soft errors, which may significantly impact the 
autoencoder’s correct operation. We have analyzed the impact 
of SEs on the effectiveness of autoencoders in detecting 
anomalous messages generated by cyberattacks. As an 
example, we considered autoencoders trained to discriminate 
credit card legal and illegal transactions. We have introduced 
two metrics to evaluate the impact of SEs affecting the 
autoencoders on system’s availability and security. We have 
shown that such SEs may reduce system’s availability of the 
70%, while they do not impact system’s security. Therefore, 
our analysis highlights the need for solutions enabling to avoid 
the detrimental impact on system’s availability of SEs 
affecting the weights of autoencoders’ algorithms executed by 
HW accelerators implemented by nanotechnologies. 
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